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Abstract. We prove the existence of the pair correlation measure associated to torsion points

on the real locus E(R) of an elliptic curve E and provide an explicit formula for the limiting

pair correlation function.

1. Introduction

The statistics of local spacings shed light on the structure of sequences improving on the

classical uniform distribution result of Weyl [12]. Their study was proposed first by physicists

(see Wigner [13] and Dyson [4], [5], [6]) in order to approach the problem concerning the

spectra of high energies. Recently the authors [1] studied the local spacings problem for a

sequence of points on piecewise smooth curves in the plane (see also [14]). We investigated

how the spacing distribution function deforms via smooth maps between curves. In this way

we provided explicit formulas for the nearest neighbor spacing distribution function of torsion

points on elliptic curves over R. Surprisingly it turns out that the nearest neighbor spacing

distribution function of torsion points around any point P of an elliptic curve E defined on R

is independent of the point P . Moreover the limiting spacing distribution function detects a

strong repulsion between torsion points of E. The reason behind this repulsion phenomenon

comes from the fact that the distribution of torsion points coincides locally with the distribution

of Farey fractions. In this sequel paper we complement the results of [1] by obtaining the pair
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correlation function of torsion points on an elliptic curve E defined over R. We should remark

that, due to the fundamental properties of Farey fractions, the pair correlation problem of Farey

fractions is more subtle than the distribution of spacings between Farey fractions. The pair

correlation problem for Farey fractions was settled recently by Boca and one of the authors

[3]. To study the pair correlation of torsion points, we need to improve on the techniques of [3]

and first obtain the pair correlation of Farey fractions in short intervals. This is crucial for the

transfer of the desired type of information from Farey fractions to torsion points along a given

elliptic curve.

More specifically, let us fix an elliptic curve E defined over the real numbers, take an arc J

on the real locus E(R) of E, and for each large positive integer Q, consider the pair correlation

measure of the set ME,J ,Q of torsion points on E(R) of order ≤ Q which lie in J . Here the

distance between elements of ME,J ,Q, which is used in the definition of the pair correlation

measure, is defined as the arclength along the curve, and we are interested to see whether for

any E and J as above, one has a limiting pair correlation measure as Q→∞. Our main result

shows the existence of the limiting pair correlation measure associated to ME,J ,Q, as Q→∞.

We work with finite arcs J contained in the unbounded component EU(R) of the real locus

E(R) of E.

Theorem 1. (i) For any elliptic curve E defined over R and any finite arc J ⊂ EU(R), the

pair correlation measures associated to the sets (ME,J ,Q)
Q∈N

of torsion points on J of order

≤ Q converge weakly, as Q→∞, to a measure µE,J which is absolutely continuous with respect

to the Lebesgue measure.

(ii) For any E and J as above, denote by gE,J the density of the measure µE,J . Then

for any point P ∈ EU(R), and any sequence (Jn)
n∈N of arcs on EU(R) containing P with

limn→∞ length(Jn) = 0, the sequence of functions (gE,Jn)
n∈N

converges to a function gE,P . More-

over, the function gE,P is independent of P and E, and is given by

gE,P (λ) =
6

π2λ2

∑
1≤k≤π2λ

3

ϕ(k) log
π2λ

3k
,
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for any λ > 0, where ϕ is Euler’s totient function.

To establish Theorem 1, we make use of the Weierstrass parametrization in order to move the

problem from the elliptic curve to R/Z. The pair correlation measure of torsion points on

R/Z of order ≤ Q was proved convergent as Q → ∞, and the corresponding limiting pair

correlation function was explicitly computed by Boca and one of the authors in [3]. Here we

need to provide a local version of this result, and then analyze how the limiting pair correlation

measure is deformed via the Weierstrass parametrization when one moves the problem back to

the elliptic curve. A precise description of the corresponding limiting pair correlation function

gE,J is given in equation (4) from Section 3 below.

2. Pair correlation on curves

As mentioned in the Introduction, we begin by moving the problem, via the Weierstrass

parametrization, from the real locus of the elliptic curve to the real line. For this purpose, we

have to study how pair correlations are deformed by a general parametrization. First we set

some notation and terminology. Let C be a connected, piecewise smooth, compact curve in Rk

and let M = {xn ∈ C : 1 ≤ n ≤ N} be a finite sequence of points on C. Let J be a connected

subarc of C with length l(J ). Denote by M (J ) = {1 ≤ j ≤ N : xj ∈ J } and for x, y ∈ C,

denote by l(x̃y) the length of the subarc x̃y on the curve C. Then define the pair correlation

measure R
(2)
J ,M by letting

R
(2)
J ,M (I) =

1

2#M (J )
#

(x, y) ∈M (J )2 :
x 6= y,

#U (J )
l(J )

l(x̃y) ∈ I

 ,

for any interval I ⊂ [0,∞). Here the factor 2 appears in the denominator because each pair

