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Abstract. We investigate local spacing problems along curves via smooth
maps. Moreover we provide explicit formulas for the nearest neighbor
spacing distribution function of torsion points on elliptic curves over R,
and of rational points on the unit circle.

1. Introduction and statement of results

The statistics of local spacings measure the fine structure of sequences of
real numbers in a more subtle way than the classical uniform distribution.
Their study was initiated by physicists (see for example [7] and [24]), in order
to understand the spectra of high energies. This notion has received a great
deal of attention in areas such as mathematical physics, analysis, probability
and number theory (see [1]-[6],[8]-[10],[12]-[20]). For most cases considered
so far, the problem can be interpreted in terms of the distribution of a given
sequence of points which lie on a straight line. There are, however, many
important sequences of points which lie on a curve rather than a straight
line. Interesting examples arising naturally, which will be considered below,
are torsion points on elliptic curves over R and rational points on the unit
circle. In [25] the last author raised the problem of spacing distribution
along curves, and showed under certain conditions how spacing distribution
functions along a curve can be obtained from local data. In this paper,
motivated by the two examples mentioned above, we first study how the
spacing distribution function deforms via smooth maps between curves. In
particular this explains how the spacing distribution function of a sequence
of points on a curve can be obtained from a known distribution on a segment
via a parametrization. Next, we provide explicit formulas for the nearest
neighbor spacing distribution function of torsion points on elliptic curves
over R and of rational points on the unit circle.

Let I = [a, b] be an interval with length l(I) = b − a and C ⊂ Rk a
curve with parametrization f : I −→ C, where f is continuous, piecewise
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continuously differentiable, and f ′ does not vanish in I. Suppose F =
(F

Q
)Q∈N is a sequence of sets on I, F

Q
= {tQj : 1 ≤ j ≤ NQ} ⊂ I,

a ≤ tQ1 < tQ2 < · · · < tQNQ ≤ b. Denoting xQj = f(tQj ), we form a sequence on

C by letting M = (M
Q

)Q∈N where

M
Q

= {xQj : 1 ≤ j ≤ NQ}.
Each set M

Q
cuts the curve C in finitely many arcs. For any positive real

number λ we consider the proportion GC,M
Q

(λ) of such arcs whose length

is at least λ times the average. The nearest neighbor spacing distribution
function GC,M : [0,∞) −→ [0, 1] is defined, if it exists, by

GC,M (λ) = lim
Q→∞

GC,M
Q

(λ),

for any λ ≥ 0. For more notation and terminology the reader is referred to
the beginning of Section 2 below.

Theorem 1. Let C, I, f,M ,F be as above. Suppose that F is uniformly
distributed on I and for any subinterval J of I, the functions GJ,F

Q
converge

pointwise as Q→∞ to a continuous function HF which is independent of
J. Then the nearest neighbor spacing distribution function GC,M of M on
C exists and is continuous. More specifically, for any λ ≥ 0,

(1) GC,M (λ) =
1

l(I)
·
∫ b

a

HF

(
l(C)

l(I)|f ′(t)|
· λ
)
dt.

A more general theorem will be proved in Section 2. In order to apply
Theorem 1 in practice, if a curve and a particular sequence of sets of points
on it are given, one needs to find a convenient parametrization of the curve
in such a way that the corresponding sequence of points has a known local
spacing distribution function on the interval, or the distribution function
can be found by known methods.

One such example is provided by torsion points on an elliptic curve over
R. Elliptic curves have been studied for a long time. For a presentation of
various aspects of the theory see [21]. Let E be an elliptic curve defined
over R, given by the equation

E : y2 = 4x3 − g2x− g3,

where g2, g3 ∈ R and g3
2 − 27g2

3 6= 0. The set E(R) of real points of E has
a natural group structure which makes E(R) an abelian group. Recall that
there is a complex analytic isomorphism of complex Lie groups (see [21])

exp : C/Λ −→ E(C) ⊆ P 2(C)
z 7−→ (℘(z), ℘′(z)),
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where Λ is a lattice in C associated to E(C), and ℘(z) is the Weierstrass
℘-function associated to Λ. Here E(R) may have one or two connected
components. The unbounded one EU(R) is isomorphic under exp to S1 '
R/Z as real Lie groups. Identifying R/Z with [0, 1), this gives us in turn a
C∞ map φ : [0, 1) −→ EU(R) such that φ(0) = O is the point at infinity
and for any t ∈ [0, 1), any integer n,

φ(nt (mod 1)) = [n]φ(t) ∈ EU(R).

