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Abstract

For the finite field IFq of q elements (q odd) and a quadratic non-
residue α ∈ IFq, we define the distance function

δ
(
u+ v

√
α, x+ y

√
α
)

=
(u− x)2 − α(v − y)2

vy

on the upper half plane Hq = {x + y
√
α | x ∈ IFq, y ∈ IF∗q} ⊆ IFq2 .

For two sets E ,F ⊂ Hq with #E = E, #F = F and a non-trivial
additive character ψ on IFq, we give the following estimate∣∣∣∣∣∣

∑
w∈E,z∈F

ψ(δ(w, z))

∣∣∣∣∣∣ ≤ min
{√

3q5/4, q +
√

2qE
}√

EF,

which is non-trivial if EF/q2 →∞ as q →∞.

2000 Mathematics Subject Classification: 11T23, 52C10

1 Introduction

1.1 Background

Since the groundbreaking result of Jean Bourgain, Nets Katz and Terence
Tao [4] on the sum-product problem in finite fields, there have been a burst of
activity in the area of discrete analogues of classical combinatorial problems,
which have recently culminated in a solution of the Kakeya problem over
finite fields by Z. Dvir [6]. In particular, A. Iosevich and M. Rudnev [7] have
introduced a finite field analogue of the Erdős distance problem. Namely, it
is shown in [7] that there are absolute constants c1, c2 > 0 such that for any
odd q and any set E ⊆ IFnq of cardinality #E ≥ c1q

n/2 the number D(E) of
distances

d(x,y) =
n∑
i=1

(xi − yi)2

between all pairs of vectors

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ E ,

satisfies
D(E) ≥ c2 min

{
q, q−(n−1)/2#E

}
.
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In fact one can also obtain a more general result for the number of pairwise
distances between elements of two sets E ,F ⊆ IFnq (see also [16]).

The argument of A. Iosevich and M. Rudnev [7] is based on Fourier
analysis on finite fields, more specifically, on analysis on “Q-spheres” in finite
fields. L. A. Vinh [19] has revisited the problem in a more general setting.
Instead of the Euclidean distance function, L. A. Vinh [19] considers any
non-degenerate quadratic forms and obtains similar results. The new idea
in [19] is to combine sharp eigenvalue estimate resulting from Ramanujan
graphs related with non-degenerate quadratic forms and a result in graph
theory. While this method, as pointed out in [19], is essentially equivalent to
that of A. Iosevich and M. Rudnev [7], this approach is more elementary.

Furthermore, L. A. Vinh [19] has considered an analogue of the Erdős
distance problem for points of the upper half plane Hq on the finite field IFq,
where the upper half plane Hq is

Hq = {x+ y
√
α | x ∈ IFq, y ∈ IF∗q} ⊆ IFq2 ,

for a fixed quadratic non-residue α ∈ IFq, and the distance between two
points is

δ
(
u+ v

√
α, x+ y

√
α
)

=
(u− x)2 − α(v − y)2

vy
.

For two sets E ,F ⊆ Hq he defines

∆Hq (E ,F) = #{δ(w, z) | w ∈ E , z ∈ F},

and by using similar ideas he obtains

∆Hq(E ,F) ≥ min

{√
#E#F
3q1/2

, q − 1

}
.

More details can be found in the original paper of L. A. Vinh [19]. For
various structural properties of Hq, interested readers can see the series of
papers [2, 3, 9, 15, 17, 18] and references therein. In particular, they naturally
lead to new examples of Ramanujan graphs (see [5, 10, 11, 12, 13]).

1.2 Main Result

For an additive character ψ on IFq (q odd) and two sets E ,F ⊆ Hq, we define
the character sum

Sψ(E ,F) =
∑

w∈E,z∈F

ψ(δ(w, z))
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(see [14] for basic properties of additive characters).
Our main result is the following.