(x, y) is counted twice. Let us denote for any λ > 0,

GJ ,M (λ) = R
(2)
J ,M ([0, λ]).
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Suppose that M = (M
Q

)
Q∈N is an increasing sequence of finite sequences of points of C. If the

sequence of pair correlation measures
(
R

(2)
J ,M

Q

)
Q∈N

converges weakly, we denote the limiting

measure by R
(2)
J ,M and call it the pair correlation measure of M . Corresponding to the limiting

measure R
(2)
J ,M we also have an associated function GJ ,M given by

GJ ,M (λ) = R
(2)
J ,M ([0, λ]) = lim

Q→∞
GJ ,M

Q
(λ).

In case this measure is absolutely continuous with respect to the Lebesgue measure, we denote

its density by gJ ,M and call it the pair correlation function of M . The functions GJ ,M and

gJ ,M
Q

are related by

GJ ,M (λ) =

∫ λ

0

gJ ,M (x) dx .

A natural question that arises is how these functions deform via smooth maps between two

curves. While there is no essential difficulty to deal with the general situation, for the sake of

our applications here it suffices to consider a curve and an interval on the real line.

Let I be a closed interval with length |I| and C ⊂ Rk a curve with parametrization f :

I −→ C, where the function f is continuous, piecewise continuously differentiable, and f ′ does

not vanish in I. Suppose F = (F
Q

)
Q∈N is a sequence of finite sequences of points on I with

F
Q

= {tQj : 1 ≤ j ≤ NQ}. Denoting xQj = f(tQj ), we form a sequence of finite sequences of

points on C by letting M
Q

= {xQj : 1 ≤ j ≤ NQ} and M = (M
Q

)
Q∈N . We need the following

result.

Theorem 2. Let C, I, f,M ,F be as above. Suppose that F is uniformly distributed on I and

for any subinterval J of I, the sequence of functions
(
GJ,F

Q

)
Q∈N

converges pointwise as Q→∞

to a continuous function GJ,F which is independent of the interval J. Then the limiting pair

correlation measure R
(2)
C,M exists. Moreover, the corresponding limiting function GC,M is given

by

GC,M (λ) =
1

|I|
·
∫

I

GI,F

(
l(C)
|I||f ′(t)|

· λ
)

dt ,

for any λ > 0.
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Proof of Theorem 2. We adapt the method of proof of Theorem 1 in [1] with necessary

modifications to obtain the limiting pair correlation function. For λ > 0, it suffices to study

the behavior of the quantity

GC,NQ(λ) =
1

2NQ

#{(x, y) ∈M
Q

: x 6= y, l(x̃y) ≤ λl(C)
NQ

}

as Q→∞. For this purpose, we make a partition of I,

π : a = a0 < a1 < a2 < · · · < aL = b.

Denote Bi = f(ai) for i = 0, 1, . . . , L, and Ii = [ai, ai+1],Ji = B̃iBi+1 as subintervals of I and

subarcs of C respectively for i = 0, . . . , L− 1. Then

I =
⋃L−1

i=0
Ii, C =

⋃L−1

i=0
Ji.

Moreover, for i = 0, 1, . . . , L− 1 define

F
Q

(Ii) = {tQj ∈ Ii : 1 ≤ j ≤ NQ},

M
Q

(Ji) = {xQj ∈ Ji : 1 ≤ j ≤ NQ},

and denote

NQ,i = #F
Q

(Ii) = #M
Q

(Ji).

Let

Hi =
1

2NQ,i

#{(x, y) ∈M
Q

(Ji)2 : x 6= y, l(x̃y) ≤ λl(C)
NQ

}.

It is easy to see that
L−1∑
i=0

NQ,iHi ≤ NQGC,NQ(λ).

For any ε > 0, and each point Bi, i = 1, . . . , L − 1, we draw a subarc J ′i of C centered at Bi

with length ε. Let I′i = f−1(J ′i ) and denote

N ′Q,i = #F
Q

(I′i) = #M
Q

(J ′i ),

H ′i =
1

2N ′Q,i
#{(x, y) ∈M

Q
(J ′i )2 : x 6= y, l(x̃y) ≤ λl(C)

NQ

}.
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For any x ∈ Ji, y ∈ Ji+1 with x 6= y, l(x̃y) ≤ λl(C)
NQ

, thus we must have x, y ∈ J ′i when Q is

sufficiently large, since NQ →∞ as Q→∞. Therefore

NQGC,NQ(λ) ≤
L−1∑
i=0

NQ,iHi +
L−1∑
i=0

N ′Q,iH
′
i.

