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Abstract. Recently Girstmair and Schoissengeier studied the asymp-

totic behavior of the arithmetic mean of Dedekind sums

1
ϕ(N)

∑
0≤m<N

gcd(m,N)=1

|S(m, N)|,

as N →∞. In this paper we consider the arithmetic mean of weighted

differences of Dedekind sums in the form

Ah(Q) =
1∑

a
q∈F

Q
h
(

a
q

) × ∑
a
q∈F

Q

h

(
a

q

)
|s(a′, q′)− s(a, q)|,

where h : [0, 1]→ C is a continuous function with
∫ 1

0
h(t) dt 6= 0, a

q runs

over F
Q

, the set of Farey fractions of order Q in the unit interval [0, 1]

and a
q < a′

q′ are consecutive elements of F
Q

. We show that the limit

limQ→∞Ah(Q) exists and is independent of h.

1. Introduction

For any real number x, let ((x)) be the sawtooth function defined as

((x)) =

 x− [x]− 1
2
, x is not an integer,

0, otherwise.

For positive integers h, k the classical Dedekind sum s(h, k) is defined by

s(h, k) =
∑

s (mod k)

(( s
k

))((hs
k

))
,
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where the notation s (mod k) means that s runs over a complete residue

system modulo k. Since the sawtooth function has period one, s(h, k) is a

periodic function of h with period k.

The distribution of Dedekind sums, in particular the asymptotic behavior

of even moments of such sums has been investigated by a number of authors.

Recently Girstmair and Schoissengeier([5]) succeeded in establishing the

right size of the more subtle first moment, which is the arithmetic mean

1

ϕ(N)

∑
0≤m<N

gcd(m,N)=1

|S(m,N)|,

as N →∞, where S(m,N) = 12 · s(m,N). In the process, they proved the

asymptotic formula

1

ϕ(N)

∑
m∈F

gcd(m,N)=1

|S(m,N)| = 3

π2
log2N +O

(
log2N/ log logN

)
,

as N →∞, where

F =
⋃

1≤d≤x

⋃
0≤c≤d

gcd(c,d)=1

Ic/d ⊂ [0, N),

Ic/d = [0, N ]
⋂
{z ∈ R : |z −N · c/d| ≤ x/d},

x = min{
√
N/ logN,

√
N/τ(N)},

and τ(N) denotes the number of divisors of N . The sign changes and zones

of large and small values for Dedekind sums which also sparked interest

have been studied by Girstmair in ([3], [4]).

In this paper, we consider the arithmetic mean of weighted differences

of Dedekind sums of the form |s(a′, q′) − s(a, q)| with a weight function h,

where (a
q
, a
′

q′
) runs over the set of pairs of consecutive elements of the Farey

sequence F
Q

of order Q. The Farey sequence of order Q consists of all
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the fractions a
q
∈ [0, 1], in reduced form, with denominator bounded by Q,

arranged in increasing order, i.e.,

F
Q

:=

{
a

q
∈ [0, 1] : a, q ∈ Z, gcd(a, q) = 1, 1 ≤ q ≤ Q

}
.

For basic properties of Farey sequences, the reader may consult Hardy and

Wright [6]. We remark that in the limit as Q → ∞, the above arithmetic

mean turns out to be independent of the choices of weight h. More precisely

one has the following result.

Theorem 1. Let h : [0, 1]→ C be a continuous function with
∫ 1

0
h(t) dt 6= 0.

Define

Ah(Q) =
1∑

a
q
∈F

Q
h
(
a
q

) × ∑
a
q
∈F

Q

h

(
a

q

)
|s(a′, q′)− s(a, q)|,

where a
q

runs over F
Q

, the set of Farey fractions of order Q in the unit

interval [0, 1] and a
q
< a′

q′
are consecutive elements of F

Q
. Then we have

lim
Q→∞

Ah(Q) =

√
5− 1

12
.

We remark that the statement of the theorem holds more generally for

piecewise continuous functions. In particular, by taking h to be the charac-

teristic function of a subinterval I of [0, 1], we obtain the following result.

Corollary 1. For any subinterval I of [0, 1], we have

lim
Q→∞

1

#(F
Q

⋂
I)

∑
a
q
∈F

Q

⋂
I

|s(a′, q′)− s(a, q)| =
√

5− 1

12
.

Acknowledgement. The authors are very grateful to the referee for

many useful comments and suggestions.
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2. Proof of theorem 1

Since any continuous function h : [0, 1] → C can be approximated uni-

formly by functions which are continuously differentiable, it is enough to

prove the theorem in the case when h is continuously differentiable. In this

case, we have the following stronger form of the result with a precise error

term.

