ARITHMETIC MEAN OF DIFFERENCES OF DEDEKIND SUMS

EMRE ALKAN, MAOSHENG XIONG, AND ALEXANDRU ZAHARESCU

Abstract. Recently Girstmair and Schoissengeier studied the asymptotic behavior of the arithmetic mean of Dedekind sums

$$
\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\ \operatorname{gcd}(m, N)=1}}|S(m, N)|
$$

as $N \rightarrow \infty$. In this paper we consider the arithmetic mean of weighted differences of Dedekind sums in the form

$$
A_{h}(Q)=\frac{1}{\sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)} \times \sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)\left|s\left(a^{\prime}, q^{\prime}\right)-s(a, q)\right|
$$

where $h:[0,1] \rightarrow \mathbb{C}$ is a continuous function with $\int_{0}^{1} h(t) \mathrm{d} t \neq 0, \frac{a}{q}$ runs over \mathscr{F}_{Q}, the set of Farey fractions of order Q in the unit interval $[0,1]$ and $\frac{a}{q}<\frac{a^{\prime}}{q^{\prime}}$ are consecutive elements of \mathscr{F}_{Q}. We show that the limit $\lim _{Q \rightarrow \infty} A_{h}(Q)$ exists and is independent of h.

1. Introduction

For any real number x, let $((x))$ be the sawtooth function defined as

$$
((x))= \begin{cases}x-[x]-\frac{1}{2}, & x \text { is not an integer } \\ 0, & \text { otherwise }\end{cases}
$$

For positive integers h, k the classical Dedekind sum $s(h, k)$ is defined by

$$
s(h, k)=\sum_{s}\left(\left(\frac{s}{k}\right)\right)\left(\left(\frac{h s}{k}\right)\right)
$$

Key words and phrases. Dedekind sums, Kloosterman sums, Farey fractions.
where the notation $s(\bmod k)$ means that s runs over a complete residue system modulo k. Since the sawtooth function has period one, $s(h, k)$ is a periodic function of h with period k.

The distribution of Dedekind sums, in particular the asymptotic behavior of even moments of such sums has been investigated by a number of authors. Recently Girstmair and Schoissengeier([5]) succeeded in establishing the right size of the more subtle first moment, which is the arithmetic mean

$$
\frac{1}{\varphi(N)} \sum_{\substack{0 \leq m<N \\ \operatorname{gcd}(m, N)=1}}|S(m, N)|,
$$

as $N \rightarrow \infty$, where $S(m, N)=12 \cdot s(m, N)$. In the process, they proved the asymptotic formula

$$
\frac{1}{\varphi(N)} \sum_{\substack{m \in \mathcal{F} \\ \operatorname{gcd}(m, N)=1}}|S(m, N)|=\frac{3}{\pi^{2}} \log ^{2} N+O\left(\log ^{2} N / \log \log N\right)
$$

as $N \rightarrow \infty$, where

$$
\begin{gathered}
\mathcal{F}=\bigcup_{1 \leq d \leq x} \bigcup_{\substack{0 \leq c \leq d \\
\operatorname{gcd}(c, d)=1}} I_{c / d} \subset[0, N), \\
I_{c / d}=[0, N] \bigcap\{z \in \mathbb{R}:|z-N \cdot c / d| \leq x / d\}, \\
x=\min \{\sqrt{N} / \log N, \sqrt{N} / \tau(N)\},
\end{gathered}
$$

and $\tau(N)$ denotes the number of divisors of N. The sign changes and zones of large and small values for Dedekind sums which also sparked interest have been studied by Girstmair in ([3], [4]).

In this paper, we consider the arithmetic mean of weighted differences of Dedekind sums of the form $\left|s\left(a^{\prime}, q^{\prime}\right)-s(a, q)\right|$ with a weight function h, where $\left(\frac{a}{q}, \frac{a^{\prime}}{q^{\prime}}\right)$ runs over the set of pairs of consecutive elements of the Farey sequence \mathscr{F}_{Q} of order Q. The Farey sequence of order Q consists of all
the fractions $\frac{a}{q} \in[0,1]$, in reduced form, with denominator bounded by Q, arranged in increasing order, i.e.,

$$
\mathscr{F}_{Q}:=\left\{\frac{a}{q} \in[0,1]: a, q \in \mathbb{Z}, \operatorname{gcd}(a, q)=1,1 \leq q \leq Q\right\}
$$

For basic properties of Farey sequences, the reader may consult Hardy and Wright [6]. We remark that in the limit as $Q \rightarrow \infty$, the above arithmetic mean turns out to be independent of the choices of weight h. More precisely one has the following result.

Theorem 1. Let $h:[0,1] \rightarrow \mathbb{C}$ be a continuous function with $\int_{0}^{1} h(t) \mathrm{d} t \neq 0$. Define

$$
A_{h}(Q)=\frac{1}{\sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)} \times \sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)\left|s\left(a^{\prime}, q^{\prime}\right)-s(a, q)\right|,
$$

where $\frac{a}{q}$ runs over \mathscr{F}_{Q}, the set of Farey fractions of order Q in the unit interval $[0,1]$ and $\frac{a}{q}<\frac{a^{\prime}}{q^{\prime}}$ are consecutive elements of \mathscr{F}_{Q}. Then we have

$$
\lim _{Q \rightarrow \infty} A_{h}(Q)=\frac{\sqrt{5}-1}{12}
$$

We remark that the statement of the theorem holds more generally for piecewise continuous functions. In particular, by taking h to be the characteristic function of a subinterval \mathbf{I} of $[0,1]$, we obtain the following result.

