A FRONT-FIXING FINITE DIFFERENCE METHOD
FOR THE VALUATION OF AMERICAN OPTIONS

LIXIN WU AND YUE-KUEN KWOK

ABSTRACT. The difficulty for the accurate valuation of American type financial
options lies on the unknown free boundaries associated with the early exercise fea-
ture. A front-fixing transformation is used in this paper to transform the unknown
free boundary into a known and fixed one. An efficient finite difference method is
then developed, which produces the optimal exercise boundary and multiple option
values at once. Numerical results show that the front-fixing finite difference method
has accuracy comparable to that of the binomail method, and it is computationally
competitive when multiple option positions need to be priced.

1. INTRODUCTION

The valuation of American options has long been an intriguing problem. It is
widely acknowledged that analytical formula may not exist for an American option
when early exercise may be optimal. As a result, the valuation of American options
routinely resorts to numerical or or quasi-analytical methods. Since most traded op-
tions are American options, considerable interests exist in new valuation techniques.

The numerical methods are symbolized by the finite difference method (Brennan
and Schwartz, 1977), and particularly the binomial method (Cox, Ross and Rubin-
stein, 1979). These methods are pedagogically appealing, easy to implement, and
adaptive to options with nonstandard features or exotic options. Rigorous justifica-
tion has also been established for these methods (Jaillet, Lamberton, and Shastri,

1990; Amin and Khanna, 1994). Nevertheless, numerical methods are considered too
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slow for accurate valuation. Richardson extrapolation, first used by Geske and John-
son(1984) for option pricing, was employed to achieve higher accuracy with small
number of time steps (Breen, 1991).

The quasi-analytical solutions were introduced by Geske and Johnson(1984), MacMil-
lan(1986), and Barone-Adesi and Whaley(1987). These methods generate approxi-
mate solutions of an American option by either restricting early exercise at discrete
dates, or solving some modified Black-Scholes equation. Notable recent developments
of quasi-analytical methods include the analytical method of lines by Carr and Faguet
(1994), the integral equation approach by Huang, Subrahmanyam and Yu (1996) and
the capped option approximation by Broadie and Detemple (1996). Both integral
equation approach and capped option approach require Newton’s iteration for the
early exercise boundary. Richardson extrapolation is a critical component of analyti-
cal method of line and the integral equation approach. It is reasonable to believe that
these methods can be generalized to many other options. To some exotic options,
such as Asian option, which don’t have analytical formula when early exercise is not
allowed, the prospect of generalization is not clear.

Recently, Wilmott, Dewyenn and Harrison (1993) have developed a new framework
to price exotic options, such as barrier, Asian and lookback options. They model these
exotic options by a linear complementary problem of partial differential equation,
which can be solved effectively by project SOR method (Elliot and Ockendon, 1982).
The projection requires an embedded iteration at each time step. The method is more
accurate but slower than the finite difference method by Brennan and Schwartz(1977).

In this papers we introduce an old technique for free boundary problems into option
pricing. By the so-call front-fixing transformation (Landau, 1950) we let the unknown
boundary get into the equation in exchange for a fixed boundary. Such transformation
has also been considered by Carr (1995). The fixed boundary facilitates effective
discretization of a partial differential equation. We then propose a linear difference
scheme for the transformed equation. Our scheme doesn’t need embedded iteration

at each time step of evolution. In addition to option values, our method captures
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the whole optimal exercise boundary. The procedure works for an option as long
as a front-fixing transformation exists, which is true at least for standard American
options, barrier options, Asian options and lookback options. In subsequent sections
we will present the procedure and test results with the prototype American put
options.

The paper is organized as follow. In §2 we introduce a front-fixing transformation.
In §3 we propose a finite difference discretization to the transformed equation and
describe the solution procedure. Numerical comparisons with binomail method are

given in §4. We conclude the paper in §5.

