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Abstract. Inspired by Riemann’s work on certain quotients of the Dedekind

Eta function, in this paper we investigate the value distribution of quotients of

values of the Dedekind Eta function in the complex plane, using the form η(Ajz)
η(Aj−1z)

,

where Aj−1 and Aj are matrices whose rows are the coordinates of consecutive

visible lattice points in a dilation XΩ of a fixed region Ω in R2, and z is a fixed

complex number in the upper half plane. In particular, we show that the limiting

distribution of these quotients depends heavily on the index of Farey fractions

which was first introduced and studied by Hall and Shiu. The distribution of

Farey fractions with respect to the value of the index dictates the universal limiting

behavior of these quotients. Motivated by chains of these quotients, we show how

to obtain a generalization, due to Zagier, of an important formula of Hall and Shiu

on the sum of the index of Farey fractions.

1. Introduction

The Dedekind Eta function η(z) is defined on the upper half plane by the infinite

product,

η(z) = e
πiz
12

∞∏
n=1

(
1− e2πinz

)
.

Historically, this function was first studied by Jacobi in his seminal work, “Funda-

menta Nova”. In his study, Jacobi assumed that Im z > 0. The behaviour of η(z) in

the limiting case Im z = 0 was studied by Riemann in some of his unpublished works,

which were edited by Dedekind and Weber in 1874 after Riemann’s untimely death.
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The first unpublished note written by Riemann contained 68 formulas. According

to Dedekind (see [20]), the problem that Riemann was interested in is the study of

the behaviour of η(z) under Möbius transformations of the upper half plane. More

precisely, Dedekind was able to prove that

η

(
az + b

cz + d

)
= e

πi(a+d)
12c

−πi s(d,c)
√
−i(cz + d)η(z).

Here a, b, c, d are integers satisfying ad − bc = 1, and s(. , .) is what is now called

the Dedekind sum, given by

s(h, k) =
∑

s (mod k)

(( s
k

))((hs
k

))
,

where the summation on s runs through a complete residue system modulo k, and

((x)) is the sawtooth function defined by

((x)) =

 x− [x]− 1
2
, x is not an integer,

0, otherwise.

The reciprocity laws for Dedekind sums and their generalizations have been studied

by various authors such as Rademacher and Grosswald [20], Carlitz [10], [11], [12],

[13], [14], and Berndt [4], [5], [6]. In modern terminology, Dedekind’s transformation

formula shows that η(z) is a holomorphic cusp form of weight 1
2

for the full modular

group SL2(Z). In fact, Riemann did considerably more work on certain quotients

of values of the Dedekind Eta function, such as η(2z)

η( 1+z
2

)
,

η( z
2

)

η( 1+z
2

)
,
η2( 1+z

2
)

η(z)
, and their

logarithms (see [22], pp 498–510). Another aspect of Riemann’s work concerned

eight formulae involving Dedekind sums, the proof of which appeared for the first

time in [21]. Recently, more general quotients of the Dedekind Eta function, which

lie in certain congruence subgroups of the full modular group, were investigated by

Martin and Ono (see [18] and [19]).

In the present paper we study the distribution of quotients of values of η(z) at

certain chains inside the SL2(Z) orbit of a given element z in the upper half plane



QUOTIENTS OF VALUES OF THE DEDEKIND ETA FUNCTION 3

H. In order to determine the distribution of these quotients of values, we first show

that (see formula (3) below) quotients of values are closely related with the index

of a Farey fraction, a concept which was first introduced and studied by Hall and

Shiu [16] (see also [9]). More precisely, for any three consecutive Farey fractions

d
c
< b

a
< s

r
of order Q, the index of b

a
, denoted by vQ

(
b
a

)
, is defined as

vQ

(
b

a

)
=
c+ r

a
=
d+ s

b
.

The index of a Farey fraction turns out to be a positive integer. Geometrically, the

index of b
a

is twice the area of the triangle with vertices (0, 0), (c, d) and (r, s). Hall

and Shiu showed that the index satisfies the inequalities[
2Q+ 1

a

]
− 1 ≤ vQ

(
b

a

)
≤
[

2Q

a

]
and that the only possible values of vQ

(
b
a

)
are

[
2Q
a

]
and

[
2Q
a

]
− 1. Their investiga-

tion of the frequency of the upper and lower values for the index led them to the

remarkable formula ∑
γ∈FQ

vQ(γ) = 3N(Q)− 1,

where FQ is the set of all Farey fractions of order Q and

|FQ| = N(Q) =

Q∑
j=1

φ(j).