Corollary 1. For any subinterval \mathbf{I} of $[0,1]$, we have

$$
\lim _{Q \rightarrow \infty} \frac{1}{\#\left(\mathscr{F}_{Q} \cap \mathbf{I}\right)} \sum_{\frac{a}{q} \in \mathscr{F}_{Q} \cap \mathbf{I}}\left|s\left(a^{\prime}, q^{\prime}\right)-s(a, q)\right|=\frac{\sqrt{5}-1}{12} .
$$

Acknowledgement. The authors are very grateful to the referee for many useful comments and suggestions.

2. Proof of theorem 1

Since any continuous function $h:[0,1] \rightarrow \mathbb{C}$ can be approximated uniformly by functions which are continuously differentiable, it is enough to prove the theorem in the case when h is continuously differentiable. In this case, we have the following stronger form of the result with a precise error term.
Theorem 1'. Let $h:[0,1] \rightarrow \mathbb{C}$ be a continuously differentiable function with $\int_{0}^{1} h(t) \mathrm{d} t \neq 0$. Define

$$
A_{h}(Q)=\frac{1}{\sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)} \times \sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)\left|s\left(a^{\prime}, q^{\prime}\right)-s(a, q)\right|,
$$

where $\frac{a}{q}$ runs over \mathscr{F}_{Q}, the set of Farey fractions of order Q in the unit interval $[0,1]$ and $\frac{a}{q}<\frac{a^{\prime}}{q^{\prime}}$ are consecutive elements of \mathscr{F}_{Q}. Then for any fixed positive real number δ, we have

$$
A_{h}(Q)=\frac{\sqrt{5}-1}{12}+O_{h, \delta}\left(Q^{-\frac{1}{16}+\delta}\right)
$$

as $Q \rightarrow \infty$.

Proof of Theorem 1'. Our first objective is to obtain an asymptotic formula for $B_{h}(Q)$, where

$$
B_{h}(Q)=\sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)\left|s\left(a^{\prime}, q^{\prime}\right)-s(a, q)\right| .
$$

Let $\frac{a}{q}<\frac{a^{\prime}}{q^{\prime}}$ be consecutive Farey fractions. We know that $a^{\prime} q-a q^{\prime}=1$. By using formula (38) on Page 29 of [8], which is a consequence of the reciprocity law of Dedekind sums, one has

$$
s\left(a^{\prime}, q^{\prime}\right)-s(a, q)=s\left(q, q^{\prime}\right)+s\left(q^{\prime}, q\right)=-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)
$$

Therefore

$$
B_{h}(Q)=\sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)\left|-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right| .
$$

Define

$$
\begin{aligned}
& B_{1, h}(Q)=\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\
q^{\prime} \leq q}} h\left(\frac{a}{q}\right)\left|-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right|, \\
& B_{2, h}(Q)=\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\
q^{\prime}>q}} h\left(\frac{a}{q}\right)\left|-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right|,
\end{aligned}
$$

so that we have

$$
B_{h}(Q)=B_{1, h}(Q)+B_{2, h}(Q) .
$$

By symmetry, it suffices to consider $B_{1, h}(Q)$ only. Clearly, the condition

$$
-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right) \leq 0
$$

is equivalent to $q^{2}+q^{\prime 2}-3 q q^{\prime}+1 \leq 0$. Since q, q^{\prime} are integers, this is equivalent to $q^{2}+q^{\prime 2}-3 q q^{\prime}<0$, and we have $\frac{3-\sqrt{5}}{2}<\frac{q^{\prime}}{q}<\frac{3+\sqrt{5}}{2}$. Therefore one has

$$
-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right) \text { is }\left\{\begin{array}{cc}
>0, & \frac{q^{\prime}}{q} \leq \frac{3-\sqrt{5}}{2} \text { or } \frac{q^{\prime}}{q} \geq \frac{3+\sqrt{5}}{2}, \\
\leq 0, & \frac{3-\sqrt{5}}{2}<\frac{q^{\prime}}{q}<\frac{3+\sqrt{5}}{2} .
\end{array}\right.
$$

We can separate $B_{1, h}(Q)$ into two parts as $B_{1, h}(Q)=I+I I$, where

$$
\begin{aligned}
I & =\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\
\frac{3-\sqrt{5}}{2}<\frac{q^{\prime}}{q} \leq 1}} h\left(\frac{a}{q}\right)\left(\frac{1}{4}-\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right), \\
I I & =\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\
\frac{q^{\prime}}{q} \leq \frac{3-\sqrt{5}}{2}}} h\left(\frac{a}{q}\right)\left(-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right) .
\end{aligned}
$$

