On Character Sums with Distances on the Upper Half Plane over a Finite Field

Nicholas M. Katz
Department of Mathematics
Princeton University
Princeton, NJ 08544-1000, USA
nmk@math. princeton.edu
Igor E. Shparlinski
Department of Computing
Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au
Maosheng Xiong
Department of Mathematics
Pennsylvania State University
State College, PA 16802, USA
xiong@math.psu.edu

Abstract

For the finite field \mathbb{F}_{q} of q elements (q odd) and a quadratic nonresidue $\alpha \in \mathbb{F}_{q}$, we define the distance function $$
\delta(u+v \sqrt{\alpha}, x+y \sqrt{\alpha})=\frac{(u-x)^{2}-\alpha(v-y)^{2}}{v y}
$$

on the upper half plane $\mathcal{H}_{q}=\left\{x+y \sqrt{\alpha} \mid x \in \mathbb{F}_{q}, y \in \mathbb{F}_{q}^{*}\right\} \subseteq \mathbb{F}_{q^{2}}$. For two sets $\mathcal{E}, \mathcal{F} \subset \mathcal{H}_{q}$ with $\# \mathcal{E}=E, \# \mathcal{F}=F$ and a non-trivial additive character ψ on \mathbb{F}_{q}, we give the following estimate

$$
\left|\sum_{\mathbf{w} \in \mathcal{E}, \mathbf{z} \in \mathcal{F}} \psi(\delta(\mathbf{w}, \mathbf{z}))\right| \leq \min \left\{\sqrt{3} q^{5 / 4}, q+\sqrt{2 q E}\right\} \sqrt{E F},
$$

which is non-trivial if $E F / q^{2} \rightarrow \infty$ as $q \rightarrow \infty$.

2000 Mathematics Subject Classification: 11T23, 52C10

1 Introduction

1.1 Background

Since the groundbreaking result of Jean Bourgain, Nets Katz and Terence Tao [4] on the sum-product problem in finite fields, there have been a burst of activity in the area of discrete analogues of classical combinatorial problems, which have recently culminated in a solution of the Kakeya problem over finite fields by Z. Dvir [6]. In particular, A. Iosevich and M. Rudnev [7] have introduced a finite field analogue of the Erdős distance problem. Namely, it is shown in [7] that there are absolute constants $c_{1}, c_{2}>0$ such that for any odd q and any set $\mathcal{E} \subseteq \mathbb{F}_{q}^{n}$ of cardinality $\# \mathcal{E} \geq c_{1} q^{n / 2}$ the number $D(\mathcal{E})$ of distances

$$
d(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}
$$

between all pairs of vectors

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{E}
$$

satisfies

$$
D(\mathcal{E}) \geq c_{2} \min \left\{q, q^{-(n-1) / 2} \# \mathcal{E}\right\}
$$

In fact one can also obtain a more general result for the number of pairwise distances between elements of two sets $\mathcal{E}, \mathcal{F} \subseteq \mathbb{F}_{q}^{n}$ (see also [16]).

The argument of A. Iosevich and M. Rudnev [7] is based on Fourier analysis on finite fields, more specifically, on analysis on " Q-spheres" in finite fields. L. A. Vinh [19] has revisited the problem in a more general setting. Instead of the Euclidean distance function, L. A. Vinh [19] considers any non-degenerate quadratic forms and obtains similar results. The new idea in [19] is to combine sharp eigenvalue estimate resulting from Ramanujan graphs related with non-degenerate quadratic forms and a result in graph theory. While this method, as pointed out in [19], is essentially equivalent to that of A. Iosevich and M. Rudnev [7], this approach is more elementary.

