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Abstract. Given a positive integer n, a finite field Fq of q el-
ements (q odd), and a non-degenerate quadratic form Q on Fn

q ,
in this paper we study the largest possible cardinality of subsets
E ⊆ Fn

q with pairwise integral Q-distances, that is, for any two
vectors x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ E , one has

Q(x− y) = u2

for some u ∈ Fq.

1. Introduction

Finite field analogs of classical problems in harmonic analysis, geo-
metric measure theory and combinatorics have received much attention
recently, due to the relative technical transparency afforded by the dis-
crete setting and the presence of fascinating arithmetic considerations.
See, for example, [5, 11, 19, 21] and the references therein for the de-
scription of various aspects of this area and recent progress. In this
paper we investigate the finite field analog of the well-known problem
about point sets in Rn with pairwise integral Euclidean distances.

Let n be a positive integer and Fq be the finite field of q elements.
Throughout the paper we assume that q is odd. To put the problem in
a more general setting, instead of using the usual Euclidean distance
function d, namely

(1) d(x,y) =
n∑
i=1

(xi − yi)2

for

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnq ,
we consider each non-degenerate quadratic form Q on Fnq . Given two
n-dimensional vectors x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fnq , we say
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that the Q-distance between them is integral if

Q(x− y) = u2

for some u ∈ Fq. We say that the set E ⊆ Fnq has pairwise integral
Q-distances if the Q-distance of any two points in E is integral. We
define I(Q,Fnq ) as the largest possible cardinality of subsets E ⊆ Fnq
with pairwise integral Q-distances.

The study of subsets of Fnq with pairwise integral Q-distances is
not new. For example, for Q = d the Euclidean distance function
in (1), various properties of subsets of Fnq with pairwise integral Q-
distances have been considered in the literature, see [13, 14] and ref-
erences therein. In particuar, in [14] it is shown that I(d,F2

q) = q.
Questions of this kind are certainly motivated by classical results of [1]
about subsets of Rn with pairwise integral Euclidean distances, see
also [10, 20] for more recent achievements. In this paper, we try to
determine the quantity I(Q,Fnq ) for any positive integer n and any
non-degenerate quadratic form Q on Fnq .

Since any non-degenerate quadratic form on Fnq (q odd) can be di-
agonalized ([15, Theorem 3.1]), we may assume that Q is given by

(2) Q(x) =
n∑
i=1

aix
2
i , ai 6= 0, 1 ≤ i ≤ n, x = (x1, . . . , xn) ∈ Fnq .

Let η be the quadratic character of Fq. We define η(Q) ∈ {±1} as

(3) η(Q) =
n∏
i=1

η(ai) .

The main result of this paper is as follows.

Theorem 1.

(i) If n is even and η(Q) = η(−1)n/2, then

I(Q,Fnq ) = qn/2 .

(ii) If n is even and η(Q) = −η(−1)n/2, then

qn/2 ≤ I(Q,Fnq ) ≤ qn/2 +
2(qn/2 − q)

q − 1 + 2q−n/2+1
.

(iii) If n is odd and η(Q) = η(−1)(n−1)/2, then

I(Q,Fnq ) = q(n+1)/2,

(iv) If n is odd and η(Q) = −η(−1)(n−1)/2, then

q(n−1)/2 ≤ I(Q,Fnq ) ≤ 2q(n+1)/2

q − 1 + (q + 1)q(−n+1)/2
.
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It remains interesting to determine the quantity I(Q,Fnq ) for the
cases (ii) and (iv) of Theorem 1. We remark that first, when n = 2, the
statements (i) and (ii) of Theorem 1 imply I(Q,F2

q) = q. This confirms

and generalizes a result of Kurz ([14]), who proved that I(d,F2
q) = q

for d(x) = x2
1 + x2

2, by employing a deep combinatorial theorem on
point sets over F2

q with few directions ([4, 2]). Second, the lower and
upper bounds in (iv) are tight when n = 1. Third, it turns out that
the large lower bounds in Theorem 1 are due to the existence of large
subsets E ⊆ Fnq with pairwise zero Q-distance, that is, Q(x−y) = 0 for
any x,y ∈ E . Actually if we denote by I0(Q,Fnq ) the largest possible
cardinality of subsets E ⊆ Fnq with pairwise zero Q-distance, then we
have

Theorem 2.

(i) If n is even and η(Q) = η(−1)n/2, then

I0(Q,Fnq ) = qn/2 .