Theorem 2. Let E be the elliptic curve defined over R. For any Q ≥ 1, let
M

Q
be the set of torsion points of order less than or equal to Q on EU(R)

and M = (M
Q

)Q∈N. Then for any finite connected subarc C of EU(R), the
nearest neighbor spacing distribution function of M on C exists and is given
by

(2) GC,M (λ) = 1− 2

l(I)
·
∫ b

a

A1

(
3l(I)|φ′(t)|
π2l(C)λ

)
dt,

for any λ > 0, where I = [a, b] = φ−1(C) and A1 is defined by

A1(a) =

 1− a−
√

1− 4a/2 + 2a log((1 +
√

1− 4a)/2) : 0 < a ≤ 1
4

1− a+ a log a : 1
4
< a < 1

0 : a ≥ 1.

Corollary 1. For any elliptic curve E over R and any point P ∈ EU(R), P 6=
O, the limit

GE,P (λ) = lim
P∈C⊂EU (R)
l(C)→0

GC,M (λ)

exists and is given by

GE,P (λ) =



1 : 0 < λ ≤ 3
π2

6
π2λ
·
(
1− log

(
3
π2λ

))
− 1 : 3

π2 < λ < 12
π2

6
π2λ

+
√

1− 12
π2λ
− 12

π2λ

× log
((

1 +
√

1− 12
π2λ

)
/2
)
− 1 : λ ≥ 12

π2 .

This corollary says that the nearest neighbor distribution function of
torsion points around any point P on any elliptic curve E defined over R,
is independent of the point P . Moreover, the fact that GE,P (λ) = 1 on the
entire interval [0, 3

π2 ] shows a very strong repulsion between torsion points.
This distribution coincides locally with the distribution of Farey fractions.
It is closer to, from this point of view, for instance, the distribution of zeros
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of the Riemann Zeta function, where one also has a well known repulsion
phenomenon, than to the distribution of a randomly chosen sequence of
points, where such repulsion phenomenon is not present.

These comments also apply to our second example, concerning rational
points on the unit circle. Pythagorean triangles and their connection to
rational points on the unit circle are of course well understood. Our aim
here is to see how these points are distributed along the circle. The unit
circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} has a parametrization

f1 : R −→ S1/{(−1, 0)}
t 7→

(
1−t2
1+t2

, 2t
1+t2

)
,

under which the rational points of S1(omitting (−1, 0)) are exactly those of
the form (see [11]) (

1− t2

1 + t2
,

2t

1 + t2

)
, t ∈ Q.

Write any non-zero rational number t = a/q in reduced form, i.e., a, q ∈
Z, q > 0 and gcd(a, q) = 1. We take the corresponding rational point

P = ( q
2−a2

q2+a2 ,
2qa
q2+a2 ) on the unit circle and denote H(P ) = q2 + a2. This is

closely related to the height of P , which equals to H(P )/2 when a, q are both
odd and H(P ) otherwise (see [21]). Consider the sequence M = (M

Q
)Q∈N

defined by

M
Q

= {rational points P ∈ S1 : H(P ) ≤ Q,P 6= (±1, 0)},
The union of the sets M

Q
consists of all the rational points on S1−{(−1, 0)}.

The nearest neighbor spacing distribution function of M on S1 is explicitly
determined in the next theorem.

Theorem 3. For any arc C of the unit circle S1 − {(±1, 0)}, the nearest
neighbor spacing distribution function of M exists, is continuous and is
independent of the arc C. Specifically,

(3) GC,M (λ) =



1 : 0 < λ ≤ 3
π2

6
π2λ
·
(
1− log

(
3
π2λ

))
− 1 : 3

π2 < λ < 12
π2

6
π2λ

+
√

1− 12
π2λ
− 12

π2λ

× log
((

1 +
√

1− 12
π2λ

)
/2
)
− 1 : λ ≥ 12

π2 .

