
CREDIT CONTAGION: PRICING CROSS-COUNTRYRISK IN BRADY DEBT MARKETSMARCO AVELLANEDAy AND LIXIN WUzAbstract. Credit contagion means that the credit deterioration of an entity causes thecredit deterioration of other entities. In this paper, we build and test a continuous-timemodel for defaultable securities using a di�usive process for risk-free interest rate, and a�nite-state continuous-time Markov process for the correlation of credit. The credit con-tagion, in particular, is established by relating transition rates of various credit states.Examples of derivative pricing with calibrated credit contagion model are provided. Initialempirical results with the benchmarks of Brady bonds show that our model is a viable newtechnique for the pricing and risk-managing of credit derivatives.
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1. IntroductionCredit contagion means that the credit deterioration of an entity causes the creditdeterioration of other entities. One example of such contagion was the greater depreciationof many South American sovereignty debts in contrast to that of benchmark Brazilian C-bond during the summer �nancial crisis of 1998, when the former were considered beingbrought down by the benchmark bond. Credit contagion is of course one source of creditrisk. In existing models, credit correlation is modeled with correlated di�usive processes foreither spreads or �rm values. As a result, the credit correlation built in in these modelsis symmetric. Yet credit contagion is often non-symmetric, in the sense that the default ofentity A is likely to cause the simultaneous default of entity B, but not vice versa. Therefore,there are great interests in the markets for credit risk models which can cope with creditcontagion.The option pricing models (OPM) for defaultable securities have been following twodi�erent approaches. The �rst approach takes the �rm's liability as contingent claims againstthe underlying asset. This approach was introduced by Merton(1974). In this approach,bankruptcy and bond non-payment occurs when the �rm's assets drop below some pre-speci�ed level, and the value of defaultable bonds are governed by di�usive-type partialdi�erential equations with state variables to be the �rm value and spot interest rate. Theequations can be solved numerically or even analytically in some special cases. Importantextensions and variants of Merton's model include those due to Black and Cox(1976), Shimko,Teejima and van Deventer(1993), Kim et al(1993), Hull and White(1991), and Longsta� andSchwartz(1992). These models take more tractable bankruptcy conditions, more generalinterest rate processes, or more general underlying �rm value processes like jump-di�usion.The use of �rm value is intuitively appealing, but it is also a major disadvantage for Merton'sapproach, because the �rm value is not tradable and is only partially observable. Also, inactual applications one has to deal with the often complex priority structure of a �rm'sliabilities. The popular commercial "EDF" measure (Kealhofer, 1995) for default probabilitysupplied by KMV Corporation was intended to estimate the �rm value and o�er predictionon credit migration.The second approach speci�es the credit spread as an exogenous stochastic processwhich does not explicitly depend on the �rm's underlying assets. The advantage is that isallows exogenous assumptions to be imposed only on observable variables, and, as justi�ed2



by Du�e and Singleton(1994), Heath-Jarrow-Morton's(1992) framework for pricing risk-freerate derivatives extends naturally to that of risky rate derivatives. Such extension initiateda lot of studies on the term structure of credit spreads. Models of this approach includeArtzner and Delbaen(1995), Du�e, Schroder and Skiadas(1996), Jarrow and Turnbull(1995),Lando(1994), Madan and Ural(1993), Nielsen and Ronn(1995) and others. Most of themodels are developed for a single default event. Some of the models are extendable tomultiple default events (Du�e and Singleton, 1999) like, for example, swaps with defaultablecounterparties. On top of the risk-free short rate process, Jarrow, Lando and Turnbull(1997)introduced �nite state Markov process to model the e�ect of credit rating (or migration) ondefaultable bonds.The new approach introduced in this paper is related to the model by Jarrow, Landoand Turnbull(1997), yet it is particularly targeted at credit contagion. We propose to treatcorrelated