Theorem 1’. Let h : [0, 1] → C be a continuously differentiable function

with
∫ 1

0
h(t) dt 6= 0. Define

Ah(Q) =
1∑

a
q
∈F

Q
h
(
a
q

) × ∑
a
q
∈F

Q

h

(
a

q

)
|s(a′, q′)− s(a, q)|,

where a
q

runs over F
Q

, the set of Farey fractions of order Q in the unit

interval [0, 1] and a
q
< a′

q′
are consecutive elements of F

Q
. Then for any

fixed positive real number δ, we have

Ah(Q) =

√
5− 1

12
+Oh,δ

(
Q−

1
16

+δ
)
,

as Q→∞.

Proof of Theorem 1’. Our first objective is to obtain an asymptotic

formula for Bh(Q), where

Bh(Q) =
∑

a
q
∈F

Q

h

(
a

q

)
|s(a′, q′)− s(a, q)|.

Let a
q
< a′

q′
be consecutive Farey fractions. We know that a′q − aq′ = 1.

By using formula (38) on Page 29 of [8], which is a consequence of the

reciprocity law of Dedekind sums, one has

s(a′, q′)− s(a, q) = s(q, q′) + s(q′, q) = −1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

)
.
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Therefore

Bh(Q) =
∑

a
q
∈F

Q

h

(
a

q

) ∣∣∣∣−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

)∣∣∣∣ .
Define

B1,h(Q) =
∑

a
q
∈F

Q

q′≤q

h

(
a

q

) ∣∣∣∣−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

)∣∣∣∣ ,
B2,h(Q) =

∑
a
q
∈F

Q

q′>q

h

(
a

q

) ∣∣∣∣−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

)∣∣∣∣ ,
so that we have

Bh(Q) = B1,h(Q) +B2,h(Q).

By symmetry, it suffices to consider B1,h(Q) only. Clearly, the condition

−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

)
≤ 0,

is equivalent to q2 + q′2 − 3qq′ + 1 ≤ 0. Since q, q′ are integers, this is

equivalent to q2 + q′2 − 3qq′ < 0, and we have 3−
√

5
2

< q′

q
< 3+

√
5

2
. Therefore

one has

−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

)
is

 > 0, q′

q
≤ 3−

√
5

2
or q′

q
≥ 3+

√
5

2
,

≤ 0, 3−
√

5
2

< q′

q
< 3+

√
5

2
.

We can separate B1,h(Q) into two parts as B1,h(Q) = I + II, where

I =
∑

a
q
∈F

Q

3−
√

5
2

< q′
q
≤1

h

(
a

q

)(
1

4
− 1

12

(
q

q′
+
q′

q
+

1

qq′

))
,

II =
∑

a
q
∈F

Q

q′
q
≤ 3−

√
5

2

h

(
a

q

)(
−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

))
.



6 ALKAN, XIONG, AND ZAHARESCU

2.1. Estimation for I . It is known that for any two consecutive Farey

fractions a
q
< a′

q′
of order Q, one has a′q − aq′ = 1 and q + q′ > Q. Hence

aq′ ≡ −1 (mod q) and a ≡ −q̄′ (mod q), where q̄′ is the multiplicative

inverse of q′ modulo q with 1 ≤ q̄′ ≤ q (here q̄′ exists because gcd(q, q′) = 1).

Since 1 ≤ a < q, one has a = q− q̄′. Conversely, if q and q′ are two coprime

integers in {1, . . . , Q} with q+q′ > Q, then there are unique a ∈ {1, . . . , Q}

and a′ ∈ {1, . . . , Q} for which a′q − aq′ = 1, and a
q
< a′

q′
are consecutive

Farey fractions of order Q. We find that

I =
∑
q≤Q

∑
Q−q<q′≤Q
3−
√

5
2

q<q′

gcd(q,q′)=1

h

(
1− q̄′

q

)(
1

4
− 1

12

(
q

q′
+
q′

q
+

1

qq′

))
.