They also proved the asymptotic formula∑
γ′∈FQ

vQ(γ′)2 =
24Q2

π2

(
log 2Q− ζ

′
(2)

ζ(2)
− 17

8
+ 2γ

)
+O

(
Q log2Q

)
where ζ is the Riemann Zeta function and γ is Euler’s constant. Recent work on the

index for certain subsets of FQ defined by mild arithmetical constraints was done in

[1] and [2]. In [1] it is shown that higher moments of the index are biased towards

some arithmetic progressions by studying the asymptotics of the index along Farey

fractions whose denominators form a progression. In [2] further asymptotic results
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on the index are obtained for Farey fractions whose denominators are square-free

and form a progression. Going back to producing the required chains inside the

SL2(Z) orbit, we consider dilations XΩ of a given region Ω ⊆ R2, with X → ∞.

For each X we look at the finite sequence of visible lattice points inside XΩ. Note

that if (aj, bj) and (aj+1, bj+1) are consecutive (with respect to the increasing slope

of the lines connecting them to the origin) visible points in XΩ, then the matrix

Aj :=

 aj bj

aj+1 bj+1


is an element of SL2(Z), and in this way we can produce a chain of elements inside

the SL2(Z) orbit of z. On the other hand we might have such points (aj, bj) in

XΩ such that (aj+1, bj+1) is not in XΩ, but as we will show below, by imposing

certain restrictions on the region Ω, that such exceptional points are rather few

in number and therefore can be neglected in our discussion. Next, for any two

consecutive matrices Aj−1 and Aj, we consider the quotient
η(Ajz)

η(Aj−1z)
. Our goal is to

understand how these quotients are distributed inside the complex plane, for a fixed

region Ω ⊆ R2 and a fixed complex number z in the upper half plane, as X tends

to infinity. To describe the behavior of these quotients in a more precise manner,

we first set some notations. In what follows we denote by M the set of open plane

domains Ω of the type

Ω = {(r, θ) : r < ρ(θ), θ1 < θ < θ2} ,(1)

expressed in polar coordinates, for some bounded positive continuous function ρ,

and −π
2
≤ θ1 < θ2 < π

2
. Given X > 0, let AΩ(X) be the set of integer points

(a, b) ∈ XΩ with relatively prime coordinates, written as

AΩ(X) = {Pi = (ai, bi) : 1 ≤ i ≤ N},
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Figure 1. The setWz,Ω(X) for z = i, X = 100, and Ω is the rectan-

gle (0, 1)× (−1, 1), # (Wz,Ω(X)) = 12173.

where the rays
−−→
OP1,

−−→
OP2, . . . ,

−−→
OPN are arranged with counterclockwise order around

the origin, and denote

BΩ(X) :=

Aj =

 aj bj

aj+1 bj+1

 : 1 ≤ j ≤ N − 1

 .
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Figure 2. The set Wz,Ω(X) for z = 2i + 3, X = 100, and Ω is the

half disc {(x, y) : x2 + y2 < 1, x > 0}, # (Wz,Ω(X)) = 9541.

Fix z ∈ H and consider the set

Wz,Ω(X) :=

{
η(Ajz)

η(Aj−1z)
: 2 ≤ j ≤ N − 1

}
.
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Taking X = 100, the location of elements of the set Wz,Ω(X) is shown in Figures

1 and 2 for two different regions Ω and two different values of z. These figures

and other similar numerical data appear to suggest that Wz,Ω(X) has a universal

limiting distribution as X →∞, which is independent of the region Ω ∈M and of

the point z ∈ H. This limiting distribution appears to be supported on the union

of a sequence of segments J1, J2, J3, . . . in the complex plane. Also, the proportion

of elements of Wz,Ω(X) which fall around a given segment Jk seems to have a limit

ρk > 0 as X → ∞, again independent of Ω and z. We will prove that all these

observations hold true. Moreover, we show that inside each segment Jk one has

a limiting measure, which is absolutely continuous with respect to the Lebesgue

measure along Jk, and we identify the corresponding density function hk. Our main

result is as follows :

Theorem 1. Let M be the set of all open planar regions Ω of the type

{(r, θ) : r < ρ(θ), θ1 < θ < θ2}

where ρ is a continuous, positive and bounded function with −π
2
≤ θ1 < θ2 <

π
2
. Let

AΩ(X) be the set of all integer points (aj, bj) ∈ XΩ with relatively prime coordinates

arranged with counterclockwise order around the origin for 1 ≤ j ≤ N . Let BΩ(X)

be the set of all matrices of form

Aj =

 aj bj

aj+1 bj+1


for 1 ≤ j ≤ N − 1 and denote T = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1, x+ y > 1},

Wz,Ω(X) =

{
η (Ajz)

η (Aj−1z)
: 2 ≤ j ≤ N − 1

}
.
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Then for any z ∈ H, any region Ω ∈ M and any bounded continuous function

f : C→ C, we have

lim
X→∞

1

#(AΩ(X))

∑
w∈Wz,Ω(X)

f(w) = 2

∫∫
T

f

(
e
πi
12(3−[ y+1

x ])
√
y

x

)
dxdy.