Theorem 1. For arbitrary sets E ,F ⊆ Hq with #E = E, #F = F and any
non-trivial additive character ψ on IFq, we have

Sψ(E ,F) ≤ min
{
q +

√
2qE,

√
3q5/4

}√
EF.

Clearly, the bound of Theorem 1 is non-trivial if EF/q2 →∞ as q →∞.
Our method is a combination of Fourier analysis on finite fields of A. Io-

sevich and M. Rudnev [7] with the graph theory method of L. A. Vinh [19].
We note that each of the above methods can be used independently, but their
combination leads to a stronger result.

We remark that if we consider any non-degenerate quadratic form Q on
the n-dimensional vector space IFnq , then for any two sets E ,F ⊂ IFnq with
#E = E, #F = F and any non-trivial additive character ψ on IFq, we can
obtain ∣∣∣∣∣ ∑

w∈E,z∈F

ψ(Q(w, z))

∣∣∣∣∣ ≤√qnEF,

which for n = 2 looks a little better than Theorem 1 (although of course it
applies to a different distance functions so the results are incomparable).

2 Preparations

2.1 Some Auxiliary Character Sums

First we need to evaluate the following character sums.
For a additive character ψ of IFq and w1,w2 ∈ Hq, define

Tψ (w1,w2) =
∑
z∈Hq

ψ (δ(w1, z)− δ(w2, z)) .

Lemma 2. For a non-trivial additive character ψ of IFq and two vectors
w1,w2 ∈ Hq with w1 6= w2, we have

Tψ (w1,w2) =

{
−q(ψ(τ) + ψ(−τ)), where τ 2 = 4αδ(w1,w2), τ ∈ IF∗q,
0, if δ(w1,w2) is a square in IF∗q.
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Proof. First we rewrite Tψ (w1,w2) as

Tψ (w1,w2) =
∑
t∈IFq

ψ(t)Nψ(w1,w2; t),

where
Nψ(w1,w2; t) = #{z ∈ Hq : δ (w1, z)− δ (w2, z) = t}.

Let
w1 = (a, b),w2 = (c, d) ∈ Hq

with w1 6= w2 and z = (x, y) ∈ Hq. Then δ (w1, z) − δ (w2, z) = t if and
only if

d((x− a)2 − α(y − b)2)− b((x− c)2 − α(y − d)2) = bdty.

Recall the orthogonality property of additive characters∑
u∈IFq

ψ(γu) =

{
0, if γ ∈ IF∗q,
q, if γ = 0.

(1)

Then we write

Nψ(w1,w2; t) =
∑
y∈IF∗

q

x∈IFq

1

q

∑
u∈IFq

ψ (uΨw1,w2,t(x, y)) ,

where

Ψw1,w2,t(x, y) = d(x− a)2 − dα(y − b)2 + b(x− c)2 − bα(y − d)2 − bdty.

To simplify, we isolate the cases for u = 0 and y = 0 and define the functions

Gψ(w1,w2;u) =
∑
x∈IFq

ψ
(
u{d(x− a)2 − b(x− c)2}

)
,

Hψ(w1,w2;u, t) =
∑
y∈IFq

ψ
(
u{bα(y − d)2 − dα(y − b)2 − bdyt}

)
,

Jψ(w1,w2) = q − 1− 1

q

∑
u∈IF∗

q

Gψ(w1,w2;u)ψ
(
u{bαd2 − dαb2}

)
.
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Then Nψ(w1,w2; t) can be written as

Nψ(w1,w2; t) = Jψ(w1,w2) +
1

q

∑
u∈IF∗

q

Gψ(w1,w2;u)Hw1,w2(u, t).

By using the orthogonality property of additive characters (1) and noticing
that Jψ(w1,w2) is independent of t, we obtain

Tψ (w1,w2) =
1

q

∑
t∈IFq

ψ(t)
∑
u∈IF∗

q

Gψ(w1,w2;u)Hw1,w2(u, t).