2.1. Estimation for \boldsymbol{I}. It is known that for any two consecutive Farey fractions $\frac{a}{q}<\frac{a^{\prime}}{q^{\prime}}$ of order Q, one has $a^{\prime} q-a q^{\prime}=1$ and $q+q^{\prime}>Q$. Hence $a q^{\prime} \equiv-1(\bmod q)$ and $a \equiv-\bar{q}^{\prime}(\bmod q)$, where $\overline{q^{\prime}}$ is the multiplicative inverse of q^{\prime} modulo q with $1 \leq \overline{q^{\prime}} \leq q$ (here $\overline{q^{\prime}}$ exists because $\operatorname{gcd}\left(q, q^{\prime}\right)=1$). Since $1 \leq a<q$, one has $a=q-\overline{q^{\prime}}$. Conversely, if q and q^{\prime} are two coprime integers in $\{1, \ldots, Q\}$ with $q+q^{\prime}>Q$, then there are unique $a \in\{1, \ldots, Q\}$ and $a^{\prime} \in\{1, \ldots, Q\}$ for which $a^{\prime} q-a q^{\prime}=1$, and $\frac{a}{q}<\frac{a^{\prime}}{q^{\prime}}$ are consecutive Farey fractions of order Q. We find that

$$
I=\sum_{\substack{q \leq Q}} \sum_{\substack{Q-q<q^{\prime} \leq Q \\ \frac{3-\sqrt{5}}{2} q<q^{\prime} \\ \operatorname{gcd}\left(q, q^{\prime}\right)=1}} h\left(1-\frac{\overline{q^{\prime}}}{q}\right)\left(\frac{1}{4}-\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right) .
$$

The restrictions $Q-q<q^{\prime}<q$ implies that $q>\frac{Q}{2}$ and when $Q-q=\frac{3-\sqrt{5}}{2} q$, we have $q=\left(\frac{5-\sqrt{5}}{2}\right)^{-1} \cdot Q=\frac{5+\sqrt{5}}{10} Q$, hence we can decompose I into two parts as

$$
I=I_{1}+I_{2}
$$

where

$$
\begin{aligned}
& I_{1}=\sum_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q} \sum_{\substack{Q-q<q^{\prime} \leq q \\
\operatorname{gcd}\left(q, q^{\prime}\right)=1}} h\left(1-\frac{\overline{q^{\prime}}}{q}\right)\left(\frac{1}{4}-\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right), \\
& I_{2}=\sum_{\frac{5+\sqrt{5}}{10} Q<q \leq Q} \sum_{\substack{\frac{3-\sqrt{5}}{2} Q<q^{\prime} \leq q \\
\operatorname{gcd}\left(q, q q^{\prime}\right)=1}} h\left(1-\frac{\overline{q^{\prime}}}{q}\right)\left(\frac{1}{4}-\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right) .
\end{aligned}
$$

Sums of the above type can be estimated by the aid of the following two lemmas. The first lemma, whose proof depends on Weil-type bounds for Kloosterman sums, provides an asymptotic formula for certain sums over visible lattice points in planar domains satisfying congruence constraints.

Lemma 1. ([2], Lemma 2.2) Assume that $q \geq 1$ is an integer, \mathcal{I}_{1} and \mathcal{I}_{2} are intervals with $\left|\mathcal{I}_{1}\right|,\left|\mathcal{I}_{2}\right|<q$, and $g: \mathcal{I}_{1} \times \mathcal{I}_{2} \rightarrow \mathbb{R}$ is a C^{1} function. Write $D g=\left|\frac{\partial g}{\partial x}\right|+\left|\frac{\partial g}{\partial y}\right|$ and let $\|\cdot\|_{\infty}$ denote the L^{∞} norm on $\mathcal{I}_{1} \times \mathcal{I}_{2}$. Then for any integer $T>1$, one has

$$
\sum_{\substack{a \in \mathcal{I}_{1}, b \in \mathcal{I}_{2} \\ a b \equiv 1 \\(\bmod q)}} g(a, b)=\frac{\phi(q)}{q^{2}} \iint_{\mathcal{I}_{1} \times \mathcal{I}_{2}} g(x, y) \mathrm{d} x \mathrm{~d} y+E_{q, \mathcal{I}_{1}, \mathcal{I}_{2}, g, T}
$$

where, for all $\delta>0$,

$$
E_{q, \mathcal{I}_{1}, \mathcal{I}_{2}, g, T} \ll \delta T^{2} q^{\frac{1}{2}+\delta}\|g\|_{\infty}+T q^{\frac{3}{2}+\delta}\|D g\|_{\infty}+\frac{\left|\mathcal{I}_{1}\left\|\mathcal{I}_{2} \mid \cdot\right\| D g \|_{\infty}\right.}{T} .
$$

In applying Lemma 1 , we will also make use of the following result.
Lemma 2. ([1], Lemma 2.3) Suppose that $0<a<b$ are real numbers and that f is a C^{1} function on $[a, b]$. Then

$$
\sum_{a<k \leq b} \frac{\phi(k)}{k} f(k)=\frac{6}{\pi^{2}} \int_{a}^{b} f(x) \mathrm{d} x+O\left(\log b\left(\|f\|_{\infty}+\int_{a}^{b}\left|f^{\prime}(x)\right| \mathrm{d} x\right)\right)
$$