One sees from Corollary 1 and Theorem 3 that torsion points on an ellip-
tic curve are locally distributed like the rational points on the unit circle.
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The situation changes dramatically if one considers rational points on the
elliptic curve. By the Mordell-Weil theorem the group of rational points
on an elliptic curve defined over Q is finitely generated. Combining this
with classical results on the fractional parts of linear forms (see [22] [23]),
it follows that rational points on an elliptic curve do not have a limiting
nearest neighbor spacing distribution function.

2. Proof of theorem 1

We will derive Theorem 1 from a more general result. For the sake of
completeness we first recall some notation and terminology from [25].

Let C be a piecewise smooth, compact curve in Rk. For any arc J on C
we denote by l(J ) the length of J . Given a finite sequence U of points on
C, U = {un ∈ C : 1 ≤ n ≤ N}, and any arc J on C, let µC,U (J ) denote
the proportion of points from U which belong to J ,

µC,U (J ) =
#{1 ≤ n ≤ N : un ∈ J }

N
.

Let now M = (M
Q

)Q∈N be a sequence of finite sequences M
Q

= {PQ,n ∈
C : 1 ≤ n ≤ NQ} of points on the curve C, such that NQ →∞ as Q→∞.
Given an arc J on C, if the sequence (µC,M

Q
(J ))Q∈N is convergent, we

denote

µC,M (J ) = lim
Q→∞

µC,M
Q

(J ).

We say that M is uniformly distributed along C provided that

µC,M (J ) =
l(J )

l(C)

for any arc J on C. If µC,M (J ) is defined, then we set

ρC,M (J ) =
µC,M (J )l(C)

l(J )

and call ρC,M (J ) the density of M on J . If ρC,M (J ) is defined for any arc
J on C, then we say that M has a density along C.

Our definition of local spacing distribution differs slightly from that of
[25], but they are the same once the limit Q → ∞ is taken. Let C be a
connected, piecewise smooth, compact curve in Rk and let U = {un ∈ C :
1 ≤ n ≤ N} be a finite sequence of consecutive points u1, u2, . . . , uN on C.
Let J be a connected arc of C. Denote U (J ) = {1 ≤ j ≤ N : uj ∈ J }.
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Let h ≥ 1 be an integer. For any real numbers λ1, . . . , λh ≥ 0, let λ =
(λ1, . . . , λh) and define

GJ ,U (λ) =
1

#U (J )

× #
h⋂
s=1

{j : l( ˜uj+s−1uj+s) ≥
λsl(J )

# U (J )
, uj+s−1, uj+s ∈ U (J )}.

Let now M = (M
Q

)Q∈N be a sequence of finite sequences M
Q

= {PQ,n ∈
C : 1 ≤ n ≤ NQ} of consecutive points on the curve C, such that NQ →∞
as Q → ∞. We say that M has an h-spacing distribution function GJ ,M
on a subarc J ⊂ C provided that the sequence of functions (GJ ,M

Q
)Q∈N is

pointwise convergent to GJ ,M . We need one more definition:

Definition 1. Suppose C is a connected compact curve, M = (M
Q

)Q∈N is
a sequence of sequences of points on C such that #M

Q
→ ∞ as Q → ∞.

Suppose h ≥ 1 and the h-spacing distribution function G of M along C exists
and is continuous. G is called uniformly continuous along C if for any ε > 0,
there is a δ > 0 such that for any λ = (λ1, . . . , λh), µ = (µ1, . . . , µh), λi, µi ≥
0 and any subarc J ⊂ C, we have

|GJ ,M(λ)−GJ ,M(µ)| < ε

whenever ||λ− µ||Rh < δ.

Let I = [a, b] be an interval with length l(I) = b− a and let C ⊂ Rm,D ⊂
Rn be two curves of finite length l(C) and l(D) with parameterizations
φ : I −→ C and ψ : I −→ D given by

φ(t) = (φ1(t), . . . , φm(t)), ψ(t) = (ψ1(t), . . . , ψn(t)).