One has

L−1∑
i=0

NQ,i

NQ

Hi ≤ GC,NQ(λ) ≤
L−1∑
i=0

NQ,i

NQ

Hi +
L−1∑
i=1

N ′Q,i
NQ

H ′i.(1)

Note that

m = min
t∈I
{|f ′(t)|} > 0,

and let

Mi = max
t∈Ii
{|f ′(t)|}, mi = min

t∈Ii
{|f ′(t)|} ≥ m.

When x, y ∈ Ii, assuming x < y, we have

mi(y − x) ≤ l( ˜f(x)f(y)) =

∫ y

x

|f ′(t)|dt ≤Mi(y − x).

Define the quantities

Li =
1

2NQ,i

#

{
(x, y) ∈ F

Q
(Ii)

2 : 0 < |x− y| ≤ λl(C)
NQMi

}
,

Ui =
1

2NQ,i

#

{
(x, y) ∈ F

Q
(Ii)

2 : 0 < |x− y| ≤ λl(C)
NQmi

}
,

U ′i =
1

2N ′Q,i
#

{
(x, y) ∈ F

Q
(I′i)

2 : 0 < |x− y| ≤ λl(C)
NQm

}
.

Using the definition and the inequalities above, we have

Li ≤ Hi ≤ Ui, H ′i ≤ U ′i .

Taking (1) into account we have

L−1∑
i=0

NQ,i

NQ

· Li ≤ GC,NQ(λ) ≤
L−1∑
i=0

NQ,i

NQ

· Ui +
L−1∑
i=1

N ′Q,i
NQ

U ′i .
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Since F = (F
Q

)Q is uniformly distributed along the interval I,

lim
Q→∞

NQ,i

NQ

=
|Ii|
|I|
, lim

Q→∞

N ′Q,i
NQ

=
|I′i|
|I|
≤ ε

m|I|
.

Denote

δi =
l(C)
|I|Mi

, δ′i =
l(C)
|I|mi

, δ =
l(C)
|I|m

.

Since the limiting functions GIi,F , GI′i,F
exist and coincide with GI,F , we have

Li −→ GI,F (δi · λ),

Ui −→ GI,F (δ′i · λ) Q→∞

U ′i −→ GI,F (δ · λ),

Therefore

Lπ = lim
Q→∞

L−1∑
i=0

NQ,i

NQ

· Li =
1

|I|
·
L−1∑
i=0

GI,F (δiλ) · |Ii|,

Uπ = lim
Q→∞

L−1∑
i=0

NQ,i

NQ

· Ui =
1

|I|
·
L−1∑
i=0

GI,F (δ′iλ) · |Ii|,

and

lim
Q→∞

L−1∑
i=1

N ′Q,i
NQ

· U ′i ≤
ε

m|I|
(L− 1)GI,F (δλ).

Letting Q→∞ and ε→ 0 we conclude that, for any partition π of I,

Lπ ≤ lim inf
Q→∞

GC,M
Q

(λ) ≤ lim sup
Q→∞

GC,M
Q

(λ) ≤ Uπ.

Since the functions GI,F (λ) and 1
|f ′(t)| are continuous, we have

lim
|π|→0

Lπ = lim
|π|→0

Uπ =
1

|I|

∫
I

GI,F

(
l(C)
|I||f ′(t)|

· λ
)

dt .

This gives the formula for GC,M as in the statement of Theorem 2. It follows that the sequence

of pair correlation measures R
(2)
C,M

Q
converges weakly as Q→∞, and this completes the proof

of Theorem 2.
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3. Pair correlation of Torsion points

For each positive integer Q, let F
Q

= {γ1, . . . , γN(Q)} denote the Farey sequence of order

Q with 1/Q = γ1 < γ2 < · · · < γN(Q) = 1 and F = (F
Q

)
Q∈N (for basic properties of the

Farey sequence see [9]). The pair correlation measure of F on [0, 1] was established by Boca

and one of the authors in [3]. Here we will need a short interval version of this result in

order to obtain the pair correlation measure of torsion points on elliptic curves by using the

Weierstrass parametrization and Theorem 2. We adapt the method of [3] with some necessary

modifications. The formula ([7], formula (1), pp. 246)∑
γ∈F

Q

e(rγ) =
∑
d≥1
d|r

dM

(
Q

d

)
, r, Q ∈ Z, Q ≥ 1,

where

M(x) =
∑
n≤x

µ(n),

where µ is the Möbius function, plays an important role in the sequel.