2. THE FRONT-FIXING TRANSFORMATION

Let P(S,7;X) denote the value of an American put option. Here, S is the price
of the underlying asset price, 7 the time to maturity, and X the strike price. We

assume that S follows the risk-neutral process
(1) dS = rSdt + oSdz,

where r is the risk-free interest rate, and o is the volatility of the asset price. Both
r and o are assumed constants. It has been well-known that at any moment, there
exists optimal exercise boundary B(7) such that it is optimal to exercise the put

option when S is at or below B(7). Hence, when S < B(7) the put option is of value
(2) P(S,7;X)=X-5.

For asset price above S > B(7), instead, P(S5, 7) satisfies the celebrated Black-Scholes
equation (Black and Scholes, 1973; Merton, 1973)

1
(3) P, — 50252]355 —rSPs+rP =0, Se€(B(r,),
the “smooth pasting ” condition

(4) P(B(r),7) =X = B(7), Ps(B(r),7)=—1,
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at B(7), and the upper boundary condition

(5) lim P(S,7) = 0.

55— 00
The subindices in (3) represent partial derivatives with respect to respective variables.

The terminal payoff gives rise to the initial condition
(6) P(5,0) =0, S€(B(0),c) with B(0)=X.

Since P(S,7) is linearly homogeneous in S and X, and S is linearly homogeneous
in X, the equation and boundary conditions for normalized functions P = % and
B(T) = % on normalized variable S = % are the same as (3)-(6), except that strike
price be replaced by 1. Assume no confusion is caused, we let P, B and S stand for
the normalized variables in the subsequent discussions.

The difficulty for accurate valuation of the American put option lies on the un-
known boundary B(7). If we apply finite difference and finite element method di-
rectly to (3)-(6), we will have trouble managing the computational mesh points or
elements. It was first suggested by Landau (1950) that such difficulty can be removed

by transforming the unknown and varying boundary into a known and fixed one. The

following transformation of state variable serves this purpose:

7) y = In(S/B(r))
The process for y is

(BN
(8) dy—( 5 B(T))dw dz.

By either forming a riskless portfolio or direct substitution, we can derive the equation

and boundary conditions under the new variable y:

aoP 1 ,0°P o\ 0P - B'(t)0P
Y E*EU@F_Q_EJQT”P‘BwEJ
(10) P(y,0) =0, y&(0,00),
(11) PO,7)=1—- B(7), %(;’T) = —B(7),

(12) P(oo,7) = 0.
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B'(7)
B(7)

by the transformation. Note that transformation (7) is valid only if B(r) > 0 for all
7 > 0. This is indeed true as it has been known already (Samulson, 1979) that B(r)

Stemmed from the term % the nonlinear nature of valuation problem is exposed

is a monotonically decreasing function of 7 with a nontrivial asymptotic limit:

1 o
B(oco) = —— ——
Unlike many other free boundary problems, there is no separate equation exists for

B(7). At y =0, equation (9) becomes

o2 9*P(0,7) o* B
(13) —7T—7B(7)+T—07

due to some cancellations. Since the left boundary value P(0,7) is an unknown,

equation (13) will be needed for numerical solution.

3. FINITE DIFFERENCE APPROXIMATION

The finite difference discretization of the equations is to substitute all deriva-
tives by the appropriate difference quotients. For this purpose, we introduce a two-
dimensional mesh of the size (h, k) in the first quadrant of the y-7 plane, as is shown

in Figure 1.
tau

= ~

(0.0)

Figure 1. Computational mesh
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To present our finite difference scheme in a compact form, we define the following

difference operators:

E—-1T I—FE! E—E1
(14) Dy=—— D-=—— Do=—F5r—,

where E' is the spatial shifting operator such that for any discrete function F;,
(15) E'P; = Py

In order to avoid nonlinearity and achieve high accuracy, we adopt the following
three-level discretization to equation (9):

2 2

prtt _ prl
S R N {%D+D_ +(r— %)Do . r}

(16) 2k

(P;‘-I_l —I_ P;‘_l)

= gnDOP]nv

Here, PP is the numerical approximation to P(jh,nk), and

Bn—l—l _ Bn—l
1 el

B’(nk)