Since w1 6= w2, if b = d, then a 6= c and

d(x− a)2 − b(x− c)2 = 2b(c− a)

(
x− a+ c

2

)
.

Hence, by (1) again we have Gψ(w1,w2;u) = 0 for any u 6= 0. Therefore, if
b = d then

Tψ (w1,w2) = 0.

If b 6= d, then

d(x− a)2 − b(x− c)2 = (d− b)
(
x− ad− bc

d− b

)2

− bd(a− c)2

d− b
.

To evaluate Gψ(w1,w2;u), we recall some standard properties of Gauss sums
over IFq (we refer to [14] for details). The classical Gauss sum G(ψ) is defined
as

G(ψ) =
∑
z∈IFq

ψ(z2).

It is easy to see that

G(ψ) =
∑
z∈IFq

η(z)ψ(z),

where η is the quadratic character of IFq. We know that

G(ψ)2 = η(−1)q,

and ∑
z∈IFq

ψ(tz2) = η(t)G(ψ). (2)
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If b 6= d, then by using (2) we see that

Gψ(w1,w2;u) = G(ψ)η(u(d− b))ψ
(
−bd(a− c)2u

d− b

)
. (3)

For Hψ(w1,w2;u, t), noticing that

bα(y − d)2 − dα(y − b)2 − bdyt

= α(b− d)

(
y − bdt

2α(b− d)

)2

+ bdα(d− b) +
b2d2t2

4α(d− b)
,

we obtain again from (2) that

Hψ(w1,w2;u, t) = G(ψ)η(uα(b− d))ψ

(
ubdα(d− b) +

b2d2t2u

4α(d− b)

)
. (4)

Since G(ψ)2 = η(−1)q and η(α) = −1, using (3), (4) and (1), we may rewrite
Tψ (w1,w2) as

Tψ (w1,w2) = −
∑
t∈IFq

ψ(t)
∑
u∈IFq

ψ (ufw1,w2(t)) , (5)

where

fw1,w2(t) = bdα(d− b) +
b2d2t2

4α(d− b)
− bd(a− c)2

d− b
.

Recalling (1) one sees that in the identity (5) there is no contribution from
the terms t ∈ IFq with fw1,w2(t) 6= 0. One derives that fw1,w2(t) = 0 if and
only if

t2 = 4α
(a− c)2 − α(d− b)2

bd
= 4αδ(w1,w2).

Therefore if δ(w1,w2) is a square in IF∗q, then Tψ (w1,w2) = 0, otherwise,
let

τ 2 = 4αδ(w1,w2)

for some τ ∈ IF∗q, then

Tψ (w1,w2) = −q (ψ(τ) + ψ(−τ)) ,

which completes the proof. ut
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2.2 Some Graph Theory Tools

We now recall some graph theory results similar to those of L. A. Vinh [19].
First, for any fixed a ∈ IFq, the finite non-Euclidean graph Vq(α, a) has

vertices as the points in Hq and edges between vertices z,w ∈ Hq if and only
if δ(z,w) = a. It is known that, except for a = 0 or 4α, the graph Vq(α, a)
is a (q2 − q, q + 1, 2

√
q)-regular graph, that is, the graph Vq(α, a) is (q + 1)-

regular on (q2 − q) vertices with |λ| ≤ 2
√
q for any non-trivial eigenvalue λ

of the adjacency matrix of the graph Vq(α, a), see [5, 10, 11, 12, 13, 19] and
references therein.

Next, we use the following well-known result, see [1, Chapter 9].

Lemma 3. Let G be an (n, d, λ)-regular graph. For every set of vertices A
of G, denote by e(A) the number of pairs (u, v) ∈ A×A such that uv is an
edge of G. Then ∣∣∣∣e(A)− d

n
(#A)2

∣∣∣∣ ≤ λ#A.

.