Suppose further that both φ, ψ are continuous, piecewise continuously dif-
ferentiable and the functions

φ′(t) = (φ′1(t), . . . , φ
′
m(t)), ψ′(t) = (ψ′1(t), . . . , ψ

′
m(t))

do not vanish in I.
Let F = (F

Q
)Q∈N be a sequence of sets where F

Q
= {tQj : 1 ≤ j ≤

NQ} ⊂ I with increased order a ≤ tQ1 < tQ2 < · · · < tQNQ ≤ b such that

NQ → ∞ as Q → ∞. Denoting xQj = φ(tQj ) and yQj = ψ(tQj ) we form two
sequences M = (M

Q
)Q∈N and N = (N

Q
)Q∈N by

M
Q

= {xQj : 1 ≤ j ≤ NQ}, N
Q

= {yQj : 1 ≤ j ≤ NQ}.

We have the following result:
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Theorem 4. Suppose that on C the sequence M = (M
Q

)Q∈N has bounded
density. Let h be a positive integer. If the h-spacing distribution function
GC,M of M is uniformly continuous along C, then the h-spacing distribution
function GD,N of N on D exists and is continuous. More precisely, for
any λ = (λ1, . . . , λh), λi ≥ 0,

GD,N (λ) = lim
δ(π)→0

1

l(C)
·
L−1∑
i=0

ρC,M (Ji)l(Ji) ·GJi,M
(
l(D)|φ′(ai)|
l(C)|ψ′(ai)|

ρC,M (Ji) · λ
)

where the limit is taken over partitions π : a = a0 < a1 < a2 < · · · < aL = b

of I, δ(π) = max{ai+1 − ai : 0 ≤ i ≤ L − 1}, Ji = ˜φ(ai)φ(ai+1) is the i-th
arc of C, ρ is the density function and l(Ji) is the length of the arc Ji.

Proof of Theorem 4. Let λ = (λ1, . . . , λh), λi ≥ 0. We need to study
the behavior of the quantity

GD,N
Q

(λ) =
1

NQ

#
h⋂
s=1

{1 ≤ j ≤ NQ + 1− h : l( ˜yQj+s−1y
Q
j+s) ≥

λsl(D)

NQ

}

as Q→∞. For this purpose, we make a partition of I,

π : a = a0 < a1 < a2 < · · · < aL = b,

and denote Ai = φ(ai), Bi = ψ(ai) for i = 0, 1, . . . , L, Ii = [ai, ai+1],Ji =

ÃiAi+1,J ′i = B̃iBi+1 as subarcs of J , C,D respectively for i = 0, . . . , L− 1.
Then

I =
⋃L−1

i=0
Ii, C =

⋃L−1

i=0
Ji, D =

⋃L−1

i=0
J ′i .

Moreover, for i = 0, 1, . . . , L− 1 denote

F
Q

(Ii) = {tQj ∈ Ii : 1 ≤ j ≤ NQ},

M
Q

(Ji) = {xQj ∈ Ji : 1 ≤ j ≤ NQ},

N
Q

(Ji) = {yQj ∈ J ′i : 1 ≤ j ≤ NQ},
and for simplicity

NQ,i = #F
Q

(Ii) = #M
Q

(Ji) = #N
Q

(J ′i ).

Let

HJ ′i ,NQ
(λ) =

1

NQ,i

#
h⋂
s=1

{j : l( ˜yQj+s−1y
Q
j+s) ≥

λsl(D)

NQ

, yQj+s−1, y
Q
j+s ∈ J ′i }.
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It is easy to see that

(4) NQGD,N
Q

(λ)− h(L− 1) ≤
L−1∑
i=0

NQ,iHJ ′i ,NQ
(λ) ≤ NQGD,N

Q
(λ).

Denote

Mi = max
t∈Ii

(|φ′(t)|), mi = min
t∈Ii

(|φ′(t)|),

M ′
i = max

t∈Ii
(|ψ′(t)|), m′i = min

t∈Ii
(|ψ′(t)|).

When tQj+s−1, t
Q
j+s ∈ Ii, we have

mi(t
Q
j+s − t

Q
j+s−1) ≤ l( ˜xQj+s−1x

Q
j+s) =

∫ tQj+s

tQj+s−1

|φ′(t)|dt

≤ Mi(t
Q
j+s − t

Q
j+s−1)

and

m′i(t
Q
j+s − t

Q
j+s−1) ≤ l( ˜yQj+s−1x

Q
j+s) =

∫ tQj+s

tQj+s−1

|ψ′(t)|dt

≤ M ′
i(t

Q
j+s − t

Q
j+s−1).