The restrictions Q−q < q′ < q implies that q > Q
2

and when Q−q = 3−
√

5
2
q,

we have q =
(

5−
√

5
2

)−1

· Q = 5+
√

5
10

Q, hence we can decompose I into two

parts as

I = I1 + I2,

where

I1 =
∑

Q
2
<q≤ 5+

√
5

10
Q

∑
Q−q<q′≤q
gcd(q,q′)=1

h

(
1− q̄′

q

)(
1

4
− 1

12

(
q

q′
+
q′

q
+

1

qq′

))
,

I2 =
∑

5+
√

5
10

Q<q≤Q

∑
3−
√

5
2

Q<q′≤q
gcd(q,q′)=1

h

(
1− q̄′

q

)(
1

4
− 1

12

(
q

q′
+
q′

q
+

1

qq′

))
.

Sums of the above type can be estimated by the aid of the following two

lemmas. The first lemma, whose proof depends on Weil-type bounds for

Kloosterman sums, provides an asymptotic formula for certain sums over

visible lattice points in planar domains satisfying congruence constraints.
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Lemma 1. ([2], Lemma 2.2) Assume that q ≥ 1 is an integer, I1 and I2

are intervals with |I1|, |I2| < q, and g : I1×I2 → R is a C1 function. Write

Dg = | ∂g
∂x
| + |∂g

∂y
| and let || · ||∞ denote the L∞ norm on I1 × I2. Then for

any integer T > 1, one has∑
a∈I1,b∈I2

ab≡1 (mod q)

g(a, b) =
φ(q)

q2

∫∫
I1×I2

g(x, y) dxdy + Eq,I1,I2,g,T ,

where, for all δ > 0,

Eq,I1,I2,g,T �δ T
2q

1
2

+δ||g||∞ + Tq
3
2

+δ||Dg||∞ +
|I1||I2| · ||Dg||∞

T
.

In applying Lemma 1, we will also make use of the following result.

Lemma 2. ([1], Lemma 2.3) Suppose that 0 < a < b are real numbers and

that f is a C1 function on [a, b]. Then∑
a<k≤b

φ(k)

k
f(k) =

6

π2

∫ b

a

f(x) dx+O

(
log b

(
||f ||∞ +

∫ b

a

|f ′(x)| dx
))

.

For fixed q with Q
2
< q ≤ 5+

√
5

10
Q, we may apply Lemma 1 directly to I1,

with I1 = [0, q], I2 = (Q− q, q], a = q̄′, b = q′ and

g(x, y) = h

(
1− x

q

)(
1

4
− 1

12

(
q

y
+
y

q
+

1

qy

))
.

First of all, both |I1|, |I2| ≤ q ≤ Q. Moreover, under the restrictions

Q
2
< q ≤ 5+

√
5

2
Q, q � Q, and for y ∈ I2, we have

5−
√

5

10
Q ≤ Q− q < y ≤ q ≤ 5 +

√
5

10
Q.

Hence y � Q, and we have

1

4
− 1

12

(
q

y
+
y

q
+

1

qy

)
≤ 1

4
,

1

4
− 1

12

(
q

y
+
y

q
+

1

qy

)
≥ − 1

12

1

qy
,
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and
1

qy
� 1

Q2
.

Therefore
∣∣∣14 − 1

12

(
q
y

+ y
q

+ 1
qy

)∣∣∣� 1, so that we have ||g||∞ � ||h||∞ �h 1.

Next, under the same restrictions one obtains∣∣∣∣∂g∂x
∣∣∣∣� ||Dh||∞1

q
�h

1

Q
,

∣∣∣∣∂g∂y
∣∣∣∣ ≤ ||h||∞ 1

12

(
q

y2
+

1

q
+

1

qy2

)
�h

1

Q
.

Lemma 1 gives us that for any integer T > 1,

I1 =
∑

Q
2
<q≤ 5+

√
5

10
Q

{
φ(q)

q2

∫∫
I1×I2

h

(
1− x

q

)(
1

4
− 1

12

(
q

y
+
y

q
+

1

qy

))
dxdy + Eq,h,T

}
,

where for all δ > 0,

Eq,h,T �δ,h T
2q

1
2

+δ + Tq
3
2

+δ 1

Q
+
Q2 · 1

Q

T
.

The double integral over I1 × I2 is∫ q

0

h

(
1− x

q

)
dx

∫ q

Q−q

1

4
− 1

12

(
q

y
+
y

q
+

1

qy

)
dy

= q2

∫ 1

0

h(t) dt

∫ 1

Q
q
−1

1

4
− 1

12

(
y +

1

y
+

1

q2y

)
dy.

Therefore

I1 =

(∫ 1

0

h(t) dt

) ∑
Q
2
<q≤ 5+

√
5

10
Q

φ(q)

q
q

∫ 1

Q
q
−1

1

4
− 1

12

(
y +

1

y
+

1

q2y

)
dy + E ′h,T ,

where

E ′h,T � Q · Eq,h,T �δ,h T
2Q

3
2

+δ + TQ
3
2

+δ +
Q2

T
.