Furthermore, L. A. Vinh [19] has considered an analogue of the Erdős distance problem for points of the upper half plane \mathcal{H}_{q} on the finite field \mathbb{F}_{q}, where the upper half plane \mathcal{H}_{q} is

$$
\mathcal{H}_{q}=\left\{x+y \sqrt{\alpha} \mid x \in \mathbb{F}_{q}, y \in \mathbb{F}_{q}^{*}\right\} \subseteq \mathbb{F}_{q^{2}}
$$

for a fixed quadratic non-residue $\alpha \in \mathbb{F}_{q}$, and the distance between two points is

$$
\delta(u+v \sqrt{\alpha}, x+y \sqrt{\alpha})=\frac{(u-x)^{2}-\alpha(v-y)^{2}}{v y}
$$

For two sets $\mathcal{E}, \mathcal{F} \subseteq \mathcal{H}_{q}$ he defines

$$
\Delta_{\mathcal{H}_{q}}(\mathcal{E}, \mathcal{F})=\#\{\delta(\mathbf{w}, \mathbf{z}) \mid \mathbf{w} \in \mathcal{E}, \mathbf{z} \in \mathcal{F}\}
$$

and by using similar ideas he obtains

$$
\Delta_{\mathcal{H}_{q}}(\mathcal{E}, \mathcal{F}) \geq \min \left\{\frac{\sqrt{\# \mathcal{E} \# \mathcal{F}}}{3 q^{1 / 2}}, q-1\right\}
$$

More details can be found in the original paper of L. A. Vinh [19]. For various structural properties of \mathcal{H}_{q}, interested readers can see the series of papers $[2,3,9,15,17,18]$ and references therein. In particular, they naturally lead to new examples of Ramanujan graphs (see [5, 10, 11, 12, 13]).

1.2 Main Result

For an additive character ψ on \mathbb{F}_{q} (q odd) and two sets $\mathcal{E}, \mathcal{F} \subseteq \mathcal{H}_{q}$, we define the character sum

$$
S_{\psi}(\mathcal{E}, \mathcal{F})=\sum_{\mathbf{w} \in \mathcal{E}, \mathbf{z} \in \mathcal{F}} \psi(\delta(\mathbf{w}, \mathbf{z}))
$$

(see [14] for basic properties of additive characters).
Our main result is the following.
Theorem 1. For arbitrary sets $\mathcal{E}, \mathcal{F} \subseteq \mathcal{H}_{q}$ with $\# \mathcal{E}=E, \# \mathcal{F}=F$ and any non-trivial additive character ψ on \mathbb{F}_{q}, we have

$$
S_{\psi}(\mathcal{E}, \mathcal{F}) \leq \min \left\{q+\sqrt{2 q E}, \sqrt{3} q^{5 / 4}\right\} \sqrt{E F}
$$

Clearly, the bound of Theorem 1 is non-trivial if $E F / q^{2} \rightarrow \infty$ as $q \rightarrow \infty$. Our method is a combination of Fourier analysis on finite fields of A. Iosevich and M. Rudnev [7] with the graph theory method of L. A. Vinh [19]. We note that each of the above methods can be used independently, but their combination leads to a stronger result.

We remark that if we consider any non-degenerate quadratic form Q on the n-dimensional vector space \mathbb{F}_{q}^{n}, then for any two sets $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_{q}^{n}$ with $\# \mathcal{E}=E, \# \mathcal{F}=F$ and any non-trivial additive character ψ on \mathbb{F}_{q}, we can obtain

$$
\left|\sum_{\mathbf{w} \in \mathcal{E}, \mathbf{z} \in \mathcal{F}} \psi(Q(\mathbf{w}, \mathbf{z}))\right| \leq \sqrt{q^{n} E F}
$$

which for $n=2$ looks a little better than Theorem 1 (although of course it applies to a different distance functions so the results are incomparable).