Using Theorem 1 we obtain the promised universal limiting behavior of the quotients

of values of the Dedekind Eta function.

Theorem 2. Assuming the notations of Theorem 1, for any z ∈ H, any domain

Ω ∈M , and any bounded continuous function f : C→ C, we have

lim
X→∞

1

#(AΩ(X))

∑
w∈Wz,Ω(X)

f(w) =
∞∑
k=1

∫ √ k+1
2

√
k−1

2

f
(
e
πi
12

(3−k)t
)
hk(t) dt,

where

h1(t) =

 2t
(

1− 1
(1+t2)2

)
: 0 ≤ t ≤

√
1
2
,

2t
(

1− 1
(2−t2)2

)
:
√

1
2
< t ≤ 1,

and

hk(t) =

 2t
(

1
(k−t2)2 − 1

(1+t2)2

)
:
√

k−1
2
≤ t ≤

√
k
2
,

2t
(

1
t4
− 1

(k+1−t2)2

)
:
√

k
2
< t ≤

√
k+1

2
,

for any k ≥ 2.

The above theorems show that Wz,Ω(X) has indeed a universal limiting distribution

as X →∞, which is independent of Ω and z, and which is supported on the union

of a sequence of segments in the complex plane. These segments are contained in

24 rays from the origin corresponding to the directions formed by the 24-th roots of

unity, and for each k ≥ 1 the proportion of points from Wz,Ω(X) around the k-th

segment has a limit ρk as X →∞, which is given by

ρk =

∫ √ k+1
2

√
k−1

2

hk(t) dt.
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Using the explicit formulas for hk from Theorem 2, it is easy to see that

ρ1 =
1

3
and ρk =

8

k(k + 1)(k + 2)
for k ≥ 2.

It turns out that these limiting proportions ρk are exactly two times the asymptotic

proportion of the Farey fractions of order Q with index k as Q tends to infinity.

Motivated by the connection between quotients of values of the Dedekind Eta func-

tion and the index of Farey fractions, one can obtain a generalization, due to Zagier,

of the important formula of Hall and Shiu [16] on the sum of the index of Farey

fractions of order Q.

Theorem 3. Let 1
Q

= γ1 < γ2 < .... < γN(Q) = 1 be the sequence of Farey fractions

of order Q ≥ 2. If vQ(γj) is the index of γj and s(. , .) is the Dedekind sum, then

for any 1 ≤ k ≤ N(Q)− 1, we have∑
j≤k

vQ(γj) = 3k + 3−Q− a+ d

c
+ 12s(d, c)

where γk = b
a

and γk+1 = d
c
.

In section 2 we offer a conceptual explanation, based on the quotients of values of

the Dedekind Eta function, of the existence of the formula in Theorem 3 relating

partial sums of the index with the Dedekind sum. Taking k = N(Q)−1 in Theorem

3, and noting that s(1, 1) = 0, where γN(Q)−1 = Q−1
Q

, γN(Q) = 1
1
, we see that∑

j≤N(Q)−1

vQ(γj) = 3N(Q)− 2Q− 1.

Moreover vQ
(

1
1

)
is two times the area of the triangle with vertices (0, 0), (Q,Q− 1)

and (Q,Q + 1) which is 2Q. Hence by adding vQ
(

1
1

)
= 2Q, we can recover the

formula ∑
γ∈FQ

vQ(γ) = 3N(Q)− 1

of Hall and Shiu. For completeness we give a proof of Theorem 3 in section 4.
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2. Preliminary results

For consecutive visible points Pj = (aj, bj), Pj+1 = (aj+1, bj+1) ∈ XΩ with

aj, aj+1 > 0, if the triangle 4OPjPj+1
is entirely in Ω, then the area of this triangle

is 1
2
, and consequently ajbj+1 − aj+1bj = 1. Therefore

Aj =

 aj bj

aj+1 bj+1

 ∈ SL2(Z).

By the modular transformation formula of η-function, for any z ∈ H,

η (Ajz) = e
πi(aj+bj+1)

12aj+1
−πis(bj+1,aj+1)

√
−i(aj+1z + bj+1)η(z),

where the function s( · , · ) is the Dedekind sum, and for z 6= 0,
√
z = e

1
2

log z.