(ii) If n is even and η(Q) = −η(−1)n/2, then

I0(Q,Fnq ) = qn/2−1 .

(iii) If n is odd, then

I0(Q,Fnq ) = q(n−1)/2 .

Finally, for the cases (i) and (iii) of Theorem 1, in addition to find-
ing the exact values of I(Q,Fnq ), we can also determine the combi-
natorial structure that achieves this maximality. To state the result,
we use the following notations. For Q given in (2) and any vector
v = (v1, . . . , vn) ∈ Fnq , we define |v|

Q
∈ Fq as

(4) |v|
Q

=
1

4

n∑
i=1

v2
i

ai
.

Given two vectors x,v ∈ Fnq , we use x · v to denote the usual dot
product.

Theorem 3.

(i) Suppose that n is even and η(Q) = η(−1)n/2. Then E ⊆ Fnq is a

subset with pairwise integral Q-distances and #E = qn/2 if and
only if for any t ∈ Fq and any v ∈ Fnq with η(−|v|

Q
) = −1, one

has ∑
x∈E
x·v=t

1 = qn/2−1 .
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(ii) Suppose that n is odd and η(Q) = η(−1)(n−1)/2. Then E ⊆ Fnq
is a subset with pairwise integral Q-distances and #E = q(n+1)/2

if and only if for any t ∈ Fq and any v ∈ Fnq with |v|
Q
6= 0, one

has ∑
x∈E
x·v=t

1 = q(n−1)/2 .

2. Preliminary results

2.1. Non-degenerate quadratic forms on Fnq . Here we explain the
definition of η(Q) given in (3) for any non-degenerate quadratic form
Q on Fnq .

Since Q can be diagonalized, we may assume that Q is the form
given by (2). Now for Q1 = a1x

2
1 + a2x

2
2, a1a2 6= 0, make the change of

variables as

x1 = ux+ vy, x2 = vx− a1u

a2

y

for some u, v ∈ Fq with a1u
2 + a2v

2 6= 0. The form Q1 is reduced to

Q2 = (a1u
2 + a2v

2)

(
x2 +

a1

a2

y2

)
.

It is clear that η(Q) is invariant under this change of variables. Since
we can always find some u, v ∈ Fq such that a1u

2 +a2v
2 is some square

element and some non-square element in Fq∗ respectively, by multiply-
ing appropriate squares in Fq∗, we see that the two forms a1x

2
1 + a2x

2
2

and b1x
2
1 + b2x

2
2 with a1a2b1b2 6= 0 are equivalent if η(a1a2) = η(b1b2).

We fix a non-square element λ ∈ Fq∗, then the form Q1 = a1x
2
1+a2x

2
2

can be reduced to either x2 + y2 or x2 + λy2 depending on the value
η(a1a2). Since the forms x2

1 + x2
2, −x2

1 − x2
2 and λx2

1 + λx2
2 are all

equivalent to each other, by making change of variables repeatedly one
sees that any non-degenerate quadratic form Q on Fnq can be reduced
to one of the forms Qn,ε, ε ∈ {1, λ}, depending on the value of η(Q),
where for x = (x1, . . . , xn) ∈ Fnq , if n = 2m is even, then

(5) Qn,ε(x) = x2
1 − x2

2 + x2
3 − x2

4 + . . .+ x2
2m−1 − εx2

2m ,

and if n = 2m+ 1 is odd, then

(6) Qn,ε(x) = x2
1 − x2

2 + x2
3 − x2

4 + . . .+ x2
2m−1 − x2

2m + εx2
2m+1 .

Here we compute

η(Qn,ε) =

{
η(ε)η(−1)n/2, if n ≡ 0 (mod 2),
η(ε)η(−1)(n−1)/2, if n ≡ 1 (mod 2) .
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In fact by the well-known classification of quadratic forms, there are
two inequivalent non-degenerate quadratic forms on Fnq (see, for exam-
ple, [3]). ThereforeQn,1 andQn,λ are not equivalent and the equivalence
class is uniquely determined by the value η(Q).

2.2. Gauss sums and “Q-Spheres” in Fnq . First we recall some stan-
dard properties of the Gauss sums over Fq which are used frequently
in this paper, we refer to [16] for details.

Fix a non-trivial additive character ψ of Fq. The classical Gauss sum
G(ψ) is defined by

G(ψ) =
∑
z∈Fq

ψ(z2).

It is easy to see that

G(ψ) =
∑
z∈Fq

η(z)ψ(z),

where η is the quadratic character of Fq. We know that

G(ψ)2 = η(−1)q,

and ∑
z∈Fq

ψ(tz2) = η(t)G(ψ).