2 Preparations

2.1 Some Auxiliary Character Sums

First we need to evaluate the following character sums.
For a additive character ψ of \mathbb{F}_{q} and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in \mathcal{H}_{q}$, define

$$
T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=\sum_{z \in \mathcal{H}_{q}} \psi\left(\delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{z}\right)-\delta\left(\mathbf{w}_{\mathbf{2}}, \mathbf{z}\right)\right)
$$

Lemma 2. For a non-trivial additive character ψ of \mathbb{F}_{q} and two vectors $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in \mathcal{H}_{q}$ with $\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}}$, we have

$$
T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)= \begin{cases}-q(\psi(\tau)+\psi(-\tau)), & \text { where } \tau^{2}=4 \alpha \delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right), \tau \in \mathbb{F}_{q}^{*}, \\ 0, & \text { if } \delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right) \text { is a square in } \mathbb{F}_{q}^{*}\end{cases}
$$

Proof. First we rewrite $T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)$ as

$$
T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=\sum_{t \in \mathbb{F}_{q}} \psi(t) N_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; t\right)
$$

where

$$
N_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; t\right)=\#\left\{\mathbf{z} \in \mathcal{H}_{q}: \delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{z}\right)-\delta\left(\mathbf{w}_{\mathbf{2}}, \mathbf{z}\right)=t\right\}
$$

Let

$$
\mathbf{w}_{\mathbf{1}}=(a, b), \mathbf{w}_{\mathbf{2}}=(c, d) \in \mathcal{H}_{q}
$$

with $\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}}$ and $\mathbf{z}=(x, y) \in \mathcal{H}_{q}$. Then $\delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{z}\right)-\delta\left(\mathbf{w}_{\mathbf{2}}, \mathbf{z}\right)=t$ if and only if

$$
d\left((x-a)^{2}-\alpha(y-b)^{2}\right)-b\left((x-c)^{2}-\alpha(y-d)^{2}\right)=b d t y
$$

Recall the orthogonality property of additive characters

$$
\sum_{u \in \mathbb{F}_{q}} \psi(\gamma u)= \begin{cases}0, & \text { if } \gamma \in \mathbb{F}_{q}^{*} \tag{1}\\ q, & \text { if } \gamma=0\end{cases}
$$

Then we write

$$
N_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; t\right)=\sum_{\substack{y \in \mathbb{F}_{q}^{*} \\ x \in \mathbb{F}_{q}}} \frac{1}{q} \sum_{u \in \mathbb{F}_{q}} \psi\left(u \Psi_{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, t}(x, y)\right),
$$

where

$$
\Psi_{\mathbf{w}_{1}, \mathbf{w}_{\mathbf{2}}, t}(x, y)=d(x-a)^{2}-d \alpha(y-b)^{2}+b(x-c)^{2}-b \alpha(y-d)^{2}-b d t y
$$

To simplify, we isolate the cases for $u=0$ and $y=0$ and define the functions

$$
\begin{aligned}
G_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u\right) & =\sum_{x \in \mathbb{F}_{q}} \psi\left(u\left\{d(x-a)^{2}-b(x-c)^{2}\right\}\right) \\
H_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u, t\right) & =\sum_{y \in \mathbb{F}_{q}} \psi\left(u\left\{b \alpha(y-d)^{2}-d \alpha(y-b)^{2}-b d y t\right\}\right) \\
J_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right) & =q-1-\frac{1}{q} \sum_{u \in \mathbb{F}_{q}^{*}} G_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u\right) \psi\left(u\left\{b \alpha d^{2}-d \alpha b^{2}\right\}\right) .
\end{aligned}
$$

Then $N_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; t\right)$ can be written as

$$
N_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; t\right)=J_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)+\frac{1}{q} \sum_{u \in \mathbb{F}_{q}^{*}} G_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u\right) H_{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}}(u, t)
$$

By using the orthogonality property of additive characters (1) and noticing that $J_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)$ is independent of t, we obtain

$$
T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=\frac{1}{q} \sum_{t \in \mathbb{F}_{q}} \psi(t) \sum_{u \in \mathbb{F}_{q}^{*}} G_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u\right) H_{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}}(u, t)
$$