Here we choose the main branch for logarithm, so that log z = log |z| + i arg z for

−π < arg z < π. It follows that

η (Ajz)

η (Aj−1z)
= e

πi
12

(
aj+bj+1
aj+1

−
aj−1+bj

aj

)
−πi(s(bj+1,aj+1)−s(bj ,aj))

√
aj+1z + bj+1

ajz + bj
.

Since bj+1 ≡ āj (mod aj+1), where q̄ is the multiplicative inverse of q modulo aj+1

such that 1 ≤ q̄ ≤ aj+1, using the periodicity of Dedekind sums gives,

s(bj+1, aj+1) = s(āj, aj+1) =
∑

s (mod aj+1)

((
s

aj+1

))((
ājs

aj+1

))
.

As s runs over a complete residue system modulo aj+1, ajs also runs over a complete

residue system, hence replacing s by ajs we have

s(bj+1, aj+1) = s(āj, aj+1) =
∑

ajs (mod aj+1)

((
ajs

aj+1

))((
ājajs

aj+1

))

=
∑

s (mod aj+1)

((
s

aj+1

))((
ajs

aj+1

))
= s(aj, aj+1).
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Moreover, noting that aj+1bj ≡ −1 (mod aj) and bj ≡ −āj+1 (mod aj), we obtain

by a similar calculation that

s(bj, aj) = s(−āj+1, aj) = −s(āj+1, aj) = −s(aj+1, aj).

Consequently, using the reciprocity law for Dedekind sums, we deduce that

s(bj+1, aj+1)−s(bj, aj) = s(aj, aj+1)+s(aj+1, aj) = −1

4
+

1

12

(
aj
aj+1

+
aj+1

aj
+

1

ajaj+1

)
.

Using this it is easy to derive the formula

η (Ajz)

η (Aj−1z)
= e

πi
12

(
3−

aj−1+aj+1
aj

)√
aj+1z + bj+1

ajz + bj
.(2)

Note that if
bj−1

aj−1
<

bj
aj

<
bj+1

aj+1
are consecutive Farey fractions of order Q, then

formula (2) can be rewritten as

η (Ajz)

η (Aj−1z)
= e

πi
12

(
3−vQ

(
bj
aj

))√
aj+1z + bj+1

ajz + bj
(3)

where vQ

(
bj
aj

)
=

aj−1+aj+1

aj
is the index of

bj
aj

. As an application of this formula, let

Ω be the triangular region with vertices (0, 0), (1, 0) and (1, 1). Consider the region

QΩ where Q is a positive integer. Let AΩ(Q) be the set of all integer points (aj, bj),

1 ≤ j ≤ N(Q) with relatively prime coordinates where N(Q) is the number of Farey

fractions of order Q. Let

1

Q
=
b1

a1

= γ1 <
b2

a2

= γ2 < ... <
bk
ak

= γk < ... < γN(Q) = 1

be the Farey fractions of order Q. For 1 ≤ j ≤ k ≤ N(Q)− 1, consider the matrices

Bj =

 aj−1 bj−1

aj bj

 in SL2(Z) (with the convention that (a0, b0) = (1, 0)). Then

using (3), we have

η (Bjz)

η (Bj+1z)
= e

πi
12(vQ(γj)−3)

√
ajz + bj

aj+1z + bj+1
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for 1 ≤ j ≤ k. Multiplying all of these equations and noting that the left side is a

telescoping product, we obtain

η (B1z)

η (Bk+1z)
= e

πi
12(
∑
j≤k vQ(γj)−3k)

√
a1z + b1

ak+1z + bk+1

.

Since the left side of this formula is obtained as a telescoping product, we are

interested to see if the partial sum of the index of Farey fractions,
∑

j≤k vQ(γj),

also behaves like a telescoping sum. Indeed applying the modular transformation

formula of the Dedekind Eta function to η (B1z) and η (Bk+1z) and using them in

the above formula, we can easily guess a formula for
∑

j≤k vQ(γj). This is the main

motivation behind Theorem 3.

We need the following variation of a result from [7]. For any subinterval I = [α, β]

of [0, 1], denote Ia = [(1− β)a, (1− α)a] and consider

Z2
pr := {(x, y) ∈ Z2 : gcd(x, y) = 1}.

If f is a continuously differentiable, C1, function defined on a bounded region Ω in

R2, then we put

||f ||∞,Ω = sup
(x,y)∈Ω

|f(x, y)|

and

||Df ||∞,Ω = ||fx||∞,Ω + ||fy||∞,Ω .