For fixed q with $\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q$, we may apply Lemma 1 directly to I_{1}, with $\mathcal{I}_{1}=[0, q], \mathcal{I}_{2}=(Q-q, q], a=\bar{q}^{\prime}, b=q^{\prime}$ and

$$
g(x, y)=h\left(1-\frac{x}{q}\right)\left(\frac{1}{4}-\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}+\frac{1}{q y}\right)\right) .
$$

First of all, both $\left|\mathcal{I}_{1}\right|,\left|\mathcal{I}_{2}\right| \leq q \leq Q$. Moreover, under the restrictions $\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{2} Q, q \asymp Q$, and for $y \in \mathcal{I}_{2}$, we have

$$
\frac{5-\sqrt{5}}{10} Q \leq Q-q<y \leq q \leq \frac{5+\sqrt{5}}{10} Q
$$

Hence $y \asymp Q$, and we have

$$
\begin{gathered}
\frac{1}{4}-\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}+\frac{1}{q y}\right) \leq \frac{1}{4}, \\
\frac{1}{4}-\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}+\frac{1}{q y}\right) \geq-\frac{1}{12} \frac{1}{q y},
\end{gathered}
$$

and

$$
\frac{1}{q y} \asymp \frac{1}{Q^{2}} .
$$

Therefore $\left|\frac{1}{4}-\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}+\frac{1}{q y}\right)\right| \ll 1$, so that we have $\|g\|_{\infty} \ll\|h\|_{\infty}<_{h} 1$. Next, under the same restrictions one obtains

$$
\begin{gathered}
\left|\frac{\partial g}{\partial x}\right| \ll\|D h\|_{\infty} \frac{1}{q} \ll h \frac{1}{Q} \\
\left|\frac{\partial g}{\partial y}\right| \leq\|h\|_{\infty} \frac{1}{12}\left(\frac{q}{y^{2}}+\frac{1}{q}+\frac{1}{q y^{2}}\right) \ll_{h} \frac{1}{Q} .
\end{gathered}
$$

Lemma 1 gives us that for any integer $T>1$,

$$
I_{1}=\sum_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q}\left\{\frac{\phi(q)}{q^{2}} \iint_{\mathcal{I}_{1} \times \mathcal{I}_{2}} h\left(1-\frac{x}{q}\right)\left(\frac{1}{4}-\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}+\frac{1}{q y}\right)\right) \mathrm{d} x \mathrm{~d} y+E_{q, h, T}\right\},
$$

where for all $\delta>0$,

$$
E_{q, h, T}<_{\delta, h} T^{2} q^{\frac{1}{2}+\delta}+T q^{\frac{3}{2}+\delta} \frac{1}{Q}+\frac{Q^{2} \cdot \frac{1}{Q}}{T} .
$$

The double integral over $\mathcal{I}_{1} \times \mathcal{I}_{2}$ is

$$
\begin{aligned}
& \int_{0}^{q} h\left(1-\frac{x}{q}\right) \mathrm{d} x \int_{Q-q}^{q} \frac{1}{4}-\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}+\frac{1}{q y}\right) \mathrm{d} y \\
& =q^{2} \int_{0}^{1} h(t) \mathrm{d} t \int_{\frac{Q}{q}-1}^{1} \frac{1}{4}-\frac{1}{12}\left(y+\frac{1}{y}+\frac{1}{q^{2} y}\right) \mathrm{d} y
\end{aligned}
$$

Therefore

$$
I_{1}=\left(\int_{0}^{1} h(t) \mathrm{d} t\right)_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q} \frac{\phi(q)}{q} q \int_{\frac{Q}{q}-1}^{1} \frac{1}{4}-\frac{1}{12}\left(y+\frac{1}{y}+\frac{1}{q^{2} y}\right) \mathrm{d} y+E_{h, T}^{\prime},
$$

where

$$
E_{h, T}^{\prime} \ll Q \cdot E_{q, h, T} \lll \delta, h T^{2} Q^{\frac{3}{2}+\delta}+T Q^{\frac{3}{2}+\delta}+\frac{Q^{2}}{T}
$$

Let $T^{2} Q^{\frac{3}{2}} \approx \frac{Q^{2}}{T}$, we may choose $T \approx Q^{\frac{1}{6}}$ to obtain

$$
\begin{equation*}
E_{h, T}^{\prime} \ll \delta, h Q^{2-\frac{1}{6}+\delta} . \tag{1}
\end{equation*}
$$

Since

$$
\sum_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q} \frac{\phi(q)}{q} q \int_{\frac{Q}{q}-1}^{1} \frac{1}{q^{2} y} \mathrm{~d} y \ll \sum_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q} \frac{\phi(q)}{q^{2}} \ll \sum_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q} \frac{1}{Q} \ll 1
$$

we still have

$$
I_{1}=\left(\int_{0}^{1} h(t) \mathrm{d} t\right)_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q} \frac{\phi(q)}{q} q \int_{\frac{Q}{q}-1}^{1} \frac{1}{4}-\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y+E_{h, T}^{\prime} .
$$