Let T 2Q
3
2 ≈ Q2

T
, we may choose T ≈ Q

1
6 to obtain

E ′h,T �δ,h Q
2− 1

6
+δ.(1)
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Since∑
Q
2
<q≤ 5+

√
5

10
Q

φ(q)

q
q

∫ 1

Q
q
−1

1

q2y
dy �

∑
Q
2
<q≤ 5+

√
5

10
Q

φ(q)

q2
�

∑
Q
2
<q≤ 5+

√
5

10
Q

1

Q
� 1,

we still have

I1 =

(∫ 1

0

h(t) dt

) ∑
Q
2
<q≤ 5+

√
5

10
Q

φ(q)

q
q

∫ 1

Q
q
−1

1

4
− 1

12

(
y +

1

y

)
dy + E ′h,T .

Now applying Lemma 2 to I1, with the function

f(x) = x

∫ 1

Q
x
−1

1

4
− 1

12

(
y +

1

y

)
dy,

Q

2
< x ≤ 5 +

√
5

10
Q,(2)

and a = Q
2
, b = 5+

√
5

10
Q, we have

∑
Q
2
<q≤ 5+

√
5

10
Q

φ(q)

q
f(q) =

6

π2

∫ 5+
√

5
2

Q

Q
2

f(x) dx+ E ′.(3)

Here for the error term E ′, notice that for Q
2
< x ≤ 5+

√
5

10
Q, we have

||f ||∞ � Q and by the chain rule it is easy to see that

|f ′(x)| � 1 + x
Q

x2
� 1.

Hence
∫ 5+

√
5

10
Q
2

|f ′(x)| dx� Q, and Lemma 2 yields

E ′ � Q logQ�δ Q
1+δ,(4)

for any δ > 0. Putting (4),(3) and (1) together and returning to I1 we get

I1 =
6

π2

(∫ 1

0

h(t) dt

)∫ 5+
√

5
10

Q

Q
2

f(x) dx+Oδ,h

(
Q2− 1

6
+δ
)
.

Finally, writing f(x) explicitly in (2) and using the change of variable x
Q

=

x′, we obtain as Q→∞ the asymptotic formula

I1 =
6Q2

π2

(∫ 1

0

h(t) dt

)
· C1 +Oδ,h

(
Q2− 1

6
+δ
)
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for any fixed positive real number δ, where the constant C1 is given by

C1 =

∫ 5+
√

5
10

1
2

x

∫ 1

1
x
−1

1

4
− 1

12

(
y +

1

y

)
dy dx.(5)

Following exactly the same procedure we can get a similar asymptotic for-

mula for I2 as

I2 =
6Q2

π2

(∫ 1

0

h(t) dt

)
· C2 +Oδ,h

(
Q2− 1

6
+δ
)
,

where the constant C2 is given by

C2 =

∫ 1

5+
√

5
10

x

∫ 1

3−
√

5
2

1

4
− 1

12

(
y +

1

y

)
dy dx.(6)

Therefore for any fixed positive real number δ, as Q→∞, we have

I = I1 + I2 =
6Q2

π2

(∫ 1

0

h(t) dt

)
· (C1 + C2) +Oδ,h

(
Q2− 1

6
+δ
)
.(7)

The constants C1, C2 can be computed separately but the expressions are

complicated. Nevertheless it turns out that C1 + C2 has a simple form as

C1 + C2 =
√

5−1
96

.

2.2. Estimation for II . We treat II similarly, but with a slight difference.

Take a number K between 0 and Q which will be chosen later and denote

II ′ =
∑

a
q
∈F

Q

q′
q
≤ 3−

√
5

2

q′≥K

h

(
a

q

)(
−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

))
,

II ′′ =
∑

a
q
∈F

Q

q′
q
≤ 3−

√
5

2

q′<K

h

(
a

q

)(
−1

4
+

1

12

(
q

q′
+
q′

q
+

1

qq′

))
,

so that

II = II ′ + II ′′.
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For II ′′, as we know,

|II ′′| �h

∑
a
q
∈F

Q

q′
q
≤ 3−

√
5

2

q′<K

(
1 +

q′

q
+

1

qq′

)
+
∑

a
q
∈F

Q

q′<K

q

q′
,

where the first term is

�h

∑
a
q
∈F

Q

q′<K

1 =
∑

1≤q′<K

φ(q′)� K2,

and the second term is

�h Q
∑

a
q
∈F

Q

q′<K

1

q′
= Q

∑
1≤q′<K

φ(q′)

q′
≤ Q

∑
1≤q′<K

1� QK.