Since $\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}}$, if $b=d$, then $a \neq c$ and

$$
d(x-a)^{2}-b(x-c)^{2}=2 b(c-a)\left(x-\frac{a+c}{2}\right) .
$$

Hence, by (1) again we have $G_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u\right)=0$ for any $u \neq 0$. Therefore, if $b=d$ then

$$
T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=0 .
$$

If $b \neq d$, then

$$
d(x-a)^{2}-b(x-c)^{2}=(d-b)\left(x-\frac{a d-b c}{d-b}\right)^{2}-\frac{b d(a-c)^{2}}{d-b}
$$

To evaluate $G_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u\right)$, we recall some standard properties of Gauss sums over \mathbb{F}_{q} (we refer to [14] for details). The classical Gauss sum $G(\psi)$ is defined as

$$
G(\psi)=\sum_{z \in \mathbb{F}_{q}} \psi\left(z^{2}\right)
$$

It is easy to see that

$$
G(\psi)=\sum_{z \in \mathbb{F}_{q}} \eta(z) \psi(z)
$$

where η is the quadratic character of \mathbb{F}_{q}. We know that

$$
G(\psi)^{2}=\eta(-1) q
$$

and

$$
\begin{equation*}
\sum_{z \in \mathbb{F}_{q}} \psi\left(t z^{2}\right)=\eta(t) G(\psi) \tag{2}
\end{equation*}
$$

If $b \neq d$, then by using (2) we see that

$$
\begin{equation*}
G_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u\right)=G(\psi) \eta(u(d-b)) \psi\left(-\frac{b d(a-c)^{2} u}{d-b}\right) . \tag{3}
\end{equation*}
$$

For $H_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u, t\right)$, noticing that

$$
\begin{aligned}
b \alpha(y-d)^{2}- & d \alpha(y-b)^{2}-b d y t \\
& =\alpha(b-d)\left(y-\frac{b d t}{2 \alpha(b-d)}\right)^{2}+b d \alpha(d-b)+\frac{b^{2} d^{2} t^{2}}{4 \alpha(d-b)}
\end{aligned}
$$

we obtain again from (2) that

$$
\begin{equation*}
H_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} ; u, t\right)=G(\psi) \eta(u \alpha(b-d)) \psi\left(u b d \alpha(d-b)+\frac{b^{2} d^{2} t^{2} u}{4 \alpha(d-b)}\right) \tag{4}
\end{equation*}
$$

Since $G(\psi)^{2}=\eta(-1) q$ and $\eta(\alpha)=-1$, using (3), (4) and (1), we may rewrite $T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)$ as

$$
\begin{equation*}
T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=-\sum_{t \in \mathbb{F}_{q}} \psi(t) \sum_{u \in \mathbb{F}_{q}} \psi\left(u f_{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}}(t)\right), \tag{5}
\end{equation*}
$$

where

$$
f_{\mathbf{w}_{1}, \mathbf{w}_{\mathbf{2}}}(t)=b d \alpha(d-b)+\frac{b^{2} d^{2} t^{2}}{4 \alpha(d-b)}-\frac{b d(a-c)^{2}}{d-b}
$$

Recalling (1) one sees that in the identity (5) there is no contribution from the terms $t \in \mathbb{F}_{q}$ with $f_{\mathbf{w}_{1}, \mathbf{w}_{\mathbf{2}}}(t) \neq 0$. One derives that $f_{\mathbf{w}_{1}, \mathbf{w}_{\mathbf{2}}}(t)=0$ if and only if

$$
t^{2}=4 \alpha \frac{(a-c)^{2}-\alpha(d-b)^{2}}{b d}=4 \alpha \delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)
$$

Therefore if $\delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)$ is a square in \mathbb{F}_{q}^{*}, then $T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=0$, otherwise, let

$$
\tau^{2}=4 \alpha \delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)
$$

for some $\tau \in \mathbb{F}_{q}^{*}$, then

$$
T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=-q(\psi(\tau)+\psi(-\tau)),
$$

which completes the proof.