Now applying Lemma 2 to I_{1}, with the function

$$
\begin{equation*}
f(x)=x \int_{\frac{Q}{x}-1}^{1} \frac{1}{4}-\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y, \quad \frac{Q}{2}<x \leq \frac{5+\sqrt{5}}{10} Q \tag{2}
\end{equation*}
$$

and $a=\frac{Q}{2}, b=\frac{5+\sqrt{5}}{10} Q$, we have

$$
\begin{equation*}
\sum_{\frac{Q}{2}<q \leq \frac{5+\sqrt{5}}{10} Q} \frac{\phi(q)}{q} f(q)=\frac{6}{\pi^{2}} \int_{\frac{Q}{2}}^{\frac{5+\sqrt{5}}{2} Q} f(x) \mathrm{d} x+E^{\prime} \tag{3}
\end{equation*}
$$

Here for the error term E^{\prime}, notice that for $\frac{Q}{2}<x \leq \frac{5+\sqrt{5}}{10} Q$, we have $\|f\|_{\infty} \ll Q$ and by the chain rule it is easy to see that

$$
\left|f^{\prime}(x)\right| \ll 1+x \frac{Q}{x^{2}} \ll 1
$$

Hence $\int_{\frac{Q}{2}}^{\frac{5+\sqrt{5}}{10}}\left|f^{\prime}(x)\right| \mathrm{d} x \ll Q$, and Lemma 2 yields

$$
\begin{equation*}
E^{\prime} \ll Q \log Q \ll_{\delta} Q^{1+\delta}, \tag{4}
\end{equation*}
$$

for any $\delta>0$. Putting (4),(3) and (1) together and returning to I_{1} we get

$$
I_{1}=\frac{6}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \int_{\frac{Q}{2}}^{\frac{5+\sqrt{5}}{10} Q} f(x) \mathrm{d} x+O_{\delta, h}\left(Q^{2-\frac{1}{6}+\delta}\right) .
$$

Finally, writing $f(x)$ explicitly in (2) and using the change of variable $\frac{x}{Q}=$ x^{\prime}, we obtain as $Q \rightarrow \infty$ the asymptotic formula

$$
I_{1}=\frac{6 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot C_{1}+O_{\delta, h}\left(Q^{2-\frac{1}{6}+\delta}\right)
$$

for any fixed positive real number δ, where the constant C_{1} is given by

$$
\begin{equation*}
C_{1}=\int_{\frac{1}{2}}^{\frac{5+\sqrt{5}}{10}} x \int_{\frac{1}{x}-1}^{1} \frac{1}{4}-\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y \mathrm{~d} x \tag{5}
\end{equation*}
$$

Following exactly the same procedure we can get a similar asymptotic formula for I_{2} as

$$
I_{2}=\frac{6 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot C_{2}+O_{\delta, h}\left(Q^{2-\frac{1}{6}+\delta}\right)
$$

where the constant C_{2} is given by

$$
\begin{equation*}
C_{2}=\int_{\frac{5+\sqrt{5}}{10}}^{1} x \int_{\frac{3-\sqrt{5}}{2}}^{1} \frac{1}{4}-\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y \mathrm{~d} x \tag{6}
\end{equation*}
$$

Therefore for any fixed positive real number δ, as $Q \rightarrow \infty$, we have
(7) $I=I_{1}+I_{2}=\frac{6 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot\left(C_{1}+C_{2}\right)+O_{\delta, h}\left(Q^{2-\frac{1}{6}+\delta}\right)$.

The constants C_{1}, C_{2} can be computed separately but the expressions are complicated. Nevertheless it turns out that $C_{1}+C_{2}$ has a simple form as $C_{1}+C_{2}=\frac{\sqrt{5}-1}{96}$.
2.2. Estimation for $\boldsymbol{I I}$. We treat $I I$ similarly, but with a slight difference.

Take a number K between 0 and Q which will be chosen later and denote

$$
\begin{aligned}
& I I^{\prime}=\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\
\frac{q^{\prime}}{q} \leq-\frac{3-5}{2} \\
q^{\prime} \geq K}} h\left(\frac{a}{q}\right)\left(-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right), \\
& I I^{\prime \prime}=\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\
\frac{q^{\prime}}{q} \leq-\frac{3-\sqrt{5}}{2} \\
q^{\prime}<K}} h\left(\frac{a}{q}\right)\left(-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)\right), \\
&
\end{aligned}
$$

so that

$$
I I=I I^{\prime}+I I^{\prime \prime}
$$

For $I I^{\prime \prime}$, as we know,

$$
\left|I I^{\prime \prime}\right| \ll h \sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\ \frac{q^{\prime}}{q} \leq-\frac{3-\sqrt{5}}{q^{\prime}} \\ q^{\prime}<K}}\left(1+\frac{q^{\prime}}{q}+\frac{1}{q q^{\prime}}\right)+\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\ q^{\prime}<K}} \frac{q}{q^{\prime}},
$$

where the first term is
and the second term is

$$
\ll h Q \sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\ q^{\prime}<K}} \frac{1}{q^{\prime}}=Q \sum_{1 \leq q^{\prime}<K} \frac{\phi\left(q^{\prime}\right)}{q^{\prime}} \leq Q \sum_{1 \leq q^{\prime}<K} 1 \ll Q K .
$$