Let I be a subinterval of [0, 1]. We denote by FI(Q) := F
Q

⋂
I and by NI(Q) the cardinality

of FI(Q). It is known that

N =
NI(Q)

|I|
=

3Q2

π2
+O(Q logQ).(2)

Our objective is to estimate, for any positive real number ∧, the quantity

SQ,I(∧) := #

{
(x, y) ∈ FI(Q)2 : x 6= y, x− y ∈ (0,∧)

N
+ Z

}
,

as Q→∞. Indeed we prove a more general result. We use Supp f to denote the support of a

function f .

Lemma 1. Suppose H,G ∈ C1(R) with Supp G ⊂ (0, 1) and Supp H ⊂ (0,∧) for some ∧ > 0.

Define

h(y) =
∑
n∈Z

H(N(y + n)), g(y) =
∑
n∈Z

G(y + n),
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and

SQ,I,H,G =
∑

γ,γ′∈F
Q

h(γ − γ′)g(γ)g(γ′).

Then

SQ,I,H,G =
3Q2

π2

(∫ 1

0

G(z)2 dz

)∫ ∧
0

H(x)g1(x) dx+ EQ,I,H,G,

where

g1(x) =
6

π2x2

∑
1≤k≤π2x

3

ϕ(k) log
π2x

3k
,(3)

for x > 0, ϕ is the Euler totient function and for any σ > 0,

EQ,I,H,G <<I,H,G,σ Q
2− 1

4
+σ.

Note that assuming Lemma 1 and using the fact that the error term is Q2− 1
4

+σ, we have for

0 < σ < 1
4
,

lim
Q→∞

SQ,I,H,G
NI(Q)

= lim
Q→∞

SQ,I,H,G
3|I|
π2 Q2

=

∫ 1

0
G(z)2dz

|I|
·
∫ ∧

0

H(x)g1(x) dx.

Letting the smooth function G approach χ
I
, the characteristic function of the interval I, we

have ∫ 1

0
G(z)2dz

|I|
→ 1,

and letting the smooth function H approach χ
(0,∧)

, the characteristic function of the interval

(0,∧), by a standard approximation argument, we see that the pair correlation function of F

on the subinterval I exists, is independent of the location and length of the subinterval, and is

equal to the pair correlation function of F on [0, 1] which was determined in [3]. More precisely

we have,
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Theorem 3. The pair correlation function of F = (F
Q

)
Q∈N on any subinterval I ⊂ [0, 1] exists

and is given by

g1(x) =
6

π2x2

∑
1≤k≤π2x

3

ϕ(k) log
π2x

3k
,

for any x > 0.

We now turn to our problem of studying the correlation of torsion points on an elliptic curve

over R (for the general theory of elliptic curves see [10]). Let E be an elliptic curve defined

over R, given by the equation

E : y2 = 4x3 − g2x− g3,

where g2, g3 ∈ R and g3
2−27g2

3 6= 0. The set E(R) of real points of E has a natural group struc-

ture which makes E(R) an abelian group. Recall that there is a complex analytic isomorphism

of complex Lie groups (see [10])

exp : C/Λ −→ E(C) ⊆ P 2(C)

z 7−→ (℘(z), ℘′(z)),

where Λ is a lattice in C associated to E(C), and ℘(z) is the Weierstrass ℘-function associated

to Λ. Here E(R) may have one or two connected components. The unbounded one EU(R) is

isomorphic under exp to S1 ' R/Z as real Lie groups. Identifying R/Z with [0, 1), this gives

us in turn a C∞ map φ : [0, 1) −→ EU(R) such that φ(0) = O is the point at infinity and for

any t ∈ [0, 1), any integer n,

φ(nt (mod 1)) = [n]φ(t) ∈ EU(R).

For any finite arc J ⊂ EU(R), let I = φ−1(J ) ⊂ [0, 1). The set ME,J ,Q of torsion points of E

on J corresponds to the set FI(Q) via the parametrization φ. Hence by combining Theorem

2 and Theorem 3 we obtain that,
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Corollary 1. The pair correlation function of (ME,J ,Q)
Q∈N

exists for any elliptic curve E over

R and any finite arc J ⊂ EU(R) and is given by

(4) gE,J (λ) =
l(J )

|I|2
·
∫

I

g1

(
l(J )

|I||φ′(t)|
· λ
)

dt

|φ′(t)|
,

for any λ > 0.

It follows from Corollary 1 that for any P ∈ EU(R), P 6= O, one has

gE,P (λ) = lim
l(J )→0,

P∈J⊂EU (R),

gJ ,M (λ) = g1(λ).