Next, we need some results about “Q-spheres” in vector spaces over
finite fields which have been used in [11]. Given a non-degenerate
quadratic form Q on Fnq given by (2), for t ∈ Fq we denote by SQ(t)
the “Q-sphere”

SQ(t) =

{
u = (u1, . . . , un) ∈ Fnq : Q(u) =

n∑
i=1

aiu
2
i = t

}
.

Furthermore, we consider the exponential sums

TQ(ψ; t,v) =
∑

u∈SQ(t)

ψ(v · u) =
∑

u∈SQ(t)

ψ(−v · u), v ∈ Fnq ,

since u ∈ SQ(t) and −u ∈ SQ(t) are equivalent. The following re-
sult is essentially shown in the proof of [17, Theorem 3] (see also [6,
Equation (9)] which also corrects some typing mistakes in [17, Equa-
tion (11)]). For the sake of completeness, we give a proof here.
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Lemma 1. For Q given in (2), t ∈ Fq and vector v = (v1, . . . , vn) ∈ Fnq ,
we have

TQ(ψ; t,v)

= qn−1δ(v) + η(−1)nη(Q)q−1G(ψ)n
∑
a∈Fq

∗

η(a)nψ
(
at+ |v|

Q
/a
)
,

where

δ(v) =

{
1, if v = 0,
0, otherwise,

η(Q) is defined in (3) and |v|
Q

is defined in (4).

Proof. We recall the identity

∑
z∈Fq

ψ(az) =

{
q, if a = 0,
0, otherwise,

which immediately implies that for any vector a ∈ Fnq we have

(7)
∑
z∈Fn

q

ψ(a · z) =

{
qn, if a = 0
0, otherwise,

where, as before, a · z denotes the dot product of a and z. Hence we
can rewrite TQ(ψ; t,v) as

TQ(ψ; t,v) =
∑
u∈Fn

q

ψ(v · u)
1

q

∑
a∈Fq

ψ (a (Q(u)− t))

= q−1
∑
u∈Fn

q

ψ(v · u) + q−1
∑
a∈Fq

∗

ψ(−at)
∑
u∈Fn

q

ψ(aQ(u) + v · u) .

The first term on the right hand side is qn−1δ(v) by using (7). Denoting
by q−1T2 the second term, one has

T2 =
∑
a∈Fq

∗

ψ(−at)
∑
u∈Fn

q

ψ

(
a

n∑
i=1

aiu
2
i + uivi

)

=
∑
a∈Fq

∗

ψ(−at)
n∏
i=1

∑
ui∈Fq

ψ
(
aaiu

2
i + uivi

)
.
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Using properties of the Gauss sums, we have∑
ui∈Fq

ψ
(
aaiu

2
i + uivi

)
=

∑
ui∈Fq

ψ

(
aai

(
ui +

vi
2aai

)2
)
ψ

(
− v2

i

4aai

)

= ψ

(
− v2

i

4aai

) ∑
ui∈Fq

ψ
(
aaiu

2
i

)
= η(aai)G(ψ)ψ

(
− v2

i

4aai

)
.

Thus

T2 =
∑
a∈Fq

∗

ψ(−at)
n∏
i=1

η(aai)G(ψ)ψ

(
− v2

i

4aai

)

= G(ψ)nη(a1 . . . an)
∑
a∈Fq

∗

ψ(−at)ψ

(
−1

a

n∑
i=1

v2
i

4ai

)

= G(ψ)nη(Q)
∑
a∈Fq

∗

ψ(−at)ψ
(
−
|v|

Q

a

)
,

by recalling the definition of η(Q) in (3) and |v|
Q

in (4). Therefore

T2 = η(−1)nG(ψ)nη(Q)
∑
a∈Fq

∗

ψ

(
at+

|v|
Q

a

)
.

Combining this with the first term q−1δ(v) we conclude the proof. �

In particular,we see from Lemma 1 that if v = 0, then TQ(ψ; t,0) =
#SQ(t), from Lemma 1 and the Weil bound of Kloosterman and Salie
sums (see [12, Theorem 11.11 and Lemma 12.4]), we immediately ob-
tain that (see also [11, Lemma 2.2]), for any t ∈ Fq,

#SQ(t) = qn−1 +O
(
qn/2

)
.