Define

LJi,FQ
(λ) =

1

NQ,i

#
h⋂
s=1

{j : l( ˜xQj+s−1x
Q
j+s) ≥

λsl(D)Mi

NQm′i
, xQj+s−1, x

Q
j+s ∈ Ji}

and

UJi,FQ
(λ) =

1

NQ,i

#
h⋂
s=1

{j : l( ˜xQj+s−1x
Q
j+s) ≥

λsl(D)mi

NQM ′
i

, xQj+s−1, x
Q
j+s ∈ Ji}.

By the inequalities above and the definition, we have

LJi,FQ
(λ) ≤ HJ ′i ,NQ

(λ) ≤ UJi,FQ
(λ).

Taking (4) into account we have

L−1∑
i=0

NQ,i

NQ

· LJi,FQ
(λ) ≤ GD,N

Q
(λ) ≤

L−1∑
i=0

NQ,i

NQ

· UJi,FQ
(λ) +

h(L− 1)

NQ

.

By our assumptions,

lim
Q→∞

NQ,i

NQ

= µC,M (Ji) = ρC,M (Ji) ·
l(Ji)
l(C)

.
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Denote

δi =
l(D)Mi

l(C)m′i
ρC,M (Ji), δ′i =

l(D)mi

l(C)M ′
i

ρC,M (Ji).

Since the h-spacing distribution functionGJi,MQ
(λ) exists and is continuous,

we have
LJi,FQ

(λ) −→ GJi,M (δi · λ) (Q→∞)

and
UJi,FQ

(λ) −→ GJi,M (δ′i · λ) (Q→∞).

Therefore

lim
Q→∞

L−1∑
i=0

NQ,i

NQ

· LJi,FQ
(λ) =

1

l(C)
·
L−1∑
i=0

ρC,M (Ji)l(Ji)GJi,M (δiλ)

= Lπ(λ)

and

lim
Q→∞

L−1∑
i=0

NQ,i

NQ

· UJi,FQ
(λ) =

1

l(C)
·
L−1∑
i=0

ρC,M (Ji)l(Ji)GJi,M (δ′iλ)

= Uπ(λ).

Hence

(5) Lπ(λ) ≤ lim inf
Q→∞

GD,N
Q

(λ) ≤ lim sup
Q→∞

GD,N
Q

(λ) ≤ Uπ(λ)

for any partition π of I. Our next goal is to prove that limQ→∞GD,N
Q

(λ)

exists by manipulating the lower bound Lπ(λ) and upper bound Uπ(λ) for
different partitions π. Since the h-spacing distribution function GC,M of M
is uniformly continuous along C, for any ε > 0, there is a δ > 0, such that
when x = (x1, . . . , xh), y = (y1, . . . , yh), xi, yi ≥ 0 and ||x− y||Rh < δ, then

|GC′,M (x)−GC′,M (y)| < ε

for any subarc C ′ ⊂ C. Because ρI,F is bounded, there is an η > 0 such that
if δ(π) = maxi{l(Ji)} < η, then ||(δi − δ′i)λ||Rh < δ and we have

0 ≤ Uπ(λ)− Lπ(λ) =
1

l(C)
·
L−1∑
i=0

ρC,M (Ji)l(Ji) · [GJi,M (δiλ)−GJi,M (δ′iλ)]

≤ 1

l(C)
·
L−1∑
i=0

ρC,M (Ji)l(Ji) · ε

= ε ·
L−1∑
i=0

µC,M (Ji) = ε.
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Therefore

GD,N (λ) = lim
Q→∞

GD,N
Q

(λ)

= lim
δ(π)→0

Lπ(λ) = lim
δ(π)→0

Uπ(λ),

the limit exists and N has an h-spacing distribution function on D.
In order to prove that this function is continuous, observe that

|GD,N (λ)−GD,N (µ)| ≤ |GD,N (λ)− Uπ(λ)|+ |GD,N (µ)− Uπ(µ)|
+|Uπ(λ)− Uπ(µ)|.

The first two terms on the right side tend to 0 as δ(π)→ 0, and

|Uπ(λ)− Uπ(µ)| ≤ 1

l(C)
·
L−1∑
i=0

ρC,M (Ji)l(Ji) · |GJi,M (δ′iλ)−GJi,M (δ′iµ)| .