securities as a basket, identify possible states of single or multiple defaults, and, ontop of a di�usion process for the spot interest rate, use a �nite-state continuous-time Markovprocess to model defaults. We model the contagion of credit by some functional relationbetween various transition rates of the Markov process. The functional forms between thetransition rates will be estimated with some methods of nonlinear regression. In formalism,our model bears some similarity to the model of Jarrow et al(1995) for corporate bonds withdi�erent credit ratings, but in their model the transition rates are conceptually independentof each other.This model will be useful in debt markets where there is no or very little credit ratings,yet there exists strong price correlation. Such markets include some sector of corporate debtsand some regional sovereign bond markets. In these markets, the liquidity is concentratedon some "benchmark" issues, yet the illiquid issues typically o�er better return (or higheryields). A well-known trade is to long the high-yield illiquid bonds and hedge with low-yieldliquid bonds. When the market is in turmoil and credit contagion occurs, hedging withexisting models becomes unreliable and heavy looses can be generated.In this paper, we limit ourselves to non-option instruments (which can be decomposedinto a portfolio of zero-coupon defaultable bonds) and focus on a \reduced" model. Underthe assumption that the interest-rate process and defaultable process are uncorrelated, thedi�usion process for risk-free interest rate can be replaced by the spot forward rate curve.Consequently, the continuous-time model is reduced to a system of ordinary di�erentialequations. With a prototype bond basket consisting of Argentina PAR bond and Brazilian3



C-bond, we develop some technique to estimate the \contagion coe�cient". Finally, wewill demonstrate the pricing and sensitivity calculation of default protection note and swapsusing the calibrated model.The paper is organized as follows. In x 2 we introduce the state-space representationof default states.. Our continuous-time model is developed in x 3 in a general setting. Thereduced model is put forward in x 4. In x 5 we discuss the estimation of contagion coe�cients.In x 6 we develop the valuation techniques for prices and sensitivity parameters for defaultprotection note and swaps. Finally in x 7 we conclude the paper.2. State-Space RepresentationWe consider a basket of N defaultable securities(henceforth refereed to as \bonds").The default states associated with the default of one or several bonds in the basket will beidenti�ed with the subsets of f�; 1; 2; 3; : : : ; N�1g. Here, f�g is an empty set, correspondingto the state of no-default. Accordingly, when the system is in state S, the bonds with indicesi 2 S have defaulted and the bonds with i not belonging to S have not. Default states canalso be visualized in the \occupation" representation, i.e, as arrays of zeros and ones. Wethen write S = (s1; s2; : : : ; sN)where sj = 1 i� j 2 S. Lets take the basket of an Argentinean bond(\1") and a Brazilianbond(\2") for example. The default states aref�g; f1g; f2g; andf1; 2g: (1)The corresponding \occupation" representation of these states aref00g; f10g; f01g; andf11g:Later we will refer the above states as state 1, 2, 3 and 4 accordingly.We describe the underlying dynamics of default events as a �nite-state Markov process.The dynamics is completely determined once we specify the transition rates between di�erentstates. Transition rates are calibrated to �t the market prices, spreads and our expectationsabout the correlation between default events for di�erent bonds.Since default events are \irreversable", a transition from state S1 to S2 can happenonly if S1 � S2. This gives the set of all states a partially ordered structure from which itis easy to show that the maximum possible number of non-zero transition rates is 3N � 2N .4



In practice, we can selectively rule out some states that we believe are not reachable in thetime horizon of interest, in order to reduce the number of free parameters and make theimplementation more e�cient.Notice that the extreme case of 1) independence of default events and 2) extremecorrelation of default events (the default of bond i implies the default of bond j) leads tosimpli�cation of the general framework. In the next section, we provide the basic premisesfor multiple-default models.