3. Proof of Theorem 1.

3.1. Lower bounds. We first provide lowers bounds of I(Q,Fnq ) which
appear in Theorem 1.

Lemma 2. Let Q be a non-degenerate quadratic form on Fnq .

(a) If n is even, then I(Q,Fnq ) ≥ qn/2.

(b) If n is odd and η(Q) = η(−1)(n−1)/2, then I(Q,Fnq ) ≥ q(n+1)/2.

(c) If n is odd and η(Q) = −η(−1)(n−1)/2, then I(Q,Fnq ) ≥ q(n−1)/2.
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Proof. For 1 ≤ i ≤ n, denote by ei the vector in Fnq with 1 in the i-th
entry and 0 everywhere else. Suppose that n = 2m is even. By the
classification of non-degenerate quadratic forms on Fnq in Section 2.1,
we may assume that Q = Qn,ε defined in (5), where ε = 1 or λ . Let E
be the vector space over Fq spanned by the n/2 vectors {e1 + e2, e3 +
e4, . . . , e2m−3 + e2m−2, e2m−1}. It is clear that for any x ∈ E one has
Qn,ε(x) = u2 for some u ∈ Fq. This implies that I(Qn,ε,Fnq ) ≥ #E =

qn/2 for ε ∈ {1, λ}. This proves (a).
Suppose that n is odd and η(Q) = η(−1)(n−1)/2. By the classification

of non-degenerate quadratic forms on Fnq in Section 2.1, we may assume
that Q = Qn,1 given in (6). Let E be the vector space over Fq spanned
by the (n + 1)/2 vectors {e1 + e2, e3 + e4, . . . , e2m−1 + e2m, e2m+1}. It
is clear that for any x ∈ E one has Qn,1(x) = u2 for some u ∈ Fq. This
implies that I(Qn,1,Fnq ) ≥ #E = q(n+1)/2 for this case. This proves (b).

Suppose that n is odd and η(Q) = −η(−1)(n−1)/2. We may assume
that Q = Qn,λ defined in (6). Let E be the vector space over Fq spanned
by the (n− 1)/2 vectors {e1 + e2, e3 + e4, . . . , e2m−1 + e2m}. It is clear
that for any x ∈ E one has Qn,λ(x) = u2 for some u ∈ Fq. This implies
that I(Qn,λ,Fnq ) ≥ #E = q(n−1)/2. This implies (c) and thus completes
the proof. �

3.2. Preparations to upper bounds. We may assume that Q is
given by (2). Since λ ∈ Fq∗ is a non-quadratic element, we see that
if E ⊆ Fnq is a set with pairwise integral Q-distances, then for every
t ∈ Fq∗ the equation

(8) x− y = u,

has no solution for x,y ∈ E and u ∈ SQ(λt2).
As before, let ψ be a nontrivial additive character of Fq. By the iden-

tity (7), the number of solutions to the equation (8) can be expressed
as ∑

x,y∈E

∑
u∈SQ(λt2)

1

qn

∑
v∈Fn

q

ψ (v · (x− y − u))

=
1

qn

∑
v∈Fn

q

∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

TQ(ψ;λt2,v).

For each v ∈ Fnq , define

av =

∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

.
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One observes that

(9) av ≥ 0, a0 = (#E)2 , and
∑
v∈Fn

q

av = qn(#E) .

Using that (8) has no solution for any t ∈ Fq∗, we have∑
t∈Fq

∗

1

qn

∑
v∈Fn

q

avTQ(ψ;λt2,v)

=
1

qn

∑
v∈Fn

q

av

∑
t∈Fq

∗

TQ(ψ;λt2,v) = 0.

(10)

Multiplying by qn on both sizes of (10) and applying Lemma 1, we can
rewrite the equation as

0 =
∑
v∈Fn

q

av

∑
t∈Fq

∗

(
qn−1δ(v)

+ η(−1)nη(Q)q−1G(ψ)n
∑
a∈Fq

∗

η(a)nψ
(
aλt2 + |v|

Q
/a
))

= qn−1(q − 1) (#E)2 + η(−1)nη(Q)q−1G(ψ)n
∑
v∈Fn

q

avcv,

where for any v ∈ Fnq , cv is defined by

cv =
∑
a∈Fq

∗

η(a)nψ
(
|v|

Q
/a
) ∑
t∈Fq

∗

ψ
(
aλt2

)
We can compute by using the properties of the Gauss sums that

cv =
∑
a∈Fq

∗

η(a)nψ
(
|v|

Q
/a
)
{η (aλ)G(ψ)− 1}

= −G(ψ)
∑
a∈Fq

∗

η(a)n+1ψ
(
|v|

Q
/a
)
−
∑
a∈Fq

∗

η(a)nψ
(
|v|

Q
/a
)

= −G(ψ)
∑
a∈Fq

∗

η(a)n+1ψ
(
a|v|

Q

)
−
∑
a∈Fq

∗

η(a)nψ
(
a|v|

Q

)
.