By similar argument we see that |Uπ(λ)−Uπ(µ)| −→ 0 as λ→ µ. Therefore
GD,N (λ) is continuous as a function of λ.

Next denote

GD,π(λ) =
1

l(C)
·
L−1∑
i=0

ρC,M (Ji)l(Ji) ·GJi,M
(
l(D)|φ′(ai)|
l(C)|ψ′(ai)|

ρC,M (Ji) · λ
)
.

Since
mi

M ′
i

≤ |φ
′(ai)|
|ψ′(ai)|

≤ Mi

m′i
,

one has
Lπ(λ) ≤ GD,π(λ) ≤ Uπ(λ).

Hence
GD,M (λ) = lim

Q→∞
GD,M

Q
(λ) = lim

δ(π)→0
GD,π(λ),

and Theorem 4 is proved.
Under the assumption that the sequence is uniformly distributed, i.e., the

density function ρ identically equals to 1, we have a stronger result.

Corollary 2. Assume the same conditions and notations as in Theorem 4.
Suppose further that M is uniformly distributed on C. Then the h-spacing
distribution function GD,N of N on D exits, is uniformly continuous along
D and is given by,

(6) GD,N (λ) = lim
δ(π)→0

1

l(C)
·
L−1∑
i=0

l(Ji) ·GJi,M
(
l(D)|Jφ(ai)|
l(C)|Jψ(ai)|

· λ
)

where the limit is taken over partitions π : a = a0 < a1 < a2 < · · · < aL = b
of I.
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Proof of Corollary 2. For any subinterval I′ = [a′, b′] ⊂ I = [a, b], denote
C ′ = φ(I′) ⊂ C, D′ = ψ(I′) ⊂ D. Consider a partition π : a′ = a0 < a1 <
· · · < aL = b′ of I′. We use same notations as in the proof of Theorem 1. It
is easy to see that, since ρC,M ≡ 1, we still have the inequality

Lπ(λ) ≤ lim inf
Q→∞

GD′,N
Q

(λ) ≤ lim sup
Q→∞

GD′,N
Q

(λ) ≤ Uπ(λ)

for any partition π of I′, where

Lπ(λ) =
1

l(C ′)
·
L−1∑
i=0

l(Ji)GJi,M (δiλ),

Uπ(λ) =
1

l(C ′)
·
L−1∑
i=0

l(Ji)GJi,M (δ′iλ),

and

δi =
l(D′)Mi

l(C ′)m′i
, δ′i =

l(D′)mi

l(C ′)M ′
i

.

Following the same argument as in Theorem 1, we see that

GD′,N (λ) = lim
Q→∞

GD′,N
Q

(λ)

exists, is continuous and GD,N (λ) can be written explicitly as in (6).
To prove that this function is uniformly continuous along D, first note

that the h-spacing distribution function GC,M of M is uniformly continuous
along C, for any ε > 0, there is a δ > 0, such that when x = (x1, . . . , xh), y =
(y1, . . . , yh), xi, yi ≥ 0 and ||x− y||Rh < δ, then

|GC′,M (x)−GC′,M (y)| < ε

for any subarc C ′ ⊂ C.
Denote

M = max
t∈I

(|φ′(t)|), m = min
t∈I

(|φ′(t)|),

M ′ = max
t∈I

(|ψ′(t)|), m′ = min
t∈I

(|ψ′(t)|).

Notice that

0 ≤ δ′i ≤ δi ≤
MM ′

mm′
.
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For any λ = (λ1, . . . , λh), µ = (µ1, . . . , µh), λi, µi ≥ 0 with ||(λ − µ)||Rh <
δ · mm′

MM ′
, then ||(λ− µ)δ′i||Rh < δ, we have

|Uπ(λ)− Uπ(µ)| ≤ 1

l(C ′)
·
L−1∑
i=0

l(Ji) · |GJi,M (δ′iλ)−GJi,M (δ′iµ)|

≤ 1

l(C ′)
·
L−1∑
i=0

l(Ji) · ε = ε,

for any subinterval I′ ⊂ I and any partition π of I′. Also,

|GD′,N (λ)−GD′,N (µ)| ≤ |GD′,N (λ)− Uπ(λ)|+ |GD′,N (µ)− Uπ(µ)|
+|Uπ(λ)− Uπ(µ)|.