We also define

||f ||∞ = sup
(x,y)∈R2

|f(x, y)|

and

||Df ||∞ = ||fx||∞ + ||fy||∞ .
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Lemma 1. Let Ω ⊂ [1, R]× [1, R] be a convex region and let f be a C1 function on

Ω. For any subinterval I ⊂ [0, 1] one has∑
(a,b)∈Ω

⋂
Z2
pr,

b̄∈Ia

f(a, b) =
6|I|
π2

∫∫
Ω

f(x, y) dxdy + FR,Ω,f,I,

where

FR,Ω,f,I �δ mf ||f ||∞,ΩR3/2+δ + ||f ||∞,ΩR logR

+||Df ||∞,ΩArea(Ω) logR,

for any δ > 0, where b̄ denotes the multiplicative inverse of b (mod a), so that

1 ≤ b̄ ≤ a, bb̄ ≡ 1 (mod a), and mf is an upper bound for the number of intervals

of monotonicity of each of the functions y 7→ f(x, y).

This is essentially Lemma 8 in [7], where Weil type estimates ([23], [15]) for certain

weighted incomplete Kloosterman sums play a crucial role in its proof.

Next we recall some results on Farey fractions. For an exposition of their basic

properties, the reader is referred to [17]. Let F
Q

= {γ1, . . . , γN(Q)} be the Farey

sequence of order Q with 1/Q = γ1 < γ2 < · · · < γN(Q) = 1. It is well-known that

N(Q) =

Q∑
j=1

φ(j) =
3Q2

π2
+O(Q logQ).

Write γi = ai/qi in reduced form, with ai, qi ∈ Z, 1 ≤ ai ≤ qi ≤ Q and gcd(ai, qi) = 1.

For any two consecutive Farey fractions ai/qi < ai+1/qi+1, one has ai+1qi−aiqi+1 = 1

and qi + qi+1 > Q. Conversely, if q and q′ are two coprime integers in {1, . . . , Q}

with q + q′ > Q, then there are unique integers a ∈ {1, . . . , q} and a′ ∈ {1, . . . , q′}

for which a′q − aq′ = 1 so that a/q < a′/q′ are consecutive Farey fractions of order

Q. Therefore, the pairs of coprime integers (q, q′) with q + q′ > Q are in one-to-one

correspondence with the pairs of consecutive Farey fractions of order Q.
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Lemma 2. Let I = [α, β] be a subinterval of [0, 1], and assume that the function

f : R2 → C is continuously differentiable with ||f ||∞ < ∞, ||Df ||∞ < ∞. Extend

the definition of f to C by assigning f(x + iy) = f(x, y) for (x, y) ∈ R2. Then for

any δ > 0, as Q→∞, we have

SQ,I,f =
∑

a
q
∈F

Q

⋂
I

f

(
e
πi
12

(
3−
[
q′+Q
q

])√
q′

q

)

=
6|I|
π2

Q2

∫∫
T

f

(
e
πi
12(3−[ y+1

x ])
√
y

x

)
dxdy +Oδ,f

(
Q2− 1

4
+δ
)
.

Proof. For consecutive Farey fractions a
q
< a′

q′
one has a′q − aq′ = 1, and a ≡ −q̄′

(mod q), where the integer x̄(1 ≤ x̄ ≤ q) is the multiplicative inverse of x (mod q)

for any integer x with gcd(x, q) = 1. Since 1 < a < q, we have a = q − q̄′ and

a

q
= 1− q̄′

q
∈ F

Q

⋂
I⇐⇒ q̄′ ∈ Iq = [(1− β)q, (1− α)q].

Denote

g(x, y) = f

(
e
πi
12(3−[ y+1

x ])
√
y

x

)
, (x, y) ∈ R2.

Fixing 0 < ε < 1, one has

SQ,I,f =
∑

a
q
∈F

Q

⋂
I

g

(
q

Q
,
q′

Q

)
=

∑
a
q
∈F

Q

⋂
I

q,q′>εQ

g

(
q

Q
,
q′

Q

)
+

∑
a
q
∈F

Q

⋂
I

q or q′≤εQ

g

(
q

Q
,
q′

Q

)
.

The second sum above is <<
f
εQ2. Denoting

Ωε = {(x, y) ∈ R2 : ε < x, y ≤ 1, x+ y > 1},

the first sum above can be written as∑
(q,q′)∈QΩε

⋂
Z2
pr

q̄′∈Iq

g

(
q

Q
,
q′

Q

)
.(4)
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Since for any (x, y) ∈ Ωε,
[
y+1
x

]
≤ y+1

x
< 2

ε
, we may let

Ωε,k =

{
(x, y) ∈ Ωε :

[
y + 1

x

]
= k

}
,

for each integer k ≥ 1, so that

Ωε =
⋃

1≤k≤2/ε

Ωε,k.