3. Model with Stochastic Interest rate ProcessIn the general setting the random dynamics driving the prices of defaultable debt-instruments consists of the interest rate dynamics and default dynamics. We assume thatthe interest-rate component of the model is described by a di�usion process with in�nitesimalgenerator L =Xij aijDij +Xi �iDi (2)and that interest rates are functions of the state-variables(in practice, the model will beexponential-a�ne). The short rate is denoted by r.The �nite-state Markov process is speci�ed by its generator matrix, namely, �, oftransition rates between states. The (i; j) entry of �, i.e �ij, has the meaning given by theequation ProbfState i at time t+ dt j State j at time tg = �ijdt+ o(dt) (3)Note that �ij must be non-negative for all i; j and�ii = �Xj 6=i �ij for i = 0; : : : ; N (4)In Figure 1 we display the default diagram for a basket with 2 bonds. Notice that we mustspecify 5 = 32 � 22 transition rates.Given that the system is in state i, we label the value of a defaultable security by vi. Thevalues of the security for all states therefore are represented by a vector V = (v0; v1; : : : ; vN)T .5
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As the result, �24 and �34 are no longer free parameters. Here, � and � are named ascontagion coe�cients that are de�ned exogeneously. Furthermore, without a great loss ofgenerality we can put �14 = 0, i.e., zero possibility for simultaneous default. In fact, thesimultaneous default can be modeled by using large � or �. If we take � =1, then we meanthat Argentinean default becomes immediate with probability 1 once Brazil has defaulted.On the other hand, if there is no correlation between the default events of individual securi-ties, we simply put � = � = 1. Note that � and � do not have to be the same. That is, theimpact of one default on the default probability of the other needs not be symmetry.4. Model with Stochastic Interest rate ProcessIf the following conditions hold our model can be simpli�ed substantially: 1) theinterest-rate process and defaultable process are uncorrelated; and 2) the securities forcalibration and the security to be priced are all straight debt instruments(which can bedecomposed into a portfolio of zero-coupon defaultable bonds). Under the two conditions,one can prove that the in�nitesimal generator of the interest rate process together withshort-rate discounting term can be replaced by a linear zero-order term which represents thediscounting with the forward rate of U.S. treasury, and equation (6) becomesVt � fV + �V = 0; (11)where the scalar term f = f(0; t) is the spot forward rate of U.S. treasury. Once the state-dependent cash ows of a security are speci�ed, we can obtain a price by solving the aboveordinary di�erential equations. Clearly, the calibration for and pricing with the equation (11)both become simple mathematical exercises. We want to comment here that Condition 1 isnothing unusual. It appears in a market where the prices of defaultable debts are dominatedby the probability of default. Such markets were seen in Asia over last year and sovereigntydebt market in East Europe and South America around and after the July of 1998.Equation (11) can be solved analytically provided that � commutes with d�=dt. Thedetails are given in Appendix A. When � and d�=dt don't commute we employ numericalODE methods to solve equations (11).5. Determination of the Contagion CoefficientsIn our credit contagion model for two-bond basket, there are four parameters, namely,hazard rates �12; �13 for the �rst default, and contagion coe�cients � and �, needed to be7



"calibrated" to the market, before the model can be used to price other derivatives. Inpractice the calibration is achieved by minimizing some target function. To calibrate to atwo-bond basket, a popular choice of the target function isXi (P amodel(Ti)� P amarket(Ti))2 + �P bmodel(Ti)� P bmarket(Ti)�2 ; (12)where the super index variables a and b refer to the two bonds, Ti's correspond to certaintrading dates of interest, Pmodel and Pmarket refer to model price and market price, respec-tively. We want to �nd �12; �13; � and � that minimize the target function. The technicaldetails for calculating model prices are given in Appendix B.To solve minimization problem (12) directly can be costly but not necessarily helpful.In applications, we want to specify � and � a priori, and leave �12 and �13 for calibration (Forclarity we rename �12 and �13 to be �a and �b from now on). Our interest in this section is todevelop a technique to extract � and � from the available price history. For this purpose, wemake simpli�cation and impose an assumption to reduce number of variables into two. Weassume that the contagion occurs only in one way, and postulate a linear relation betweenthe �rst-to-default rates �a and �b: � = 1;�a = c1�b + c2: (13)The coe�cients c1 and c2, meanwhile, are obtained from solving the linear regression problemminc1;c2 Xi (sa(Ti)� (c1sb(Ti) + c2))2 (14)where sa and sb are spreads of the two bonds over US 30-year treasury rate. Using theclosing prices Argentina PAR-bond and Brazilian C-bond since July 30, 1993 when C-bondwas launched, we obtain c1 = 0:4072 and c2 = 0:0072. Because � = 1, �b is naturally equalto the spread of the C-bond over the US 30-year treasury yield, i.e., �b = sb. The relationbetween �a and �b, and the relation between sa and sb are illustrated in Figure 2, wherethe line plot is for (�a; �b), and the dot-plot is for (sa; sb). To some extent, we attributethe deviation of (sa; sb) from the �a-�b line to the credit contagion coe�cient �. After thespeci�cation of �; �a and �b, we end up with a minimization problem with a single variable�. The minimization problem is solved with the following patterns of price intakes:a. Closing prices since initiation;b. Monthly closing prices since initiation; 8



c. Closing prices in the last year;d. Closing prices in the last six month;e. Closing prices in the last three month;f. Closing prices in the last month.In calculating the model prices, precise features of the bonds must be taken into account,which include interest payment capitalization, principle amortization, principle collatoriza-tion and 12-month rolling interest guarantee. The terms of the two benchmark bonds aregiven by Table D.1 and Table D.2 in Appendix D.