Since K < Q, we obtain that

II ′′ �h QK.

For II ′, first notice that∑
a
q
∈F

Q

q′
q
≤ 3−

√
5

2

q′≥K

∣∣∣∣h(aq
)∣∣∣∣ 1

qq′
�h

1

K

∑
a
q
∈F

Q

1

q
=

1

K

∑
q≤Q

φ(q)

q
� Q

K
,

hence

II ′ =
∑

a
q
∈F

Q

q′
q
≤ 3−

√
5

2

q′≥K

h

(
a

q

)(
−1

4
+

1

12

(
q

q′
+
q′

q

))
+Oh

(
Q

K

)
.

For simplicity, we still denote the main term by II ′. Now we follow the

same procedure as for I1 and I2. Since Q− q < q′ ≤ 3−
√

5
2
q, we have

q >

(
5−
√

5

2

)−1

·Q =
5 +
√

5

10
Q,
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and by the one-to-one correspondence between pairs of consecutive Farey

fractions of order Q and coprime integers (q, q′) with 1 ≤ q, q′ ≤ Q, q+ q′ >

Q, we can write II ′ as

II ′ =
∑

5+
√

5
10

Q<q≤Q

∑
K≤q′≤ 3−

√
5

2
q

Q−q<q′
0≤q̄′≤q

q′q̄′≡1 (mod q)

h

(
1− q̄′

q

)(
−1

4
+

1

12

(
q

q′
+
q′

q

))
.

We may apply Lemma 1 to II ′, with I1 = [0, q], I2 = (max{Q−q,K}, 3−
√

5
2
q], a =

q̄′, b = q′ and

g(x, y) = h

(
1− x

q

)(
−1

4
+

1

12

(
q

y
+
y

q

))
.

First notice that both |I1|, |I2| ≤ q ≤ Q, and since q � Q, y ∈ I2 and

y ≥ K, we have

||g||∞ � ||h||∞
Q

K
�h

Q

K
.

Moreover as q � Q, y ∈ I2 and K < Q, it follows that∣∣∣∣∂g∂x
∣∣∣∣ ≤ ||Dh||∞1

q

( q
K

+ 1
)
�h

1

K
,

∣∣∣∣∂g∂y
∣∣∣∣ ≤ ||h||∞ 1

12

(
q

y2
+

1

q

)
�h

Q

K2
+

1

Q
� Q

K2
.

Applying Lemma 1, for any integer T > 1 we have

II ′ =
∑

5+
√

5
10

Q<q≤Q

{
φ(q)

q2

∫∫
I1×I2

h

(
1− x

q

)(
−1

4
+

1

12

(
q

y
+
y

q

))
dxdy + Eq,h,T

}
,

where for all δ > 0,

Eq,h,T �δ,h T
2q

1
2

+δQ

K
+ Tq

3
2

+δ Q

K2
+

Q3

TK2
.
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The integral inside is∫ q

0

h

(
1− x

q

)
dx

∫ 3−
√

5
2

q

max{Q−q,K}
−1

4
+

1

12

(
q

y
+
y

q

)
dy

= q2

∫ 1

0

h(t) dt

∫ 3−
√

5
2

max{Q
q
−1,K

q
}
−1

4
+

1

12

(
y +

1

y

)
dy.

Therefore

II ′ =

(∫ 1

0

h(t) dt

) ∑
5+
√

5
10

Q<q≤Q

φ(q)

q
×

q

∫ 3−
√

5
2

max{Q
q
−1,K

q
}
−1

4
+

1

12

(
y +

1

y

)
dy + E ′h,T ,

where

E ′h,T � Q · Eq,h,T �δ,h
T 2Q

5
2

+δ

K
+
TQ

7
2

+δ

K2
+

Q4

TK2
.

To minimize the error terms QK, T
2Q

5
2

K
, TQ

7
2

K2 and Q4

TK2 , assume that

QK ≈ T 2Q
5
2

K
≈ Q4

TK2
,

and we may choose K = Q1− 1
16 , T ≈ Q

3
16 . Consequently

E ′h,T �δ,h Q
2− 1

16
+δ.(8)

Next, we applying Lemma 2 to II ′ with function

f(x) = x

∫ 3−
√

5
2

max{Q
x
−1,K

x
}
−1

4
+

1

12

(
y +

1

y

)
dy,(9)

and a = 5+
√

5
10

Q, b = Q. Notice that since 5+
√

5
10

Q < x ≤ Q, we have

||f ||∞ � Q
Q

K
� Q1+ 1

16 .