Notice that for each k ≥ 1, g is differentiable in Ωε,k, and

||g||∞,Ωε,k <<f
1, ||Dg||∞,Ωε,k <<f

1

ε3/2
.

Applying Lemma 2 to (4) we obtain for any δ > 0 that,

SQ,I,f =
∑

1≤k≤2/ε

∑
(q,q′)∈QΩε,k

⋂
Z2
pr

q̄′∈Iq

g

(
q

Q
,
q′

Q

)
+Of (εQ

2)

=
∑

1≤k≤2/ε

(
6|I|
π2

∫∫
QΩε,k

g

(
x

Q
,
y

Q

)
dxdy+

Oδ,f

(
Q

3
2

+δ +
Q logQ Area(Ωε,k)

ε3/2

))
+Of

(
εQ2
)

=
6|I|
π2

Q2

∫∫
Ωε

g (x, y) dxdy +Oδ,f

(
Q

3
2

+δ

ε
+
Q logQ

ε3/2
+ εQ2

)
.

Since ∫∫
T

g (x, y) dxdy =

∫∫
Ωε

g (x, y) dxdy +Of (ε
2),

where

T = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1, x+ y > 1}

is a triangular region, we can choose ε = Q−1/4 to obtain

SQ,I,f =
6|I|
π2

Q2

∫∫
T

g (x, y) dxdy +Oδ,f

(
Q2− 1

4
+δ
)
.

This completes the proof of Lemma 2.
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3. Proof of Theorem 1 and Theorem 2

Assuming Theorem 1, let us first see how we can deduce Theorem 2. Recall that

T = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1, x+ y > 1}

and for each k ≥ 1 define the sets

Tk =

{
(x, y) ∈ T :

[
y + 1

x

]
= k

}
.

Since Tk, k ≥ 1 form a partition of T , we have∫∫
T

f

(
e
πi
12(3−[ y+1

x ])
√
y

x

)
dxdy =

∞∑
k=1

∫∫
Tk

f

(
e
πi
12

(3−k)

√
y

x

)
dxdy.

Using the change of variable t =
√

y
x
, Theorem 2 follows at once from Theorem 1.

Therefore it suffices to prove only Theorem 1.

Let z, Ω and f be as in the statement of the Theorem 1. Since Ω ∈ M , it is

known that (for details see [8])

# (AΩ(X)) � 6A(Ω)

π2
X2,

where A(Ω) is the area of Ω.

Denote by Ω̄ the closure of Ω. Let

Ωi = Ω̄
⋂{

(r, θ) :
(i− 1)π

4
≤ θ <

iπ

4

}
, i = −1, 0, 1, 2,

and for each i, define AΩi(X), BΩi(X) andWz,Ωi(X) similarly by replacing Ω by Ωi.

Defining

SΩi,f (X) =
∑

w∈Wz,Ωi
(X)

f(w),

we see that

SΩ,f (X) =
2∑

i=−1

SΩi,f (X) +Of (1).(5)
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Let us consider SΩ1,f (X) first. Assume for the moment that

Ω1 = {(r, θ) : r ≤ ρ(θ), θ1 ≤ θ ≤ θ2},

where ρ is a bounded, positive and continuously differentiable function of θ, and

in addition, assume that if we redefine f on R2 by assigning f(x, y) = f(x + iy)

for any x, y ∈ R, then f turns out to be continuously differentiable over R2 with

||Df ||∞ <∞. Fix a large integer L > 0 and put

α =
θ2 − θ1

L
, αi = θ1 + i · α, 0 ≤ i ≤ L.

Assume that for any 0 ≤ i ≤ L, the ray θ = αi, 0 ≤ i ≤ L intersects the boundary

of Ω1 at the point Ai. At each point Ai+1, 0 ≤ i ≤ L − 1, we draw a vertical line

that intersects the ray θ = αi at the point A′i. One sees that

Ai+1 = (ρ(αi+1) cos(αi+1), ρ(αi+1) sin(αi+1)) ,

A′i = (ρ(αi+1) cos(αi+1), ρ(αi+1) cos(αi+1) tan(αi)) ,

for 0 ≤ i ≤ L − 1. Let Ω1,i be the i-th subregion of Ω1 lying inside the rays
−−→
OAi,

−−−−→
OAi+1 and 4i be the triangle OAi+1A

′
i. We have

A (Ω1,i)− A (4i) <<ρ

1

L2
,

and it follows that

#
(
AΩ1,i

(X)
)
� 6A(Ω1,i)X

2

π2

=
6A(4i)X

2

π2
+Oρ

(
X2

L2

)
.