Since $K<Q$, we obtain that

$$
I I^{\prime \prime}<_{h} Q K
$$

For $I I^{\prime}$, first notice that

$$
\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\ \frac{q^{\prime}}{q} \leq-\sqrt{5} \\ q^{\prime} \geq K}}\left|h\left(\frac{a}{q}\right)\right| \frac{1}{q q^{\prime}} \ll h \frac{1}{K} \sum_{\frac{a}{q} \in \mathscr{F}_{Q}} \frac{1}{q}=\frac{1}{K} \sum_{q \leq Q} \frac{\phi(q)}{q} \ll \frac{Q}{K},
$$

hence

$$
I I^{\prime}=\sum_{\substack{\frac{a}{q} \in \mathscr{F}_{Q} \\ \frac{q^{\prime}}{q} \leq \frac{3-\sqrt{5}}{} \\ q^{\prime} \geq K}} h\left(\frac{a}{q}\right)\left(-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}\right)\right)+O_{h}\left(\frac{Q}{K}\right) .
$$

For simplicity, we still denote the main term by $I I^{\prime}$. Now we follow the same procedure as for I_{1} and I_{2}. Since $Q-q<q^{\prime} \leq \frac{3-\sqrt{5}}{2} q$, we have

$$
q>\left(\frac{5-\sqrt{5}}{2}\right)^{-1} \cdot Q=\frac{5+\sqrt{5}}{10} Q
$$

and by the one-to-one correspondence between pairs of consecutive Farey fractions of order Q and coprime integers $\left(q, q^{\prime}\right)$ with $1 \leq q, q^{\prime} \leq Q, q+q^{\prime}>$ Q, we can write $I I^{\prime}$ as

$$
I I^{\prime}=\sum_{\substack{\frac{5+\sqrt{5}}{10} Q<q \leq Q}} \sum_{\substack{K \leq q^{\prime} \leq \frac{3-\sqrt{5}}{2} q \\ Q-q<q^{\prime} \\ 0 \leq q^{\prime} \leq q \\ q^{\prime} \bar{q}^{\prime} \equiv 1(\bmod q)}} h\left(1-\frac{\overline{q^{\prime}}}{q}\right)\left(-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{q^{\prime}}+\frac{q^{\prime}}{q}\right)\right) .
$$

We may apply Lemma 1 to $I I^{\prime}$, with $\mathcal{I}_{1}=[0, q], \mathcal{I}_{2}=\left(\max \{Q-q, K\}, \frac{3-\sqrt{5}}{2} q\right], a=$ $\bar{q}^{\prime}, b=q^{\prime}$ and

$$
g(x, y)=h\left(1-\frac{x}{q}\right)\left(-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}\right)\right) .
$$

First notice that both $\left|\mathcal{I}_{1}\right|,\left|\mathcal{I}_{2}\right| \leq q \leq Q$, and since $q \asymp Q, y \in \mathcal{I}_{2}$ and $y \geq K$, we have

$$
\|g\|_{\infty} \ll\|h\|_{\infty} \frac{Q}{K} \ll_{h} \frac{Q}{K} .
$$

Moreover as $q \asymp Q, y \in \mathcal{I}_{2}$ and $K<Q$, it follows that

$$
\begin{gathered}
\left|\frac{\partial g}{\partial x}\right| \leq\|D h\|_{\infty} \frac{1}{q}\left(\frac{q}{K}+1\right)<_{h} \frac{1}{K} \\
\left|\frac{\partial g}{\partial y}\right| \leq\|h\|_{\infty} \frac{1}{12}\left(\frac{q}{y^{2}}+\frac{1}{q}\right) \ll_{h} \frac{Q}{K^{2}}+\frac{1}{Q} \ll \frac{Q}{K^{2}} .
\end{gathered}
$$

Applying Lemma 1 , for any integer $T>1$ we have

$$
I I^{\prime}=\sum_{\frac{5+\sqrt{5}}{10} Q<q \leq Q}\left\{\frac{\phi(q)}{q^{2}} \iint_{\mathcal{I}_{1} \times \mathcal{I}_{2}} h\left(1-\frac{x}{q}\right)\left(-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}\right)\right) \mathrm{d} x \mathrm{~d} y+E_{q, h, T}\right\}
$$

where for all $\delta>0$,

$$
E_{q, h, T} \ll \delta \delta, h T^{2} q^{\frac{1}{2}+\delta} \frac{Q}{K}+T q^{\frac{3}{2}+\delta} \frac{Q}{K^{2}}+\frac{Q^{3}}{T K^{2}}
$$