Proof of Lemma 1. The proof of this lemma will require several steps. All the constants in

the proof implied by the big “O” or “�” notations may depend on the functions H and G.

3.1. Fourier series expansion and Poisson summation formula. Suppose that the Fourier

series expansion of functions h and g are given by

h(y) =
∑
n∈Z

cne(ny)

and

g(y) =
∑
n∈Z

ane(ny)

for y ∈ R, where e(ny) = exp(2πiny). Then we have

SQ,I,H,G =
∑

γ,γ′∈F
Q

∑
m

cme(m(γ − γ′))
∑
n

ane(nγ))
∑
r

are(rγ
′)

=
∑
m,n,r

cmanar
∑
γ∈F

Q

e((m+ n)γ)
∑
γ′∈F

Q

e((r −m)γ′)

=
∑
m,n,r

cmanar

 ∑
1≤d≤Q,
d|m+n

dM

(
Q

d

)
 ∑

1≤d≤Q,
d|r−m

dM

(
Q

d

) .
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Changing the summation index as m + n = m′, r − m = n′,m = r′, we have m = r′, n =

m′ − r′, r = n′ + r′, and

SQ,I,H,G =
∑

m′,n′,r′

cr′am′−r′an′+r′

 ∑
1≤d≤Q,
d|m′

dM

(
Q

d

)
 ∑

1≤d≤Q,
d|n′

dM

(
Q

d

)
=

∑
1≤d1,d2≤Q

d1d2M

(
Q

d1

)
M

(
Q

d2

) ∑
r′,m′,n′∈Z,
d1|m′,d2|n′,

cr′am′−r′an′+r′

=
∑

1≤d1,d2≤Q

d1d2M

(
Q

d1

)
M

(
Q

d2

)∑
r∈Z

cr
∑
m∈Z

ad1m−r
∑
n∈Z

ad2n+r.

Consider for each d > 0 and real number r the function

Gr,d(x) =
1

d
G
(x
d

)
e
(rx
d

)
, x ∈ R.

Using the Fourier transform and a simple change of variable we obtain that for any m ∈ Z,

Ĝr,d(m) =

∫
R
Gr,d(t)e(−mt) dt =

∫
R

1

d
G

(
t

d

)
e

(
rt

d

)
e(−mt) dt

=

∫
R
G(t′)e(rt′)e(−mdt′) dt′ =

∫
R
G(t)e(−(md− r)t) dt

= Ĝ(md− r) = adm−r.

Applying the Poisson summation formula one has

∑
m∈Z

ad1m−r =
∑
m∈Z

Ĝr,d1(m) =
∑
m∈Z

Gr,d1(m) =
∑
m∈Z

1

d1

G

(
m

d1

)
e

(
rm

d1

)
,

and similarly ∑
n∈Z

ad2n+r =
∑
n∈Z

1

d2

G

(
n

d2

)
e

(
−rn
d2

)
.



PAIR CORRELATION OF TORSION POINTS ON ELLIPTIC CURVES 13

It follows that ∑
r∈Z

cr
∑
m∈Z

ad1m−r
∑
n∈Z

ad2n+r

=
∑
r∈Z

cr
∑
m∈Z

1

d1

G

(
m

d1

)
e

(
rm

d1

)∑
n∈Z

1

d2

G

(
n

d2

)
e

(
−rn
d2

)

=
1

d1d2

∑
m,n

G

(
m

d1

)
G

(
n

d2

)∑
r

cre

((
m

d1

− n

d2

)
r

)
.

The Fourier expansion of h(y) gives us that∑
r

cre

((
m

d1

− n

d2

)
r

)
= h

(
m

d1

− n

d2

)
=
∑
r

H

(
N

(
r +

m

d1

− n

d2

))
.

Using this in the above formula for SQ,I,H,G we deduce in conclusion that

SQ,I,H,G =
∑

1≤d1,d2≤Q

M

(
Q

d1

)
M

(
Q

d2

)
×

∑
m,n,r∈Z

G

(
m

d1

)
G

(
n

d2

)
H

(
N

(
r +

m

d1

− n

d2

))
=

∑
1≤G1,r2≤Q

µ(r1)µ(r2)
∑

d1≤Q/r1,
d2≤Q/r2,

×

∑
m,n,r∈Z

G

(
m

d1

)
G

(
n

d2

)
H

(
N

(
r +

m

d1

− n

d2

))
.