Hence we have the identity

(11) (q − 1) (#E)2 = −η(−1)nη(Q)q−nG(ψ)n
∑
v∈Fn

q

avcv .
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3.3. Even n. If n is even, then by using properties of the Gauss sums
we have

cv = −G(ψ)
∑
a∈Fq

∗

η(a)ψ
(
a|v|

Q

)
−
∑
a∈Fq

∗

ψ
(
a|v|

Q

)
= −G(ψ)2η

(
|v|

Q

)
− qδ

(
|v|

Q

)
+ 1 ,

where the function δ on Fq is defined as for any a ∈ Fq,

δ(a) =

{
1 : a = 0
0 : a 6= 0

.

Since G(ψ)2 = η(−1)q, the identity (11) becomes

(q − 1) (#E)2

= −η(−1)n/2η(Q)q−n/2
∑
v∈Fn

q

av

{
−qη

(
−|v|

Q

)
− qδ

(
|v|

Q

)
+ 1
}
.

This can be simplified further as

(12) (q − 1) (#E)2 = η(−1)n/2η(Q)q−n/2 (qI1 − qI2 − I3) ,

where

I1 =
∑
v∈Fn

q ,

η(−|v|Q)=1

av +
∑
v∈Fn

q

|v|
Q

=0

av ,

I2 =
∑
v∈Fn

q ,

η(−|v|Q)=−1

av ,

I3 =
∑
v∈Fn

q

av .

From (9) we know that I1, I2 ≥ 0 and I1 + I2 = I3 = qn(#E). If
η(Q) = η(−1)n/2, then the identity (12) becomes

(q − 1) (#E)2 = q−n/2 {qI1 − qI2 − I3}
≤ q−n/2(q − 1)I3 = q−n/2(q − 1)qn(#E),

(13)

we derive that #E ≤ qn/2. On the other hand, from (a) of Lemma 2
we know I(Q,Fnq ) ≥ qn/2. It implies in this case

I(Q,Fnq ) = qn/2.

This proves the statement (i) of Theorem 1.
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If η(Q) = −η(−1)n/2, replacing I2 by I3− I1 and noticing I1 ≥ a0 =
(#E)2 and I3 = qn(#E) the identity (12) becomes

(q − 1) (#E)2 = q−n/2 ((q + 1)I3 − 2qI1)

≤ q−n/2(q + 1)qn(#E)− 2q−n/2+1 (#E)2 .

Solving this inequality one concludes that

#E ≤ qn/2(q + 1)

q − 1 + 2q−n/2+1
= qn/2 +

2(qn/2 − q)
q − 1 + 2q−n/2+1

.

Combining the lower bound in (a) of Lemma 2 with this upper bound
proves the statement (ii) of Theorem 1.

3.4. Odd n. If n is odd, then

cv = −G(ψ)
∑
a∈Fq

∗

ψ
(
a|v|

Q

)
−
∑
a∈Fq

∗

η(a)ψ
(
a|v|

Q

)
= −G(ψ)

(
qδ(|v|

Q
)− 1

)
− η

(
|v|

Q

)
G(ψ) .

Therefore, using G(ψ)2 = η(−1)q we have

(q − 1) (#E)2

= η(−1)nη(Q)q−nG(ψ)n+1
∑
v∈Fn

q

av

{
qδ
(
|v|

Q

)
+ η

(
|v|

Q

)
− 1
}

= η(−1)(n−1)/2η(Q)q(−n+1)/2
(
qJ1 + J+

2 − J−2 − J3

)
,

where

J1 =
∑
v∈Fn

q

|v|
Q

=0

av , J+
2 =

∑
v∈Fn

q

η(|v|Q)=1

av, J−2 =
∑
v∈Fn

q

η(|v|Q)=−1

av

and
J3 =

∑
v∈Fn

q

av = qn(#E) .