Bk We choose M large enough so that we can comfortably

which approximates

put Py, = 0 for all n. The discretized version of equation (13) is

2 2
(18) —%D+D_Pg - %B” +r=0,

which involves a ghost value P”;. The discretization of the “smooth pasting condi-

tion” (11) by central differencing gives rise to

(19) Py =1—B", and

pr _ pn
(20) f =—B", foralln>1.
From (18), (19) and (20) we can eliminate P”; and obtain
(21) Pl =a—-pB" n>1,

where

(22) a=1+h%"%* p= 14+ (1+ h)z]/Z.
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Note that the numerical discretization is not unique. We adopt (16) based on the

following considerations. First, when ¢" = 0, (16) reduces to the Crank-Nicholson

scheme used by Courtadon (1982) on European call option. If we look at our finite

difference scheme from the viewpoint of approximate general jump process, then the

underlying jump process has no biad variance. Second, the three-level discretization

permits the explicit treatment of nonlinear term, without sacrificing the accuracy of

the Crank-Nicholson discretization, which is of order O(k?* + h?).

We now explain how to advance from P! and P} to get Pf"’l,j =0,1,...

J

We first rewrite (16) using matrix notations. Denote

2 2
a = po’ + kr, b:ﬁ[02_h(7a_a_)]7 CZ%[U2+h(T_%)]7

a —c 0... 0
—b a —c 0 0
0 b a —c 0

A= .
0 b a —c
0 0 0 —-b a

Then in terms of A, equation (16) can be rewritten as

- (I + AP = (I — AP 4+ bPrH e + 2kg" DoP",
23
= (I — AP 4 bP7 ey + Ag"(2hDeP™), n > 1,

where A = k/h and

P=(P,P,...,Py)",
(24) .
e; = (1,0,...,0)7.

The solution to (23) can be expressed as

(25) ].:)n—l—1 == f1 + bPSH—lfQ + )\gnfg,

M.

Y
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where

£, = (I + A)H(I — AP,
(26) £, = (I+A) ey,

fy = (I + A)"H(2hDoP").

Substituting P{"t" into (21) and using (17) we can solve for B+

MigBn!
a— fi1—bfi2+ S5

A
B—bfia+ s

The solutions for ¢" and Py*! then follow. The pseudo-code for the method is

(27) B =

[L,U] = LU-decompose I + A
f,=U"'L"1e;
forn=1,2,... ,N—1do
f, < UTL~YI — AP
fy « U 'L (2R Do P™)
Solve for B"*, ¢" and Pyt
Pt £, + 7T, + Mg f5

end

It takes 11 M multiplications (divisions) and 9M additions (subtractions) to compute
each P".

Since equation (16) is a three-level scheme, we need P! in addition to P° to initialize
the computation. To maintain the overall second order of accuracy we use the two-

step predictor-corrector technique to obtain P*:

A A b

(I+5)P = (I = 5)P° + 3 o+ kgDoP”,
(28) P+ p°
(1 + §)P1 = (I - a)PO + §P01 + kngo( 5 ),
where
. b-B° 1 B' - B°
(29) 9= g 0T
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The code for P" can be used to realize this predictor-corrector procedure after slight
modification.

The specification of grid size (k,h) and the integer M is an important issue to be
addressed. Following the convention of the numerical methods we let k be one of the
input parameters defined according to the number of time steps N, i.e, k = T/N.
For h, it is well-known that the convergence of the finite difference solution requires
k/h — 0 as k — 0. From the viewpoint of approximate general jump process we want
to have nonnegative 1 — a,b and ¢, as they then can be interpreted as probabilities
(multiplied by 1 —kr, the time discount factor). The nonnegativity requirement leads
to h > ovk. From experiences we recommend h = 1.50+/k. This selection implies
that our finite difference method is first order accurate in k. When penny accuracy
is demanded, M should be chosen according to P(Mh,T) < (100X )~!. Clearly, M
is a function of all input parameters. At this point we don’t have a general formula
of M that guarantees penny accuracy in all situations. We have instead chosen
M in a rather simple way. For 0 < T < O(1), we observe the magnitude of the
solution in the far field (y > 1) depends on ov/T. We thus consider Mh = co\/T,
or M = [co/T/h], here ¢ is a constant insensitive to the input parameters. When
T < 3, we have uniformly taken ¢ = 8. This selection is supported by our numerical
results. For bigger o,T or X we may need bigger c.