It is easy to see that

|f ′(x)| � Q

K
+Q

Q

K2
� Q

1
8 .
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Therefore
∫ Q

5+
√

5
10

Q
|f ′(x)| dx� Q1+ 1

8 . Then Lemma 2 gives

∑
5+
√

5
10

Q<q≤Q

φ(q)

q
f(q) =

6

π2

∫ Q

5+
√

5
10

Q

f(x) dx+ E ′,(10)

where and

E ′ � logQ
(
Q1+ 1

16 +Q1+ 1
8

)
�δ Q

1+ 1
8

+δ,(11)

for any δ > 0. Putting (10),(11) and (8) together and returning to II ′ we

obtain

II ′ =
6

π2

(∫ 1

0

h(t) dt

)∫ Q

5+
√

5
10

Q

f(x) dx+Oδ,h

(
Q2− 1

16
+δ
)
.

Finally writing f(x) explicitly in (9) and making the change of variable

x
Q

= x′, we get

II ′ =
6Q2

π2

(∫ 1

0

h(t) dt

)
· CK

Q
+Oδ,h

(
Q2− 1

16
+δ
)
,

for any fixed positive real number δ, where the number CK
Q

is given as

CK
Q

=

∫ 1

5+
√

5
10

x

∫ 3−
√

5
2

max{ 1
x
−1, K

Qx
}
−1

4
+

1

12

(
y +

1

y

)
dy dx.

Denote the constant C3 by the integral

C3 =

∫ 1

5+
√

5
10

x

∫ 3−
√

5
2

1
x
−1

−1

4
+

1

12

(
y +

1

y

)
dy dx

=

√
5− 1

96
.

(12)
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Since K = Q1− 1
16 , for any positive real number δ we have

|C3 − CK
Q
| =

∫ 1

1−K
Q

x

∫ K
Qx

1
x
−1

−1

4
+

1

12

(
y +

1

y

)
dy dx

=

∫ 1

1−K
Q

x

∫ K
Qx

1
x
−1

−1

4
+

y

12
dy dx+

∫ 1

1−K
Q

x

∫ K
Qx

1
x
−1

1

12y
dy dx

� K

Q
+

∫ 1

1−K
Q

x

(
log

K

Q
− log(1− x)

)
dx

� log

(
Q

K

)
K

Q
� logQ

Q
1
16

�δ Q
− 1

16
+δ,

therefore

II ′ =
6Q2

π2

(∫ 1

0

h(t) dt

)
· C3 +Oδ,h

(
Q2− 1

16
+δ
)
,

and

II = II ′ + II ′′ =
6Q2

π2

(∫ 1

0

h(t) dt

)
· C3 +Oδ,h

(
Q2− 1

16
+δ
)
.(13)

2.3. Proof of Theorem 1’. Putting the estimate (7) and (13) together,

we have the asymptotic formula

B1,h(Q) = I + II

=
6Q2

π2

(∫ 1

0

h(t) dt

)
· (C1 + C2 + C3) +Oδ,h

(
Q2− 1

16
+δ
)
,

for any positive real number δ, where the constants C1, C2, C3 are defined

in (5),(6) and (12) respectively. By symmetry we have exactly the same

asymptotic formula for B2,h(Q). Therefore, we may denote the constant C

by

C = 4(C1 + C2 + C3) =

√
5− 1

12
≈ 0.103006.(14)
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It follows that

Bh(Q) = B1,h(Q) +B2,h(Q)

=
3Q2

π2

(∫ 1

0

h(t) dt

)
·
√

5− 1

12
+Oδ,h

(
Q2− 1

16
+δ
)
.

By using Koksma’s Inequality([7]), one has

1

#(F
Q

)

∑
a
q
∈F

Q

h

(
a

q

)
=

∫ 1

0

h(t) dt+Oh

(
1

Q

)
.

We also know that

#(F
Q

) =
3Q2

π2
+O(Q logQ).

Counting all these facts together we obtain as Q→∞,

Ah(Q) =
Bh(Q)∑

a
q
∈F

Q
h
(
a
q

) =

√
5− 1

12
+Oδ,h

(
Q−

1
16

+δ
)
,

for any fixed positive real number δ. This completes the proof of Theorem

1′.
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