The integral inside is

$$
\begin{aligned}
& \int_{0}^{q} h\left(1-\frac{x}{q}\right) \mathrm{d} x \int_{\max \{Q-q, K\}}^{\frac{3-\sqrt{5}}{2} q}-\frac{1}{4}+\frac{1}{12}\left(\frac{q}{y}+\frac{y}{q}\right) \mathrm{d} y \\
& \quad=q^{2} \int_{0}^{1} h(t) \mathrm{d} t \int_{\max \left\{\frac{Q}{q}-1, \frac{K}{q}\right\}}^{\frac{3-\sqrt{5}}{2}}-\frac{1}{4}+\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I I^{\prime}= & \left(\int_{0}^{1} h(t) \mathrm{d} t\right)_{\frac{5+\sqrt{5}}{10} Q<q \leq Q} \frac{\phi(q)}{q} \times \\
& q \int_{\max \left\{\frac{Q}{q}-1, \frac{K}{q}\right\}}^{\frac{3-\sqrt{5}}{2}}-\frac{1}{4}+\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y+E_{h, T}^{\prime},
\end{aligned}
$$

where

$$
E_{h, T}^{\prime} \ll Q \cdot E_{q, h, T} \ll \delta, h \frac{T^{2} Q^{\frac{5}{2}+\delta}}{K}+\frac{T Q^{\frac{7}{2}+\delta}}{K^{2}}+\frac{Q^{4}}{T K^{2}}
$$

To minimize the error terms $Q K, \frac{T^{2} Q^{\frac{5}{2}}}{K}, \frac{T Q^{\frac{7}{2}}}{K^{2}}$ and $\frac{Q^{4}}{T K^{2}}$, assume that

$$
Q K \approx \frac{T^{2} Q^{\frac{5}{2}}}{K} \approx \frac{Q^{4}}{T K^{2}}
$$

and we may choose $K=Q^{1-\frac{1}{16}}, T \approx Q^{\frac{3}{16}}$. Consequently

$$
\begin{equation*}
E_{h, T}^{\prime} \ll{ }_{\delta, h} Q^{2-\frac{1}{16}+\delta} . \tag{8}
\end{equation*}
$$

Next, we applying Lemma 2 to $I I^{\prime}$ with function

$$
\begin{equation*}
f(x)=x \int_{\max \left\{\frac{Q}{x}-1, \frac{K}{x}\right\}}^{\frac{3-\sqrt{5}}{2}}-\frac{1}{4}+\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y \tag{9}
\end{equation*}
$$

and $a=\frac{5+\sqrt{5}}{10} Q, b=Q$. Notice that since $\frac{5+\sqrt{5}}{10} Q<x \leq Q$, we have

$$
\|f\|_{\infty} \ll Q \frac{Q}{K} \ll Q^{1+\frac{1}{16}}
$$

It is easy to see that

$$
\left|f^{\prime}(x)\right| \ll \frac{Q}{K}+Q \frac{Q}{K^{2}} \ll Q^{\frac{1}{8}}
$$

Therefore $\int_{\frac{5+\sqrt{5}}{10} Q}^{Q}\left|f^{\prime}(x)\right| \mathrm{d} x \ll Q^{1+\frac{1}{8}}$. Then Lemma 2 gives

$$
\begin{equation*}
\sum_{\frac{5+\sqrt{5}}{10} Q<q \leq Q} \frac{\phi(q)}{q} f(q)=\frac{6}{\pi^{2}} \int_{\frac{5+\sqrt{5}}{10} Q}^{Q} f(x) \mathrm{d} x+E^{\prime} \tag{10}
\end{equation*}
$$

where and

$$
\begin{equation*}
E^{\prime} \ll \log Q\left(Q^{1+\frac{1}{16}}+Q^{1+\frac{1}{8}}\right) \lll \delta Q^{1+\frac{1}{8}+\delta} \tag{11}
\end{equation*}
$$

for any $\delta>0$. Putting (10),(11) and (8) together and returning to $I I^{\prime}$ we obtain

$$
I I^{\prime}=\frac{6}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \int_{\frac{5+\sqrt{5}}{10} Q}^{Q} f(x) \mathrm{d} x+O_{\delta, h}\left(Q^{2-\frac{1}{16}+\delta}\right) .
$$

Finally writing $f(x)$ explicitly in (9) and making the change of variable $\frac{x}{Q}=x^{\prime}$, we get

$$
I I^{\prime}=\frac{6 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot C_{\frac{K}{Q}}+O_{\delta, h}\left(Q^{2-\frac{1}{16}+\delta}\right)
$$

for any fixed positive real number δ, where the number $C_{\frac{K}{Q}}$ is given as

$$
C_{\frac{K}{Q}}=\int_{\frac{5+\sqrt{5}}{10}}^{1} x \int_{\max \left\{\frac{1}{x}-1, \frac{K}{Q x}\right\}}^{\frac{3-\sqrt{5}}{2}}-\frac{1}{4}+\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y \mathrm{~d} x .
$$

Denote the constant C_{3} by the integral

$$
\begin{align*}
C_{3} & =\int_{\frac{5+\sqrt{5}}{10}}^{1} x \int_{\frac{1}{x}-1}^{\frac{3-\sqrt{5}}{2}}-\frac{1}{4}+\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y \mathrm{~d} x \tag{12}\\
& =\frac{\sqrt{5}-1}{96} .
\end{align*}
$$