Therefore

SΩ1,i,f (X) � S4i,f (X) +Oρ,f

(
X2

L2

)
.(6)

Fix any i and let Ii = [tan(αi), tan(αi+1)] ⊂ [0, 1]. Denote xi+1 = ρ(αi+1) cos(αi+1)

and define Xi := xi+1X <<ρ X. Suppose that the visible points inside X4i are

Pj = (aj, bj), 1 ≤ j ≤ N = N(4i, X), where the rays
−−→
OPN ,

−−−−→
OPN−1, . . . ,

−−→
OP1 are
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arranged with counterclockwise order around the origin. We see that b1
a1
< b2

a2
<

· · · < bN
aN

are consecutive Farey fractions of order Xi inside the interval Ii. For any

fraction a
q
∈ F

Xi
, denote by a′

q′
its next neighbor and by a′′

q′′
its previous neighbor.

Recall that the index v
Q

(
a
q

)
of the Farey fraction a

q
satisfies the equalities

v
Q

(
a

q

)
=
a′′ + a′

a
=

[
a′ +Xi

a

]
.

If we let

wa
q

= e
πi
12

(
3− q

′+q′′
q

)√
q′z + a′

qz + a
= e

πi
12

(
3−
[
q′+Xi
q

])√
q′z + a′

qz + a
,

then

S4i,f (X) =
∑

a
q
∈F

Xi

⋂
Ii

f(wa
q
) +Of (1).

Next we take

ua
q

= e
πi
12

(
3−
[
q′+Xi
q

])√
q′

q
.

Since qq′ ≥ q + q′ > Xi, and

q′z + a′

qz + a
=
q′

q

(
1 +

1

q′(qz + a)

)
=
q′

q

(
1 +Oz

(
1

Xi

))
,

it follows that √
q′z + a′

qz + a
=

√
q′

q

(
1 +Oz

(
1

Xi

))
.

Consequently we have

|f(wa
q
)− f(ua

q
)| <<

f

∣∣∣∣∣
√
q′z + a′

qz + a
−

√
q′

q

∣∣∣∣∣ <<z

√
q′

q

1

Xi

≤ 1√
Xi

,

and

S4i,f (X) =
∑

a
q
∈F

Xi

⋂
Ii

f(ua
q
) +Of,z

#
(
F

Xi

⋂
Ii

)
√
Xi

+Of (1)

=
∑

a
q
∈F

Xi

⋂
Ii

f(ua
q
) +Of,ρ,z

(
X

3
2

)
.
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If we denote

u(x, y) = e
πi
12(3−[ y+1

x ])
√
y

x
,

then taking any fixed δ > 0 and letting X →∞, we obtain by Lemma 3 that

S4i,f (X) =
6|Ii|
π2

X2
i

∫∫
T

f ◦ u(x, y)dxdy +Oδ,ρ,f,z

(
X2− 1

4
+δ
)
.

Therefore we have

SΩ1,f (X) =
L−1∑
i=0

SΩ1,i,f (X) +Of (L)

�
L−1∑
i=0

(
6|Ii|
π2

X2
i

∫∫
T

f ◦ u(x, y)dxdy +Oδ,ρ,f,z

(
X2− 1

4
+δ +

X2

L2

))
+Of (L)

=
6X2

π2

(∫∫
T

f ◦ u(x, y)dxdy

) L−1∑
i=0

|Ii|x2
i+1 +Oδ,ρ,f,z

(
LX2− 1

4
+δ +

X2

L

)
.

Moreover using

L−1∑
i=0

|Ii|x2
i+1 =

L−1∑
i=0

(tan(αi+1)− tan(αi)) ρ(αi+1)2 cos(αi+1)2

=
L−1∑
i=0

1

cos(ξi)2
ρ(αi+1)2 cos(αi+1)2 (∃ ξi ∈ [αi, αi+1])

=

∫ θ2

θ1

ρ2(θ) dθ +Oρ

(
1

L

)
= 2A(Ω1) +Of

(
1

L

)
,

gives us that

SΩ1,f (X) � 6X2

π2

(∫∫
T

f ◦ u(x, y)dxdy

)
2A(Ω1) +Oδ,ρ,f,z

(
LX2− 1

4
+δ +

X2

L

)
.