3 Proof of Theorem 1

By the Cauchy inequality,

|Sψ (E ,F)|2 =

∣∣∣∣∣∑
w∈E

∑
z∈F

ψ (δ (w, z))

∣∣∣∣∣
2

≤ FW, (6)

where

W =
∑
z∈F

∣∣∣∣∣∑
w∈E

ψ (δ (w, z))

∣∣∣∣∣
2

.

Extending the range of summation over z ∈ F to the whole plane Hq, squar-
ing out and changing the order of summation, we obtain

W ≤
∑
z∈Hq

∣∣∣∣∣∑
w∈E

ψ (δ (w, z))

∣∣∣∣∣
2

=
∑

w1,w2∈E

∑
z∈Hq

ψ (δ (w1, z)− δ (w2, z))

= q(q − 1)E +
∑

w1 6=w2∈E

Tψ (w1,w2) .

(7)
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By Lemma 2∑
w1 6=w2∈E

Tψ (w1,w2) = −q
∑

w1 6=w2∈E
4αδ(w1,w2)=τ2 6=0

(ψ(τ) + ψ(−τ)) . (8)

We now estimate the above sum trivially as∣∣∣∣∣ ∑
w1 6=w2∈E

Tψ (w1,w2)

∣∣∣∣∣ ≤ 2qE2.

Therefore, we see from (7) that

W ≤ q2E + 2qE2,

and using (6), we obtain

Sψ (E ,F) ≤
(
q +

√
2qE

)√
E · F .

On the other hand, the right hand side of (8) can be rewritten as∑
w1 6=w2∈E

Tψ (w1,w2) = −q
∑
τ∈IF∗

q

ψ(τ)
∑

w1 6=w2∈E
4αδ(w1,w2)=τ2

1. (9)

To estimate the second sum on the right hand side, we use Lemma 3. As we
have mentioned in Section 2.2, for τ 6= 0, 4α each graph Vq(α, τ

2/(4α)) is a
(q2 − q, q + 1, 2

√
q)-regular graph. So, by Lemma 3, whenever τ 6= 0, 4α, we

have ∣∣∣∣∣∣∣∣
∑

w1 6=w2∈E
4αδ(w1,w2)=τ2

1− q + 1

q2 − q
E2

∣∣∣∣∣∣∣∣ =

∣∣∣∣e(E)− q + 1

q2 − q
E2

∣∣∣∣ ≤ 2
√
qE. (10)

Also, trivially for τ = 4α the solutions of the equation δ(w1,w2) = 4α are
of the forms w1 = (a, b),w2 = (a,−b). Hence for τ = 4α,∑

w1 6=w2∈E
4αδ(w1,w2)=τ2

1 ≤ E. (11)
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Using (10) for τ 6= 4α and (11) for τ = 4α, we derive from (9) that∑
w1 6=w2∈E

Tψ (w1,w2) = −q(q + 1)E2

q2 − q
∑
τ∈IF∗

q

τ 6=4α

ψ(τ) +R =
2(q + 1)E2

q − 1
+R

where
|R| ≤ 2q(q − 2)

√
qE + qE.

Therefore∣∣∣∣∣ ∑
w1 6=w2∈E

Tψ (w1,w2)

∣∣∣∣∣ ≤ 2(q + 1)E2

q − 1
+ 2q(q − 2)

√
qE + qE

≤ 2q(q + 1)E + 2q(q − 2)
√
qE + qE

since trivially E ≤ q(q − 1). Inserting this bound in (7), and we obtain

W ≤ q(q − 1)E + 2q(q + 1)E + 2q3/2(q − 2)E + qE

= 2qE

(
q3/2 +

3q

2
− 2
√
q + 1

)
< 3q5/2E,

since
3z

2
− 2z1/2 + 1 ≤ 1

2
z3/2

for z ≥ 1. Now, recalling (6) we finally derive

Sψ(E ,F) ≤ q5/4
√

3E · F ,

which completes the proof of Theorem 1.
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