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Figure 2. Spreads and �rst-to-default ratesThe results of calibrations are posted in Table 1, where R stands for recovery rate.R = 0:0 R = 0:1a. � = 5:4380 � = 10:8608b. � = 5:4925 � = 10:7996c. � = 4:7081 � = 9:5246d. � = 5:2468 � = 10:5149e. � = 6:8674 � = 18:7549f. � = 6:3028 � = 16:7522Table 1. Contagion coe�cients for di�erent duration and recovery ratesIt is interesting to note that � is very stable for data of long period. In Figure 3, we o�er acomparison between the actual yield to maturity and the yield to maturity produced by our9



model(using the prices of C-bond, R = 0:0 and � = 5:438). It can be seen the YTM curvesare very close, which suggests that our model has high degree of predicting power.
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Figure 3. Spreads and �rst-to-default rates6. Derivative Pricing with Calibrated Default ProcessIn this section we demonstrate the pricing of derivatives with calibrated default process.In speci�c, we take a default protection note and a serious swaps as examples. For given �and �, we �rst calibrate the model to the prices of Argentina PAR bond and Brazilian C-bondof a speci�c date, and then use the calibrated model to price two kinds of derivatives. Thedate is taken to be September 15, 1998, and the closing stripped prices were BA;m = $29:67and BB;m = $66:17, respectively. The sensitivity of the prices of the derivatives with respectto various parameters are also calculated and presented. The details are listed in AppendixC. Example 1: Argentinean default protection note. The maturity of the note is twoyears, and the payo� of the note is $100 if Argentina does not default within the two yearsor otherwise nothing.Our interests in this problem is on the e�ect of di�erent contagion coe�cient � on theprice and various sensitivity quantities. For � increasing continuously from 1 to 100, andthe rest of the inputs �xed (� = 1,R = 0:1,BA;m and BB;m), we compute the price, change inprice of the note for a 1 basis point change in interest rate(BPV Tsy), change in price of thenote for a 1 basis point change in stripped spread of Argetina(BPV spread), change in price10



of the note for a 1 basis point change in Argetina/Brazil cross country spread. The resultsare presented as plots of functions of �, given in Figure 7. The main point of interest is thatthe value of the default note and its sensitivity parameters are not monotonic functions of�. The value and the parameters are most sensible to changes of � within � 2 [1; 10], wheremaximum or minimum of the value and sensitivity parameters are achieved. For � increasesbeyond 10, the value and sensitivity parameters approach some asymptotes. It is interestingto note that the sensitivity to cross-country spread converges to zero, meaning that the valuewill no longer be sensitive to the spread if the Brazilian default will almost certainly bringdown Argentina.
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Yet again, we calibrate the model for alternatively �xed � and tenor, and then calculate theprice and sensitivity parameters as functions of tenor and �, respectively. For the 5-yearswap, the price and sensitivity parameters as functions of �, which varies from 1 to 100,are given in Figure 8. As one can see that the patterns of changes in price and sensitivityparameters are similar to those of the default note. Drastic changes are only seen seen for� 2 (1; 10). The plots for value and sensitivity parameters for �xed �(=5) yet varyingtenor(from 5 year to 15 years) are given in Figure 9. It is seen that the absolute values ofthe outcomes essentially increase with the maturity, and the changes are gradual and mild.