Here the first two terms on the right side tend to 0 as δ(π)→ 0, we have

|GD′,N (λ)−GD′,N (µ)| ≤ lim
δ(π)→0

|Uπ(λ)− Uπ(µ)| ≤ ε.

Therefore the h-spacing distribution function GD,N (λ) is uniformly contin-
uous along D and Corollary 2 is proved.

Proof of Theorem 1. For the nearest neighbor spacing distribution
function we have h = 1. Since F is uniformly distributed on I and obvious
by the assumption, the nearest neighbor spacing distribution function G of
F is uniformly continuous along I, by Corollary 2, the function GC,M of M
on C is also uniformly continuous along C and can be written explicitly as

GC,M (λ) = lim
δ(π)→0

1

l(I)
·
L−1∑
i=0

l(Ii) ·GIi,F

(
l(C)

l(I)|f ′(ai)|
· λ
)

= lim
δ(π)→0

1

l(I)
·
L−1∑
i=0

l(Ii) ·H
(

l(C)
l(I)|f ′(ai)|

· λ
)

=
1

l(I)
·
∫ b

a

H

(
l(C)

l(I)|f ′(t)|
· λ
)
dt,

for any λ ≥ 0. This completes the proof of Theorem 1.

3. torsion points on elliptic curves

We will compute for any h ≥ 1 the h-spacing distribution function asso-
ciated to the set of torsion points on the given elliptic curve E defined over
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R. For any Q ∈ N, denote by F
Q

(I) the set of Farey fractions of order Q
from I, that is

F
Q

(I) = {γ =
p

q
∈ I : 1 ≤ q ≤ Q, gcd(p, q) = 1, a, q ∈ N}

and order increasingly its elements γQj = pj/qj as

a ≤ γQ1 < γQ2 < · · · < γQNQ(I) ≤ b.

The number NQ(I) of elements of F
Q

(I) satisfies (see [1])

NQ(I) = 3l(I)Q2/π2 +O(Q logQ).

The sequence F (I) = (F
Q

(I))Q∈N is uniformly distributed on I. Denote

xQj = φ(γQj ) and

M
Q

(C) = {xQj : 1 ≤ j ≤ NQ(I)},

where xQ1 , x
Q
2 , . . . , x

Q
NQ(I) are consecutive points on C. Then M

Q
(C) is exactly

the set of torsion points on C with order less than or equal to Q. Let
M (C) = (M

Q
(C))Q∈N. For h any positive integer, λ = (λ1, . . . , λh), λi ≥ 0,

consider the quantity

GC,M
Q

(λ) =
1

NQ(I)
#

h⋂
s=1

{1 ≤ j ≤ NQ(I) + 1− h : l( ˜xQj+s−1x
Q
j+s) ≥

λsl(C)
NQ(I)

}.

According to [1], GC,M
Q

converges as Q → ∞ to a continuous function,

hence by Theorem 1, the h-spacing distribution function

GC,M (λ) = lim
Q→∞

GC,M
Q

(λ)

exists and is continuous.
To make things more precise, let T be the Farey triangle

{(x, y) : 0 < x ≤ 1, 0 < y ≤ 1, x+ y > 1},

and consider, for each (x, y) ∈ R2, the sequence (Li(x, y))i≥0 defined by
L0(x, y) = x, L1(x, y) = y and then recursively, for i ≥ 2,

Li(x, y) =

[
1 + Li−2(x, y)

Li−1(x, y)

]
· Li−1(x, y)− Li−2(x, y).

Consider as well the map Φh : T −→ (0,∞)h given by

Φh(x, y) =
3

π2

(
1

L0(x, y)L1(x, y)
,

1

L1(x, y)L2(x, y)
, . . . ,

1

Lh−1(x, y)Lh(x, y)

)
.



14 ALKAN, XIONG, AND ZAHARESCU

To each λ = (λi, . . . , λh), λi ≥ 0, we associate a set Bλ =
∏h

i=1(λi,+∞) ⊂
(0,∞)h, and define the following subset of T :

Ω̃Bλ
=

h⋂
i=1

{
(x, y) ∈ T : Li−1(x, y)Li(x, y) ≤ 3

π2λi

}
= Φ−1

h (Bλ).