3.2. Further Reductions. First, using the facts that Supp G ⊂ (0, 1), Supp H ⊂ (0,∧),

d1, d2 ≤ Q and N ∼ 3
π2Q

2, we have for r 6= 0, H
(
N
(
r + m

d1
− n

d2

))
= 0 when Q is sufficiently

large. For positive integers d1, d2, let

δ = (d1, d2), d1 = q1δ, d2 = q2δ,

Clearly (q1, q2) = 1, and there is a unique integer q̄2 such that 0 < q̄2 < q1, q̄2q2 ≡ 1 (mod q1).

Take ã1 = (1− q̄2q2)/q1, so that ã1q1 + q̄2q2 = 1. Changing the summation index as

m′ = q2m− q1n, n′ = ã1m+ q̄2n,
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we have

m = q̄2m
′ + q1n

′, n = −ã1m
′ + q2n

′.

Hence by taking r = 0, the inner sum on m,n, r in the formula of SQ,I,H,G above can be written

as ∑
m,n∈Z

G

(
m

d1

)
G

(
n

d2

)
H

(
N

(
m

d1

− n

d2

))

=
∑
m,n∈Z

G

(
q̄2m

q1δ
+
n

δ

)
G

(
−ã1m

q2δ
+
n

δ

)
H

(
Nm

q1q2δ

)

=
∑
m,n∈Z

G

(
1

δ

(
q̄2m

q1

+ n

))
G

(
1

δ

(
q̄2m

q1

+ n− m

q1q2

))
H

(
Nm

q1q2δ

)
.

Combining this with the above formula for SQ,I,H,G we obtain

SQ,I,H,G =
∑

1≤r1,r2≤Q

µ(r1)µ(r2)
∑

q1δ≤Q/r1,
q2δ≤Q/r2,
(q1,q2)=1

∑
m,n∈Z

×

G

(
1

δ

(
q̄2m

q1

+ n

))
G

(
1

δ

(
q̄2m

q1

+ n− m

q1q2

))
H

(
Nm

q1q2δ

)
.

Next for any 0 < ε < 1
2
, when Q is sufficiently large, we have

3Q2

2π2
<

3Q2

π2
(1− ε) < N <

3Q2

π2
(1 + ε) <

9Q2

2π2
.(5)

Since Supp H ⊂ (0,∧), to get a non-zero contribution from H, we must have

0 < mδr1r2
3

π2
(1− ε) < mδr1r2

N

Q2

≤ mδr1r2
N

(q1δr1)(q2δr2)

=
Nm

q1q2δ
< ∧.

That is

mr1r2δ <
π2∧

3(1− ε)
.
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Denoting

C∧ =
π2∧

3
,

and choosing ε sufficiently small we obtain that

1 ≤ mr1r2δ ≤ C∧.

We fix m, r1, r2 and δ bounded by C∧. Since Supp G ⊂ (0, 1), to get a non-zero contribution

from G, we need

0 <
1

δ

(
q̄2m

q1

+ n

)
< 1.

Clearly there are only finitely many integers n satisfying this inequality. Denote by A the finite

set consisting of all possible values of such n. By changing the order of summation we can

simplify SQ,I,H,G as

SQ,I,H,G =
∑

mr1r2δ≤C∧,
n∈A,

µ(r1)µ(r2)
∑

q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

G

(
1

δ

(
q̄2m

q1

+ n

))
×

G

(
1

δ

(
q̄2m

q1

+ n− m

q1q2

))
H

(
Nm

δq1q2

)
.

Since

G

(
1

δ

(
q̄2m

q1

+ n− m

q1q2

))
= G

(
1

δ

(
q̄2m

q1

+ n

))
+O

(
m

δq1q2

)
,

one has

SQ,I,H,G =
∑

mr1r2δ≤C∧,
n∈A,

µ(r1)µ(r2)
∑

q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

G

(
1

δ

(
q̄2m

q1

+ n

))2

×

H

(
Nm

δq1q2

)
+ E0,
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where for any σ > 0,

E0 �
∑

mr1r2δ≤C∧,
n∈A,

∑
q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

m

δq1q2

� (logQ)2 �σ Q
σ.

For fixed m, r1, r2, δ, n, let us define the functions

fn(x) := G

(
1

δ
(mx+ n)

)2

, h(x, y) := H

(
Nm

δxy

)
.(6)

Then the inner sum of the main term of SQ,I,H,G on q1, q2 can be written as∑
=

∑
q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

fn

(
q̄2

q1

)
h(q1, q2),(7)

where q̄2 is the unique integer such that 0 < q̄2 < q1, q̄2q2 ≡ 1 (mod q1).