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MaturityFigure 9. Swap values vs.. maturity7. ConclusionWe have proposed a new model for credit contagion based on the joint processes of dif-fusion and �nite-state transition for risk-free interest rate and default. Studies for a reducedcase when the interest rate is deterministic is carried out in the paper. For the reduced case,the "contagion coe�cient" is estimated with Argentinean and Brazilian benchmark bonds,under the assumption of one-way credit contagion from Brazil to Argentina. The reducedmodel can be used to price any straight sovereignty debts of Argentina. A default protec-tion note and a series of swaps of Argentina are used as two examples in the paper. Wehave also developed techniques to calculate the sensitivity to an in�nitesimal plain shift ofyield, to the changes of spread, cross spread, and to the recovery rate. For options insteadof straight-debt instruments, we will have to use and calibrate the di�usive process for therisk-free interest rates. This will be the subject of future studies.
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Appendix A. Analytical solution to system of ODE'sConsider a risky bond which will make a single payment V at maturity T if defaultdoes not happen up to the maturity. According to the states we can specify the vector ofpayo� V (T ). If � and d�=dt commute, we can solve (11) directly and obtainV (0) =exp � Z T0 (f(�)I � �(�))d�!V (T )=P (0; T ) � exp Z T0 �(�))d�!V (T ) (A.1)where P (0; T ) = exp(Z T0 f(�)d�)is the value of the US zero-coupon bond with maturity T . Let� = 1T Z T0 �(�)d�:Then e�T is the T -period probability transition matrix. Using the Jordan canonical form of�: � = XJX�1, where J is a (block) diagonal matrix, we can evaluate e�T bye�T = XeJTX�1 (A.2)If the states are partially ordered, i.e., we will never have Si � Si+1, then �(�) and con-sequently � are both upper triangular matrices, since default events are \irreversible". Insuch case, the factorization of � into its Jordan canonical form can be achieved by �nitenumber of elementary arithmetic operations. The computations can be reduced further if �is assumed to be � -independent(or time homogeneous), when there is � = �. Take two-bondbasket and use the order given in (1), for example, we have the factor matrices asJ = diag(�11; �22; �33; 0); (A.3)X = (X1; X2; X3; X4); (A.4)with X1 = 0BBB@10001CCCA ; X2 = 0BBB@ �12�33��11100 1CCCA ; X3 = 0BBBB@�12x23+�13�33��11�23�33��2210 1CCCCA ; X4 = 0BBB@11111CCCA : (A.5)Here, in particular, x23 refers to the second component of X3.
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Appendix B. Valuation of Defaultable BondsThe model prices of two correlated defaultable bonds can be calculated asP amodel(Ti) = XTaj �Ti CaTaj Pa(T aj );P bmodel(Ti) = XT bj�Ti CaT bj Pb(T aj ); (B.1)where CaTaj and CbT bj are the cash ows of the two benchmarks, Pa(T ) and Pb(T ) are the modelvalues of zero-coupon risky bonds of Argentina and Brazil with maturity T , given byPa(T ) = P (0; T ) � [(1� R) � Prob(�a > T ) +R];Pb(T ) = P (0; T ) � [(1� R) � Prob(�b > T ) +R]; (B.2)where R is the recovery rate (assuming the same for both country), and �a and �b are thedefault arrival times. Prob(�a > T ) and Prob(�b > T ) thus are the survival probabilities ofthe two bonds up to time T , respectively. Through standard probabilistic arguments (or bysolving the ODE (11) we can obtainProb(�a > T ) =e�(�12+�13)T + Z T0 e�(�12+�13)s�13e���12(T�s)ds= �13�13 + (1� �)�12 e���12T + (1� �)�12�13 + (1� �)�12 e�(�12+�13)T (B.3)By symmetry we also obtainProb(�b > T ) = �12�12 + (1� �)�13 e���13T + (1� �)�13�12 + (1� �)�13 e�(�12+�13)T : (B.4)