Theorem 1 of [1] states that the h-spacing distribution function of F
Q

(I)
on I is given by

GI,F (λ) = 2 · Area(Ω̃Bλ
).

For any a = (a1, . . . , ah), ai ≥ 0, denote

Ωa =
h⋃
i=1

{(x, y) ∈ T : Li−1(x, y)Li(x, y) > ai} ,

and define a continuous function Ah : (0,+∞)h −→ [0, 1] by

Ah(a) = Area(Ωa).

Then

GI,F (λ) = 1− 2Ah

(
3

π2λ

)
.

By Theorem 1,

GC,M (λ) =
1

l(I)
·
∫ b

a

(
1− 2Ah

(
3l(I)|φ′(t)|
π2l(C)λ

))
dt

= 1− 2

l(I)
·
∫ b

a

Ah

(
3l(I)|φ′(t)|
π2l(C)λ

)
dt.

As for the case h = 1, it is known (see [1]) that

A1(a) =

 1− a−
√

1− 4a/2 + 2a log((1 +
√

1− 4a)/2) : 0 < a ≤ 1
4

1− a+ a log a : 1
4
< a < 1

0 : a ≥ 1.

Here A1 is a piecewise smooth function and

A′1(a) =

 2 log((1 +
√

1− 4a)/2) : 0 < a < 1
4

log a : 1
4
< a < 1

0 : a > 1.

The nearest neighbor spacing distribution function of torsion points on C is
then given explicitly by

GC,M ,h=1(λ) = 1− 2

l(I)
·
∫ b

a

A1

(
3l(I)|φ′(t)|
π2l(C)λ

)
dt.
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Its density function is

gC,M ,h=1(λ) = lim
µ→λ

GC,M ,h=1(λ)−GC,M ,h=1(µ)

λ− µ

=
6

π2l(C)λ2
·
∫ b

a

A′1

(
3l(I)|φ′(t)|
π2l(C)λ

)
· |φ′(t)|dt.

Clearly, for any point P ∈ EU(R), P 6= O, the local density around P is

GE,P (λ) = lim
P∈C⊂EU (R)
l(C)→0

GC,M ,h=1(λ) = 1− 2A1

(
3

π2λ

)
.

Theorem 2 and Corollary 1 are now proved.

4. Local Spacings of Rational points on Unit Circle

We need to calculate the nearest neighbor spacing distribution function
of rational points on the Unit Circle S1. We use the same notation as in
the statement of Theorem 3. Consider the map

f2 : (−π
2
, π

2
) −→ R

θ 7→ tan θ,

so that we have φ = f2 ◦ f1 : (−π
2
, π

2
) −→ S1 − {(−1, 0)} given by

φ(θ) = (cos 2θ, sin 2θ).

Here |φ′(θ)| = |2(− cos(2θ), sin(2θ))| = 2. Let F = (F
Q

)Q∈N be the se-
quence in (−π

2
, π

2
) given by F

Q
= φ−1(M

Q
). For θ ∈ F

Q
, θ 6= 0, write

tan θ = a/q in reduced form. This θ equals to the angle between the q-
axis and the straight line passing through the origin and the “visible” point
(a, q) ∈ Z2 inside the disk

DQ = {(a, q) ∈ R2 : a2 + q2 ≤ Q}.

Without any loss of generality, suppose C ⊂ S1 is a connected arc not con-
taining the point (−1, 0). Then φ−1(C) is a subinterval of (−π

2
, π

2
). Denote

this interval I = [a, b]. We have l(C) = 2 · l(I). According to Theorem 0.1
of [5], F is uniformly distributed on I and the nearest neighbor spacing
distribution function of F on I is given by

GI,F (λ) = 2η(λ),
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where

η(λ) =



1
2

: 0 < λ ≤ 3
π2

3
π2λ
·
(
1− log

(
3
π2λ

))
− 1

2
: 3

π2 < λ < 12
π2

3
π2λ

+ 1
2

√
1− 12

π2λ
− 6

π2λ

× log
((

1 +
√

1− 12
π2λ

)
/2
)
− 1

2
: λ ≥ 12

π2 .

By Theorem 1, then we have

GC,M (λ) = 2η(λ),

and this completes the proof of Theorem 3.
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