Choosing L = Q
1
8 , we have

SΩ1,f (X) � 6X2

π2

(∫∫
T

f ◦ u(x, y)dxdy

)
2A(Ω1) +Oδ,ρ,f,z

(
X2− 1

8
+δ
)
.

Finally choosing 0 < δ < 1
8

and letting X →∞, we obtain that

lim
X→∞

SΩ1,f (X)

# (AΩ(X))
=

2A(Ω1)

A(Ω)

∫∫
T

f ◦ u(x, y)dxdy.(7)
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Since continuous functions can be approximated by C∞ functions uniformly on a

compact interval, using a standard approximation procedure we see that (7) also

holds under the weaker assumption that f and ρ are continuous.

We treat Ω2 similarly, with a slight difference. Fix a large integer L > 0, let

α = π
4L

and αi = π
4

+ iα. Assume that the ray θ = αi intersects the boundary of Ω1

at the point Ai. At each point Ai, we draw a horizontal line which intersects the

ray θ = αi+1 at the point A′i. We use the triangle 4OAiA′i
to estimate the subregion

of Ω1 lying inside the rays θ = αi and θ = αi+1. Following a similar argument as

above and applying Lemma 3, we obtain that

lim
X→∞

SΩ2,f (X)

# (AΩ(X))
=

2A(Ω2)

A(Ω)

∫∫
T

f ◦ u(x, y)dxdy.

Observing that s(−a, b) = −s(a, b) for Ω−1 and Ω0, the computation of asymptotic

formulas in these regions can be reduced to that of the regions Ω1 and Ω2. As a

result we also have

lim
X→∞

SΩi,f (X)

# (AΩ(X))
=

2A(Ωi)

A(Ω)

∫∫
T

f ◦ u(x, y)dxdy, i = −1, 0.

Lastly, from (5) we deduce that

lim
X→∞

SΩ,f (X)

# (AΩ(X))
=

2 (A(Ω−1) + A(Ω0) + A(Ω1) + A(Ω2))

A(Ω)

∫∫
T

f ◦ u(x, y)dxdy

= 2

∫∫
T

f

(
e
πi
12(3−[ y+1

x ])
√
y

x

)
dxdy.

This completes the proof of Theorem 1.

Remark. One may consider the following more general problem. Fix a positive

integer d and let

W(d)
z,Ω(X) :=

{
η(Ajz)

η(Aj−dz)
: d+ 1 ≤ j ≤ N − 1

}
.

For d = 1, this set reduces to Wz,Ω(X) whose distribution was established above.

A similar distribution result can be proved for any d. The proof goes on the same

lines as that of Theorem 2 with some additional technical complications which can
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be handled by employing the machinery developed in [3], [7] and [8] to study the

local spacing distribution of Farey fractions and visible points.

4. Proof of Theorem 3

The proof of Theorem 3 will be by induction on k. Note that if k = 1, then

vQ(γ1) = vQ

(
1
Q

)
= 1 and γ2 = 1

Q−1
for Q ≥ 2 so that taking a = Q, d = 1 and

c = Q− 1 we see that the right side of the desired equality is

6−Q− Q+ 1

Q− 1
+ 12s(1, Q− 1).

By the reciprocity law for Dedekind sums we have

s(1, Q− 1) + s(Q− 1, 1) = −1

4
+

1

12

(
Q− 1 +

2

Q− 1

)
and it is easy to see that s(Q−1, 1) = 0. Using these values in the above expression

we obtain that the right side of the desired equality is also 1. Hence Theorem 3

holds for k = 1 and induction starts. For the induction step, assume that γk = b
a
<

γk+1 = d
c
< γk+2 = f

e
are consecutive Farey fractions of order Q and the desired

formula holds for k, namely that∑
j≤k

vQ(γj) = 3k + 3−Q− a+ d

c
+ 12s(d, c).

Our goal is to show that∑
j≤k+1

vQ(γj) = 3(k + 1) + 3−Q− c+ f

e
+ 12s(f, e).

To complete the proof by induction, it suffices to show that the difference of both

sides of the above equations are the same. Clearly the difference of left sides is

vQ(γk+1) = a+e
c

. On the other hand, the difference of right sides is

3− c+ f

e
+
a+ d

c
+ 12 (s(f, e)− s(d, c)) .
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Repeating the derivation in Section 2 and using the reciprocity law for Dedekind

sums, we see that

s(f, e)− s(d, c) = −1

4
+

1

12

(
e

c
+
c

e
+

1

ce

)
.

Using this in the above expression and noting that de− fc = −1, it follows that the

difference of right sides is also a+e
c

. This completes the induction and the proof of

Theorem 3.
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