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Appendix C. Calculation of SensitivitiesIf we price a portfolio of defaultable bonds with a model calibrated to bond prices Baand Bb, then the portfolio value can be considered as a function of US treasury yields, inputbond prices, and recovery rate R, i.e.,V = V (y; R;Ba; Bb):Alternatively, we can consider the value as a function of treasury yield, the recovery rate,and the �rst-to-default rates �a and �b,V = ~V (y; R; �a; �b);while �a and �b are de�ned implicitly by calibration conditions:Ba(y; �a; �b; R) = Ba;mkt;Bb(y; �a; �b; R) = Bb;mkt: (C.1)Here, Ba;mkt and Bb;mkt are the market prices of the benchmark bonds. For the purposeof hedging, we need in the sensitivities with respect to the changes in yield, recovery rate,spread and cross-spread. The calculations can be proceeded in two steps. First, we computesensitivities with respect to the changes in yield, recovery rate and input bonds prices. Then,we convert them to the sensitivities needed by applying a Jacobi matrix.a. Sensitivity to treasury yield, recovery rate and input bondsBy chain rule we have0BBBBB@@V@y [5pt]@V@R [5pt]@V@Ba@V@Bb
1CCCCCA = 0BBBBBB@1 0 @�a@y @�b@y0 1 @�a@R @�b@R0 0 @�a@Ba @�b@Ba0 0 @�a@Bb @�b@Bb

1CCCCCCA0BBBBB@ @ ~V@y [5pt]@ ~V@R [5pt]@ ~V@�a [5pt]@ ~V@�b
1CCCCCA (C.2)To compute the coe�cient matrix, we de�neJ =  @Ba@�a @Ba@�b@Bb@�a @Bb@�b ! (C.3)which is the Jacobi matrix for transformation (�a; �b)! (Ba; Bb) . Clearly we have @�a@Ba @�b@Ba@�a@Bb @�b@Bb! = J�1: (C.4)To calculate (@�a@y ; @�b@y ), we need equations (C.1) for �xed R, Ba;mkt and Bb;mkt:Ba(y; �a(y); �b(y)) = Ba;mkt;Bb(y; �a(y); �b(y)) = Bb;mkt; (C.5)17



Di�erentiating (C.5) with respect to y we have@Ba@y + @Ba@�a @�a@y + @Ba@�b @�b@y = 0;@Bb@y + @Bb@�a @�a@y + @Bb@�b @�b@y = 0; (C.6)Hence, �@�a@y @�b@y � = � �@Ba@y @Bb@y �J�T : (C.7)Through similarly derivations we have�@�a@R @�b@R � = � �@Ba@R @Bb@R �J�T : (C.8)b. Sensitivities to spread and cross spreadThe sensitivities with respect to spread s1 and cross-country spread s12 are related tosensitivities with respect to bonds Ba and Bb through the relation @V@s1@V@s12! =  @Ba@s1 @Bb@s1@Ba@s12 @Bb@s12! @V@Ba@V@Bb!=  @Ba@ya @Bb@yb0 �@Bb@yb ! @V@Ba@V@Bb!=  �DaBa �DbBb0 DbBb ! @V@Ba@V@Bb! (C.9)
where ya and yb are the yields, and Da and Db are the McCauley duration of bonds Ba andBb, respectively.
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Appendix D. Terms of the Benchmark BondsTerms of the Argentinean PAR Bond:ISSUER: Republic of ArgentinaCURRENCY: U.S. DollarsAMOUNT ISSUED: US$12,488.9 millionAMOUNT OUTSTANDING: US$11,269 millionDATE ISSUED: March 31, 1993MATURITY DATE: March 31, 2023TENOR: 30 yearsAMORTIZATION: BulletCOUPON: Fixed rate, Step on couponYear 1 4.00%Year 2 4.25%Year 3 5.00%Year 4 5.25%Year 5 5.50%Year 6 5.75%Year 7-30 6.00%GUARANTOR: US Treasury zero-coupon bonds due2023 to collateralize principle 12month of rollin ginterest guarantee at6%. The remainder of interest is not.collaterized.ORIGIN: Re�nancing of foreign debt tocommercial banks, under the Bradyagreement signed in November 1992
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Terms of the Brazilian C-Bond:ISSUER: Federal Republic of BrazilCURRENCY: U.S. DollarsAMOUNT ISSUED: US$7.39 billionAMOUNT OUTSTANDING: US$8.14 billionDATE ISSUED: April 15, 1994MATURITY DATE: April 15, 2014TENOR: 10 yearsAMORTIZATION: 21 semiannual payments beginningApril 15, 2004COUPON: 8% �xed, with a portionpayable in cash and the remaindercapitalized(added to principle)in years 1-6, according to thefollowing schedule.Year 1-2 4.00%Year 3-4 4.50%Year 5-6 5.00%Year 7-20 8.00%Interest payable semiannually.GUARANTOR: Federal Republic of BrazilORIGIN: Brady Plan(April 1994)
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