(note that J3 = I3, where I3 is defined in Section 3.3).
We know that J1, J

+
2 , J

−
2 ≥ 0 and J3 = J1 + J+

2 + J−2 . If η(Q) =
η(−1)(n−1)/2, then

(q − 1) (#E)2 = q(−n+1)/2
{

(q − 1)J1 − 2J+
2

}
≤ q(−n+1)/2(q − 1)J1 ≤ q(−n+1)/2(q − 1)J3

= q(−n+1)/2(q − 1)qn(#E).

(14)

From this we derive that

#E ≤ q(n+1)/2.
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On the other hand, from (b) of Lemma 11 we know that I(Q,Fnq ) ≥
q(n+1)/2. It implies that in this case

I(Q,Fnq ) = q(n+1)/2.

This proves the statement (iii) of Theorem 1.
If η(Q) = −η(−1)(n−1)/2, replacing J−2 by J3 − J1 − J+

2 , we have

(q − 1) (#E)2 = −q(−n+1)/2
(
qJ1 + J+

2 − J−2 − J3

)
= q(−n+1)/2

(
2J3 − (q + 1)J1 − 2J+

2

)
.

Noticing J1 ≥ a0 = (#E)2 and J3 = qn(#E) we have

(q − 1) (#E)2 ≤ q(−n+1)/2
(
2qn(#E)− (q + 1)(#E)2

)
.

Solving this inequality one obtains

#E ≤ 2q(n+1)/2

q − 1 + q(−n+1)/2(q + 1)
.

Combining the lower bound of I(Q,Fnq ) in (c) of Lemma 2 with this
result proves the statement (iv) of Theorem 1. Now the proof of The-
orem 1 is complete.

4. Proof of Theorem 2

4.1. Preparations. We start with some auxiliary statements which
could be of independent interest.

Lemma 3. Let Q be a non-degenerate quadratic form on Fnq .

(a) If n is even and η(Q) = η(−1)n/2, then

I0(Q,Fnq ) = qn/2.

(b) If n is even and η(Q) = −η(−1)n/2, then

qn/2−1 ≤ I0(Q,Fnq ) ≤ qn/2

q − 1 + q−n/2+1
.

(c) If n is odd, then

q(n−1)/2 ≤ I0(Q,Fnq ) ≤ q(n+1)/2

q − 1 + q(−n+1)/2
.

Proof. Since the proof of Lemma 3 is very similar to that of Theorem 1,
we prove (b) only.

First start with the lower bound. As usual denote by ei the vector
in Fnq with 1 in the i-th entry and 0 everywhere else. If n = 2m is

even and η(Q) = −η(−1)n/2, we may assume Q = Qn,λ given in (5).
Let E be the vector space over Fq spanned by the n/2 − 1 vectors
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{e1 + e2, e3 + e4, . . . , e2m−3 + e2m−2}. It is clear that E is a subset with
pairwise zero Q-distance. This construction implies that I0(Qn,λ,Fnq ) ≥
qn/2−1.

To prove the upper bound, we notice that if E ⊆ Fnq is a set with
pairwise zero Q-distance, then for every t ∈ Fq∗ the equation

x− y = u,

has no solution for x,y ∈ E and u ∈ SQ(t). That is, for any t ∈ Fq∗,∑
x,y∈E

∑
u∈SQ(t)

1

qn

∑
v∈Fn

q

ψ (v · (x− y − u)) = 0 .

Adding up the above equation as t runs over Fq∗, applying Lemma 1
and using notations from Section 3.2 one obtains

0 = qn−1(q − 1) (#E)2 + η(−1)nη(Q)q−1G(ψ)n
∑
v∈Fn

q

avc
′
v,(15)

where for any v ∈ Fnq , c′v is

cv =
∑
a∈Fq

∗

η(a)nψ
(
|v|

Q
/a
) ∑
t∈Fq

∗

ψ (at)

= −
∑
a∈Fq

∗

η(a)nψ
(
a|v|

Q

)
.

Since n is even, η(Q) = −η(−1)n/2, and G(ψ)2 = η(−1)q, the identity
(15) can be simplified as

(q − 1) (#E)2 = q−n/2 (J3 − qJ1) ,

where

J1 =
∑
v∈Fn

q

|v|
Q

=0

av , J3 =
∑
v∈Fn

q

av = qn(#E)2 .

Since

J1 ≥ a0 = (#E)2,

one obtains that

#E ≤ qn/2

q − 1 + q−n/2+1
.

Combining the lower and upper bounds finishes the proof of (b). �

Lemma 4. If E ⊆ Fnq is a maximal subset with pairwise zero Q-distance
and 0 ∈ E, then E is a vector space over Fq.
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Proof. First, for any x,y ∈ E , one has

0 = Q(x− y) =
n∑
i=1

ai(xi − yi)2 = Q(x) +Q(y)− 2
n∑
i=1

aixiyi .