Since $K=Q^{1-\frac{1}{16}}$, for any positive real number δ we have

$$
\begin{aligned}
\left|C_{3}-C_{\frac{K}{Q}}\right| & =\int_{1-\frac{K}{Q}}^{1} x \int_{\frac{1}{x}-1}^{\frac{K}{Q x}}-\frac{1}{4}+\frac{1}{12}\left(y+\frac{1}{y}\right) \mathrm{d} y \mathrm{~d} x \\
& =\int_{1-\frac{K}{Q}}^{1} x \int_{\frac{1}{x}-1}^{\frac{K}{Q x}}-\frac{1}{4}+\frac{y}{12} \mathrm{~d} y \mathrm{~d} x+\int_{1-\frac{K}{Q}}^{1} x \int_{\frac{1}{x}-1}^{\frac{K}{Q x}} \frac{1}{12 y} \mathrm{~d} y \mathrm{~d} x \\
& \ll \frac{K}{Q}+\int_{1-\frac{K}{Q}}^{1} x\left(\log \frac{K}{Q}-\log (1-x)\right) \mathrm{d} x \\
& \ll \log \left(\frac{Q}{K}\right) \frac{K}{Q} \ll \frac{\log Q}{Q^{\frac{1}{16}}} \ll \delta Q^{-\frac{1}{16}+\delta}
\end{aligned}
$$

therefore

$$
I I^{\prime}=\frac{6 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot C_{3}+O_{\delta, h}\left(Q^{2-\frac{1}{16}+\delta}\right)
$$

and

$$
\begin{equation*}
I I=I I^{\prime}+I I^{\prime \prime}=\frac{6 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot C_{3}+O_{\delta, h}\left(Q^{2-\frac{1}{16}+\delta}\right) \tag{13}
\end{equation*}
$$

2.3. Proof of Theorem 1'. Putting the estimate (7) and (13) together, we have the asymptotic formula

$$
\begin{aligned}
B_{1, h}(Q) & =I+I I \\
& =\frac{6 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot\left(C_{1}+C_{2}+C_{3}\right)+O_{\delta, h}\left(Q^{2-\frac{1}{16}+\delta}\right),
\end{aligned}
$$

for any positive real number δ, where the constants C_{1}, C_{2}, C_{3} are defined in (5),(6) and (12) respectively. By symmetry we have exactly the same asymptotic formula for $B_{2, h}(Q)$. Therefore, we may denote the constant C by

$$
\begin{equation*}
C=4\left(C_{1}+C_{2}+C_{3}\right)=\frac{\sqrt{5}-1}{12} \approx 0.103006 . \tag{14}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
B_{h}(Q) & =B_{1, h}(Q)+B_{2, h}(Q) \\
& =\frac{3 Q^{2}}{\pi^{2}}\left(\int_{0}^{1} h(t) \mathrm{d} t\right) \cdot \frac{\sqrt{5}-1}{12}+O_{\delta, h}\left(Q^{2-\frac{1}{16}+\delta}\right) .
\end{aligned}
$$

By using Koksma's Inequality $([7])$, one has

$$
\frac{1}{\#\left(\mathscr{F}_{Q}\right)} \sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)=\int_{0}^{1} h(t) \mathrm{d} t+O_{h}\left(\frac{1}{Q}\right) .
$$

We also know that

$$
\#\left(\mathscr{F}_{Q}\right)=\frac{3 Q^{2}}{\pi^{2}}+O(Q \log Q) .
$$

Counting all these facts together we obtain as $Q \rightarrow \infty$,

$$
A_{h}(Q)=\frac{B_{h}(Q)}{\sum_{\frac{a}{q} \in \mathscr{F}_{Q}} h\left(\frac{a}{q}\right)}=\frac{\sqrt{5}-1}{12}+O_{\delta, h}\left(Q^{-\frac{1}{16}+\delta}\right)
$$

for any fixed positive real number δ. This completes the proof of Theorem 1^{\prime}.

References

[1] F. P. Boca, C. Cobeli, A. Zaharescu, Distribution of lattice points visible from the origin, Comm. Math. Phys. 213(2000), no. 2, 433-470.
[2] F. P. Boca, R. N. Gologan, A. Zaharescu, The average length of a trajectory in a certain billiard in a flat two-torus, New York J. Math. 9(2003), 53-73.
[3] K. Girstmair, Dedekind sums with predictable signs, Acta. Arith. 83(1998), no. 3, 283-294.
[4] K. Girstmair, Zones of large and small values for Dedekind sums, Acta. Arith. 109(2003), no. 3, 299-308.
[5] K. Girstmair, J. Schoissengeier, On the arithmetic mean of Dedekind sums, Acta. Arith. 116(2005), no. 2, 189-198.
[6] G. H. Hardy, E. M. Wright, "An Introduction to the Theory of Numbers", Oxford University Press, 5th ed, 1979.
[7] L. Kuipers, H. Niederreiter, "Uniform distribution of sequences", Wiley-Interscience Publication, 1974.
[8] H. Rademacher, E. Grosswald, "Dedekind Sums", Carus Mathematical Monographs No. 16, Math. Assoc. Amer., 1972.

Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, MC-382, 1049 W. Green Street, Urbana, Illinois 618012975, USA

E-mail address: alkan@math.uiuc.edu
E-mail address: xiong@math.uiuc.edu
E-mail address: zaharesc@math.uiuc.edu