3.3. Auxiliary Estimations. We will need some additional estimations to complete the proof.

First of all we know that fn and f
′
n are uniformly bounded. Also, since Supp H ⊂ (0,∧), for

0 < x ≤ Q/δr1, 0 < y ≤ Q/δr2, if h(x, y) 6= 0, then we must have 0 < Nλ
xy

< ∧. Using (5), this

implies that

Q

δr1

≥ x >
Nλ

∧y
≥

3Q2m
2π2δ
Q
δr2
∧

=
3mδr1r2

2π2∧
Q

δr1

.

A similar inequality holds for y. Therefore denoting

c∧ =
3mδr1r2

2π2∧
,

we have,

h(x, y) 6= 0 =⇒
c∧Q/δr1 ≤ x ≤ Q/δr1,

c∧Q/δr2 ≤ y ≤ Q/δr2.
(8)

Clearly h is uniformly bounded and∣∣∣∣∂h∂x(x, y)

∣∣∣∣ =

∣∣∣∣H ′(Nλxy
)∣∣∣∣ · Nλxy · 1

x
≤ ||DH||∞ · ∧ ·

δr1

c∧Q
� 1

Q
.
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A similar inequality holds for ∂h
∂y

(x, y), and gives that

||Dh||∞ =

∣∣∣∣∣∣∣∣∂h∂x
∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣∂h∂y
∣∣∣∣∣∣∣∣
∞
� 1

Q
,

where ||.||∞ denotes the supremum norm.

3.4. Completion of the Proof of Lemma 1. Let K be a large positive integer which will

be chosen later. Then (7) can be written as

∑
=

K−1∑
i=0

∑
q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

q̄2∈[ i
K
q1,

i+1
K
q1)

fn

(
q̄2

q1

)
h(q1, q2)

=
K−1∑
i=0

∑
q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

q̄2∈[ i
K
q1,

i+1
K
q1)

(
fn

(
i

K

)
+O

(
1

K

))
h(q1, q2)

=
K−1∑
i=0

fn

(
i

K

) ∑
q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

q̄2∈[ i
K
q1,

i+1
K
q1)

h(q1, q2) +O

(
Q2

K

)
.

We need the following variations of results from [2]. Recall that for each region Ω in R2 and

each C1 function f : Ω −→ C, we denote by

||f ||∞,Ω = sup
(x,y)∈Ω

|f(x, y)|,

and

||Df ||∞,Ω = sup
(x,y)∈Ω

(∣∣∣∣∂f∂x (x, y)

∣∣∣∣+

∣∣∣∣∂f∂y (x, y)

∣∣∣∣) .
For any subinterval I = [α, β] of [0, 1], denote by Ia = [(1− β)a, (1− α)a].
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Lemma 2. Let Ω ⊂ [1, R]× [1, R] be a convex region and let f be a C1 function on Ω. For any

subinterval I ⊂ [0, 1] one has∑
(a,b)∈Ω

⋂
Z2
pr,

b̄∈Ia

f(a, b) =
6|I|
π2

∫∫
Ω

f(x, y) dxdy + FR,Ω,f,I,

where

FR,Ω,f,I �δ mf ||f ||∞,ΩR3/2+δ + ||f ||∞,ΩR logR

+||Df ||∞,ΩArea(Ω) logR,

for any δ > 0, where b̄ denotes the multiplicative inverse of b (mod a), i.e., 1 ≤ b̄ ≤ a, bb̄ ≡ 1

(mod a), mf is an upper bound for the number of intervals of monotonicity of each of the

functions y 7→ f(x, y).

This is Lemma 8 in [2], where Weil type estimates ([11], [8]) for certain weighted incomplete

Kloosterman sums play a crucial role in its proof. Using the fact that h is uniformly bounded

and ||Dh||∞ � 1
Q

and applying Lemma 2, we have

∑
q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

q̄2∈[ i
K
q1,

i+1
K
q1)

h(q1, q2) =
6

π2K

∫ Q
δr1

0

∫ Q
δr2

0

h(x, y)dxdy +Oσ

(
Q

3
2

+σ
)

=
6Q2

π2Kδ2r1r2

∫∫
[0,1]2

h

(
Qx

δr1

,
Qy

δr2

)
dxdy +Oσ

(
Q

3
2

+σ
)
.

Using the definition of h(x, y) from (6) we have,

h

(
x
Q

δ1

, y
Q

δ2

)
:= H

(
N m

δ
Q·Q
δr1δr2

xy

)
= H

(
Nmδr1r2

Q2xy

)
.