Given M chosen above we can calculate the number of arithmetic operations needed
for the entire iterations. The total numbers of multiplications (divisions) and addi-

tions (subtractions) are

22¢ 2
(30) No. of x/+ = LLMN = [Z=N?]
and
(31) No. of +/— = OIMN = [6eN3].

The power over N is % When the number of time steps doubles, the CPU time for

front-fixing method will increase by a factor 23 = 2.8. Meanwhile, binomial method
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takes N (N + 1) multiplications and the same number of additions. When the number
of time steps doubles, the CPU time for the binomial method will ncrease by the factor
4. If the CPU time for one multiplication (division) significantly dominates the CPU
time for one addition (subtraction), then the front-fixing method will take less CPU
time than binomial method for each run when the number of time steps N > [(22¢)?].
Hence, if there are p option positions with the same maturity to be valuated, we
should consider the front-fixing method when the number of time steps N > [(23—2;)2]
Take p = ¢ = 8 for example, N > 54.

Finally we remark that interpolation treatment is generally part of the front-fixing

method. The finite difference method on the transformed equation produces option

values at
(32) S;=XB(T)e™, j=0,1,..., M.

For option values at any designated asset prices other than these S;’s, we adopt the
cubic spline interpolation(Press et. al., 1992) with P(S5;,7T). One can prove that
interpolated option values over the interval [B(T),B(T)e”ﬁ] will have the same
accuracy as that of P(S;,T). However, if the delta is obtained by differentiating the
cubic spline polynomial, then theoretically we can only guarantee the accuracy of

order O(h).

4. NUMERICAL RESULTS

In this section we show the performance of the front-fixing method with three
test cases. The test cases cover short term, medium term and long term options
with various parameters. For the same number of time steps, front-fixing method is
tested against the standard binomial method. Throughout these test cases we take
h = 20vk and M = [80/T/h] for the front-fixing method. For various numbers of
time step, we tabulate the option values, deltas, root-mean-square-errors(RMSE) and
CPU times of both the standard binomial method and the front-fixing method. In
Example 1 and 2, we generate the “exact” solutions for the computation of RMSE by
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the binomial method with 1,000 time steps. The “exact” solutions in Example 3 are
taken directly from Huang, Subrahmanyam and Yu (Huang et al., 1996), which were
obtained by 10,000 binomail iterations. We would like to emphasize here that the
CPU times given in these examples are the CPU time for each run of either method.

Example 1: The first test case is the prototype (Carr and Faguet, 1994) with the

following characteristics:

e Strike price X =$100;

o Risk-free interest rate r = 0.1;
e Volatility o = 0.3;

e Time to maturity T =1 (year).

Table 1A lists the option values and deltas obtained by binomial and front-fixing
methods for two sets of asset prices, where “F-F-F” stands for front-fixing finite dif-
ference method. The asset prices in first set are near the optimal exercise boundary
B(T) = 76.25 and the asset prices in second set lie within 20% range of the strike
price. The delta for the front-fixing method is obtained by differentiating the cubic
spline interpolant. The RMSE indicates that the two methods have close accuracy,
and both are well within the truncation error O(k). Near the optimal exercise bound-
ary, the front-fixing method is slightly more accurate. However, the deltas calculated
for the front-fixing method have much bigger error than that of the deltas obtained
by the binomial method.

In Table 1B we display the changes of RMSE and CPU time with respect to N.
We define

MSE(N
(33) Factor of RMSE decrease = %&/;)7
and
PU(N
(34) Factor of CPU time decrease = (?(113%1(\1/;)’

and RMSE(N) and CPU(N) denote the RMSE and CPU time of either method with

N time steps. These two factors measure the order of the accuracy and rate of
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increase of CPU times. It can be seen that when time step doubles, the RMSE of the

front-fixing method decreases by a factor around 0.5, and the CPU time increases

by factors approaching v/8. This factor of decrease confirms the first order temporal

accuracy of the front-fixing method. Note that for N = 512, the run time of front-

fixing method becomes less than that of binomial method. Figure 2 offers the early

exercise boundary obtained by the front-fixing method for 0 < 7 < T'.