Since Q(x) = Q(y) = 0 (because 0 ∈ E), one has
n∑
i=1

aixiyi = 0.

Thus for any t ∈ Fq, one has

Q(tx− y) =
n∑
i=1

ai(txi − yi)2 = t2Q(x) +Q(y)− 2t
n∑
i=1

aixiyi = 0.

It implies that the set E
⋃
{tx} is also a set with pairwise zero Q-

distance. By the maximality of E , for any x ∈ E and t ∈ Fq, one has
tx ∈ E .

Next, for any x,y, z ∈ E , one has

Q(x + y − z) =
n∑
i=1

ai(xi + yi − zi)2 = Q(x) +Q(y) +Q(z)

+2
n∑
i=1

aixiyi − 2
n∑
i=1

aixizi − 2
n∑
i=1

aiyizi.

Since 0 ∈ E , considering x and y one has Q(x) = Q(y) = Q(x+y) = 0,
which implies that

∑n
i=1 aixiyi = 0. Considering x, z and then y, z

similarly one can obtain that Q(x+y−z) = 0. Thus the set E
⋃
{x+y}

is also a set with pairwise zero Q-distance. By the maximality of E ,
for any x,y ∈ E , one has x + y ∈ E . �

4.2. Concluding the proof. Suppose that E ⊆ Fnq is a subset with
pairwise zero Q-distance that achieves the maximal cardinality #E =
I0(Q,Fnq ). We may assume 0 ∈ E , since for any v ∈ Fnq , the set
E + v = {x + v : x ∈ E} also has pairwise zero Q-distance. We see
from Lemma 4 that E is a vector, hence the cardinality of E is a power
of q. Now checking the lower and upper bounds in Lemma 3, one
easily sees that the cardinality of E must equal those lower bounds.
This completes the proof of Theorem 2.

5. Proof of Theorem 3

5.1. Even n. Fix a finite field Fq of q elements (q odd), a positive
integer n and a non-degenerate quadratic form Q on Fnq given by (2).

Suppose n is even and η(Q) = η(−1)n/2. If E ⊆ Fnq is a subset with
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pairwise integral Q-distances, then #E ≤ qn/2 by (i) of Theorem 1.
If #E = qn/2, following the proof of (i) of Theorem 1, the inequality
in (13) become actually an equality. For this to happen, one must have

I2 =
∑
v∈Fn

q ,

η(−|v|Q)=−1

av =
∑
v∈Fn

q ,

η(−|v|Q)=−1

∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

= 0 ,

that is, ∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

= 0 ,

for any v ∈ Fnq with η
(
−|v|

Q

)
= −1. Notice that if η

(
−|v|

Q

)
= −1,

then for any α ∈ Fq∗ one also has η
(
−|αv|

Q

)
= −1. Therefore

∑
α∈Fq

∣∣∣∣∣∑
x∈E

ψ(αv · x)

∣∣∣∣∣
2

= (#E)2 = qn ,

where the term (#E)2 comes from the term α = 0.
Expanding the left hand side of the above identity we have

qn =
∑
x,y∈E

∑
α∈Fq

ψ (αv · (x− y))

= q
∑
x,y∈E

v·(x−y)=0

1 = q
∑
t∈Fq

∑
x∈E
v·x=t

1


2

= q
∑
t∈Fq

a2
v,t ,

where for any t ∈ Fq, av,t is defined by

av,t =
∑
x∈E
x·v=t

1 ≥ 0 .

Since ∑
t∈Fq

av,t =
∑
x∈E

1 = #E = qn/2,

by the Cauchy-Schwarz inequality, one has av,t = av,s for any t, s ∈ Fq.
That is,

av,t =
∑
x∈E
x·v=t

1 =
1

q
#E = qn/2−1 ,

for any t ∈ Fq, any v ∈ Fnq with η
(
−|v|

Q

)
= −1.
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On the other hand, if for any t ∈ Fq, any v ∈ Fnq with η
(
−|v|

Q

)
= −1

one always has

av,t =
∑
x∈E
x·v=t

1 = qn/2−1 ,

then for the set E ⊆ Fnq ,

#E =
∑
t∈Fq

av,t = qn/2 .

In (13) the term I2 is

I2 =
∑
v∈Fn

q ,

η(−|v|Q)=−1

av =
∑
v∈Fn

q ,

η(−|v|Q)=−1

∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

.