Finally using (8),

h

(
x
Q

δ1

, y
Q

δ2

)
6= 0 =⇒ c∧ ≤ x, y ≤ 1,
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we obtain by (2) that,∣∣∣∣H (Nmδr1r2

Q2xy

)
−H

(
3mδr1r2

π2xy

)∣∣∣∣ ≤ ||DH||∞
mδr1r2

xy

∣∣∣∣ NQ2
− 3

π2

∣∣∣∣
� logQ

Q
�σ Q

−1+σ.

It follows that

∑
q1≤Q/δr1,
q2≤Q/δr2,
(q1,q2)=1,

q̄2∈[ i
K
q1,

i+1
K
q1)

h(q1, q2) =
6Q2

π2Kδ2r1r2

∫∫
[0,1]2

H

(
3mδr1r2

π2xy

)
dxdy +Oσ

(
Q

3
2

+σ
)
.

Returning to the sum
∑

above, we obtain that

∑
=

K−1∑
i=0

fn

(
i

K

)
6Q2

π2Kδ2r1r2

∫∫
[0,1]2

H

(
3mδr1r2

π2xy

)
dxdy +

Oσ

(
KQ

3
2

+σ
)

+O

(
Q2

K

)
=

6

π2

Q2

δ2r1r2

(∫ 1

0

fn(x)dx

)(∫∫
[0,1]2

h

(
x
Q

δ1

, y
Q

δ2

)
dx dy

)
+

Oσ

(
KQ

3
2

+σ
)

+O

(
Q2

K

)
.

We may choose

K = [Q
1
4 ] � Q

1
4 ,

to see that the error term is E1 �σ Q
2− 1

4
+σ for σ > 0. Using the definition of fn from (6),

∫ 1

0

fn(x)dx =

∫ 1

0

G

(
1

δ
(mx+ n)

)2

dx =
δ

m

∫ m+n
δ

n
δ

G(z)2dz

=
δ

m

(∫ n+1
δ

n
δ

G(z)2dz + · · ·+
∫ n+m

δ

n+m−1
δ

G(z)2dz

)
.
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Consequently,∑
n∈Z

∫ 1

0

fn(x)dx =
δ

m

∑
n∈Z

(∫ n+1
δ

n
δ

G(z)2dz + · · ·+
∫ n+m

δ

n+m−1
δ

G(z)2dz

)

= δ ·
∫ 1

0

G(z)2dz.

Finally, we conclude that

SQ,I,H,G =
∑

mr1r2δ≤C∧,

µ(r1)µ(r2)

(∑
n∈A

∑)
+ E0

=
6

π2
Q2

(∫ 1

0

G(z)2dz

) ∑
1≤r1r2mδ≤π

2

3
∧

µ(r1)µ(r2)

δr1r2

×

∫∫
[0,1]2

H

(
3mδr1r2

π2xy

)
dx dy + EQ,I,H,G,

where the error term is

EQ,I,H,G � E0 + E1 �σ Q
2− 1

4
+σ.

Now following the computation of S2 in [3] we have∑
1≤r1r2mδ≤π

2

3
∧

µ(r1)µ(r2)

δr1r2

∫∫
[0,1]2

H

(
3mδr1r2

π2xy

)
=

1

2

∫ ∧
0

H(x)g1(x) dx,

where the function g1 is defined as in (3). This completes the proof of Lemma 1.

References

[1] E. Alkan, M. Xiong, A. Zaharescu, Local spacings along curves, J. Math. Anal. Appl. 329 (2007), 721–735.

[2] F. Boca, C. Cobeli, A. Zaharescu, A conjecture of R. R. Hall on Farey points, J. Reine

Angew. Math. 535(2001), 207–236.

[3] F. P. Boca, A. Zaharescu, The Correlations of Farey Fractions, J. London Math. Soc. (2) 72(2005), 25–39.

[4] F. J. Dyson, Statistical theory of the energy levels of complex systems, I. J. Mathematical Phys. 3(1962),

140–156.

[5] F. J. Dyson, Statistical theory of the energy levels of complex systems, II. J. Mathematical Phys. 3(1962),

157–165.



PAIR CORRELATION OF TORSION POINTS ON ELLIPTIC CURVES 21

[6] F. J. Dyson, Statistical theory of the energy levels of complex systems, III. J. Mathematical Phys. 3(1962),

166–175.

[7] H. M. Edwards, “Riemann’s zeta function”, Dover, Mineola, NY 2001.

[8] T. Esterman, On Kloosterman’s sums, Mathematika 8(1961), 83–86.

[9] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1938

(fourth edition 1960).

[10] J. H. Silverman, “The arithmetic of elliptic curves”, Springer-Verlag, New York, GTM 106, 1986.

[11] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci.USA 34(1948), 204–207.
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