r=0.1,0=037T=1X =100,k = 0.01

Option Values Delta
Stock || Binomial | Binomial | F-F-F || Binomial | Binomial | F-F-F
Price n=1000 n=100 | n=100 n=1000 n=100 | n=100
7 23.0131 | 23.0000 | 23.0128 -0.9686 | -0.9619 | -0.9718
78 22.0615 | 22.0567 | 22.0621 -0.9318 | -0.9342 | -0.9353
79 21.1483 | 21.1442 | 21.1469 -0.8971 -0.8987 | -0.9001
80 20.2687 | 20.2576 | 20.2662 -0.8632 | -0.8634 | -0.8661
RMSE 0.0092 | 0.0015 0.0036 | 0.0032
CPU(sec) 1.89 | 5.9500
80 20.2689 | 20.2576 | 20.2662 -0.8631 -0.8634 | -0.8661
85 16.3467 | 16.3412 | 16.3396 -0.7109 | -0.7107 | -0.7133
90 13.1228 | 13.1208 | 13.1124 -0.5829 | -0.5832 | -0.5848
95 10.4847 | 10.4798 | 10.4733 -0.4755 | -0.4761 | -0.4769
100 8.3348 8.3265 | 8.3277 -0.3856 | -0.3860 | -0.3866
105 6.6071 6.6108 | 6.5936 -0.3108 | -0.3110 | -0.3116
110 5.2091 5.2250 | 5.2004 -0.2491 -0.2493 | -0.2497
115 4.0976 4.1034 | 4.0872 -0.1986 | -0.1988 | -0.1990
120 3.2059 3.1964 | 3.2023 -0.1575 | -0.1574 | -0.1578
RMSE 0.0086 | 0.0090 0.0003 | 0.0016
CPU(sec) 1.89 6.08
TABLE 1A: Comparison of speed and accuracy, 1
r=01,0=03,T=1,X=100
Binomial F-F-F Binomial F-F-F
Time Factor of Factor of CPU Factor of CPU Factor of
Step N || RMSE | decrease | RMSE | decrease time increase time increase
16 || 5.1E-02 7.4E-02 6.7E-02 7.2E-01
32 || 1.0E-02 0.20 3.4E-02 0.46 2.3E-01 3.50 1.2E400 1.67
64 || 1.2E-02 1.22 1.5E-02 0.44 8.3E-01 3.57 2.7E400 2.26
128 || 3.3E-03 0.27 6.9E-03 0.46 3.2E400 3.90 6.8E400 2.48
256 || 5.8E-03 1.79 3.8E-03 0.55 1.3E401 3.91 1.8E401 2.70
512 || 1.3E-03 0.22 2.8E-03 0.73 5.1E+01 4.03 5.0E4+01 2.74

TaBLE 1B: RMSE and CPU time vs number of time steps




FRONT-FIXING METHOD FOR AMERICAN OPTIONS 13

r=0.1,sigma=0.3,T=1,X=100,N=100
100 T T T T T

95 *

90 b

85 b

80 b

75F .

Optimal Exercise Boundary

Perpetual Exercise Boundary=68.97

60 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time to maturity
FIGURE 2 Optimal exercise boundary
Example 2: The second example (Carr and Faguet, 1994) is a long term option

with the following characteristics:

e Strike price X =$100;

o Risk-free interest rate r = 0.06;

e Volatility o = 0.4;

e Time to maturity T = 3 (year).
As is shown in Table 2, the accuracy of option values by the front-fixing method is

slightly better than that by binomail method.
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r=0.1,0=037T=1X =100,k = 0.01