This can be simplified as

I2 =
∑
v∈Fn

q ,

η(−|v|Q)=−1

∣∣∣∣∣∣
∑
t∈Fq

ψ(t)av,t

∣∣∣∣∣∣
2

= qn/2−1
∑
v∈Fn

q ,

η(−|v|Q)=−1

∣∣∣∣∣∣
∑
t∈Fq

ψ(t)

∣∣∣∣∣∣
2

= 0 .

Therefore I2 = 0 and the inequality (13) is actually an equality. Follow-
ing the proof of (i) of Theorem 1 backward, one sees that this implies∑

t∈Fq
∗

1

qn

∑
v∈Fn

q

∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

TQ(ψ;λt2,v) = 0,

that is,

(16)
∑
t∈Fq

∗

∑
x,y∈E

∑
u∈SQ(λt2)

1

qn

∑
v∈Fn

q

ψ (v · (x− y − u)) = 0 .

The left hand side of (16) can be interpreted as the number of solutions
(t,x,y,u) to the equation

x− y = u ,

where t ∈ Fq∗, x,y ∈ Fnq and u ∈ SQ(λt2). Since there is no such
solutions, this means that Q(x− y) is a square in Fq for any x,y ∈ E ,
that is, E ⊆ Fnq a set with pairwise integral Q-distances. This finishes
the proof of (i) of Theorem 3.
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5.2. Odd n. Suppose n is odd and η(Q) = η(−1)n/2. If E ⊆ Fnq is

a set with pairwise integral Q-distances, then #E ≤ q(n+1)/2 by (iii)
of Theorem 1. If indeed #E = q(n+1)/2, following the proof of (iii) of
Theorem 1, the inequality in (14) become actually equalities. For this
to happen, one must have

J+
2 + J−2 =

∑
v∈Fn

q ,

|v|
Q
6=0

av =
∑
v∈Fn

q ,

|v|
Q
6=0

∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

= 0 ,

that is, ∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

= 0 ,

for any v ∈ Fnq with |v|
Q
6= 0. Similar to the argument above for the

case that n is even, one obtains that

av,t =
∑
x∈E
x·v=t

1 =
1

q
#E = q(n−1)/2 ,

for any t ∈ Fq and any v ∈ Fnq with |v|
Q
6= 0.

On the other hand, if for any t ∈ Fq and any v ∈ Fnq with |v|
Q
6= 0

one always has

av,t =
∑
x∈E
x·v=t

1 = q(n−1)/2 ,

then

#E =
∑
t∈Fq

av,t = q(n+1)/2 ,

and

J+
2 + J−2 =

∑
v∈Fn

q ,

|v|
Q
6=0

av =
∑
v∈Fn

q ,

|v|
Q
6=0

∣∣∣∣∣∑
x∈E

ψ(v · x)

∣∣∣∣∣
2

= 0 .

Similar to the above argument for the case that n is even, one concludes
that E ⊆ Fnq is a set with pairwise integral Q-distances and #E =

q(n+1)/2. This implies (ii) of Theorem 3 and completes the proof.
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6. Open Problems and Remarks

There are also several other combinatorial objects to which the re-
sults and ideas of [11] can be applied.

For example, one can ask about the largest possible cardinality of a
set E ⊆ Fnq such that all “volumes” defined by the vectors x1, . . . ,xn ∈
E are integral.

This is equivalent to the property that det(x1, . . . ,xn)n is a perfect
square in Fq. This is certainly always the case if n is even, but if n is odd
the question becomes more interesting and is equivalent to the question
when det(x1, . . . ,xn) is a perfect square in Fq for x1, . . . ,xn ∈ E . See [7]
for a recent study of the volume sets.

Now, given t ∈ Fq we define the undirected graph Gt as a graph
whose vertices are labelled by vectors x ∈ Fnq and the vertices x,y
are connected if and only if x − y ∈ Sn(t). Such graphs have been
introduced and studied by A. Medrano, P. Myers, H. M. Stark and
A. Terras [17, 18], see also [3] and references therein. In particular,
the eigenvalues of such graphs can be expressed via Kloosterman sums
and thus in many cases they give new examples of Ramanujan graphs,
see [3, 17, 18].

We remark that it follows from [9, Theorem 1.3] (which is a more
explicit form some results of [11]) that the largest independent set of
any graph Gt is of size at most 4q(n+1)/2. See also [8], where pseudo-
random properties and diameter of these graphs are studied.
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