Option Values Delta
Stock || Binomial | Binomial | F-F-F || Binomial | Binomial | F-F-F
Price n=1000 n=100 | n=100 n=1000 n=100 | n=100
80 28.0708 | 28.0886 | 28.0607 -0.5040 -0.5039 | -0.5060
85 25.6850 | 25.6895 | 25.6698 -0.4524 -0.4526 | -0.4542
90 23.5395 | 23.5411 | 23.5203 -0.4073 -0.4073 | -0.4088
95 21.6027 | 21.6320 | 21.5832 -0.3675 -0.3672 | -0.3688
100 19.8513 | 19.8251 | 19.8335 -0.3323 -0.3328 | -0.3334
105 18.2716 | 18.2967 | 18.2500 -0.3011 -0.3010 | -0.3020
110 16.8385 | 16.8700 | 16.8141 -0.2732 -0.2731 | -0.2741
115 15.5359 | 15.5039 | 15.5099 -0.2484 -0.2486 | -0.2492
120 14.3500 | 14.3714 | 14.3233 -0.2262 -0.2261 | -0.2269
RMSE 0.0235 | 0.0207 0.0002 | 0.0013
CPU(sec) 1.89 6.08

TABLE 2: Option values and deltas

Example 3: The last test case is used by Huang, Subrahmanyam and Yu (Huang
et al., 1996). With fixed interest rate and stock price, options of different strike
prices, volatilities and maturities are valuated. The details of the characteristic are
listed in Table 3. Again we witness the comparable accuracy of the two methods. We
would comment that the accuracy of the option values by front-fixing is very close to

that of recursive method by Huang, Subrahmanyam and Yu (Huang et al., 1996).

5. CONCLUSION

From the approach of numerical solution of Black-Scholes equation, we have pro-
posed and tested a new finite difference method. The main gradient of this method
is the front-fixing transformation. The new method has several advantages. First, it
can valuate option positions with the same maturity for essentially all possible asset
prices at once. It becomes increasing economical when the number of option position
increases. Second, it offers the optimal exercise boundary together with option prices
without extra cost. Third, the accuracy of the method is comparable to that of the
binomial method, which is significantly better than the well-known finite difference

method by Brennan and Schwartz(1977). Fourth and perhaps the most practical
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advantage is that the method is adaptive to other options as long as a front-fixing
transformation exists. This includes barrier option and Asian options. Our method
has some disadvantages as well. It doesn’t possess natural mean to accurately evalu-
ate deltas. Also, the front-fixing transformation may not work for American options

on multiple assets.

r=0.0488,5 =40

Strike o T Binomial | Binomial F-F-F
Price N=10,000 N=150 N=150
35 0.2 | 0.0833 0.0062 0.0061 0.0065
35 0.2 10.3333 0.2004 0.1995 0.2007
35 0.2 | 0.5833 0.4328 0.4340 0.4325
35 0.3 | 0.0833 0.8522 0.8513 0.8498
35 0.3 0.3333 1.5798 1.5784 1.5766
35 0.3 | 0.5833 1.9904 1.9887 1.9872
35 0.4 | 0.0833 5.0000 5.0000 5.0194
35 0.4 10.3333 5.0883 5.0886 5.0865
35 0.4 | 0.5833 5.2670 5.2677 5.2645
40 0.2 | 0.0833 0.0774 0.0776 0.0783
40 0.2 10.3333 0.6975 0.6994 0.6961
40 0.2 | 0.5833 1.2198 1.2239 1.2169
40 0.3 | 0.0833 1.3099 1.3085 1.3059
40 0.3 0.3333 2.4825 2.4800 2.4764
40 0.3 | 0.5833 3.1696 3.1666 3.1630
40 0.4 | 0.0833 5.0597 5.0600 5.0573
40 0.4 10.3333 5.7056 5.7066 5.6990
40 0.4 | 0.5833 6.2436 6.2448 6.2363
45 0.2 | 0.0833 0.2466 0.2456 0.2472
45 0.2 10.3333 1.3460 1.3506 1.3419
45 0.2 | 0.5833 2.1549 2.1603 2.1484
45 0.3 | 0.0833 1.7681 1.7661 1.7624
45 0.3 0.3333 3.3874 3.3837 3.3783
45 0.3 | 0.5833 4.3526 4.3481 4.3424
45 0.4 | 0.0833 5.2868 5.2877 5.2808
45 0.4 10.3333 6.5099 6.5104 6.4990
45 0.4 | 0.5833 7.3830 7.3898 7.3712
RMSE 2.6292e-03 | 6.6574e-03

CPU(sec) 4.1500 10.78

TABLE 3: Option values and deltas
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