2.2 Some Graph Theory Tools

We now recall some graph theory results similar to those of L. A. Vinh [19].
First, for any fixed $a \in \mathbb{F}_{q}$, the finite non-Euclidean graph $V_{q}(\alpha, a)$ has vertices as the points in \mathcal{H}_{q} and edges between vertices $\mathbf{z}, \mathbf{w} \in \mathcal{H}_{q}$ if and only if $\delta(\mathbf{z}, \mathbf{w})=a$. It is known that, except for $a=0$ or 4α, the graph $V_{q}(\alpha, a)$ is a $\left(q^{2}-q, q+1,2 \sqrt{q}\right)$-regular graph, that is, the graph $V_{q}(\alpha, a)$ is $(q+1)$ regular on $\left(q^{2}-q\right)$ vertices with $|\lambda| \leq 2 \sqrt{q}$ for any non-trivial eigenvalue λ of the adjacency matrix of the graph $V_{q}(\alpha, a)$, see $[5,10,11,12,13,19]$ and references therein.

Next, we use the following well-known result, see [1, Chapter 9].
Lemma 3. Let \mathfrak{G} be an (n, d, λ)-regular graph. For every set of vertices \mathcal{A} of \mathfrak{G}, denote by $e(\mathcal{A})$ the number of pairs $(u, v) \in \mathcal{A} \times \mathcal{A}$ such that $u v$ is an edge of \mathfrak{G}. Then

$$
\left|e(\mathcal{A})-\frac{d}{n}(\# \mathcal{A})^{2}\right| \leq \lambda \# \mathcal{A} .
$$

3 Proof of Theorem 1

By the Cauchy inequality,

$$
\begin{equation*}
\left|S_{\psi}(\mathcal{E}, \mathcal{F})\right|^{2}=\left|\sum_{\mathbf{w} \in \mathcal{E}} \sum_{\mathbf{z} \in \mathcal{F}} \psi(\delta(\mathbf{w}, \mathbf{z}))\right|^{2} \leq F W \tag{6}
\end{equation*}
$$

where

$$
W=\sum_{\mathbf{z} \in \mathcal{F}}\left|\sum_{\mathbf{w} \in \mathcal{E}} \psi(\delta(\mathbf{w}, \mathbf{z}))\right|^{2}
$$

Extending the range of summation over $\mathbf{z} \in \mathcal{F}$ to the whole plane \mathcal{H}_{q}, squaring out and changing the order of summation, we obtain

$$
\begin{align*}
W \leq \sum_{\mathbf{z} \in \mathcal{H}_{q}}\left|\sum_{\mathbf{w} \in \mathcal{E}} \psi(\delta(\mathbf{w}, \mathbf{z}))\right|^{2}= & \sum_{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in \mathcal{E}} \sum_{\mathbf{z} \in \mathcal{H}_{q}} \psi\left(\delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{z}\right)-\delta\left(\mathbf{w}_{\mathbf{2}}, \mathbf{z}\right)\right) \tag{7}\\
= & q(q-1) E+\sum_{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}} \in \mathcal{E}} T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right) .
\end{align*}
$$

By Lemma 2

$$
\begin{equation*}
\sum_{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}} \in \mathcal{E}} T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=-q \sum_{\substack{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}} \in \mathcal{E} \\ 4 \alpha \delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=\tau^{2} \neq 0}}(\psi(\tau)+\psi(-\tau)) . \tag{8}
\end{equation*}
$$

We now estimate the above sum trivially as

$$
\left|\sum_{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}} \in \mathcal{E}} T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)\right| \leq 2 q E^{2}
$$

Therefore, we see from (7) that

$$
W \leq q^{2} E+2 q E^{2}
$$

and using (6), we obtain

$$
S_{\psi}(\mathcal{E}, \mathcal{F}) \leq(q+\sqrt{2 q E}) \sqrt{E \cdot F}
$$

On the other hand, the right hand side of (8) can be rewritten as

$$
\begin{equation*}
\sum_{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}} \in \mathcal{E}} T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=-q \sum_{\tau \in \mathbb{F}_{q}^{*}} \psi(\tau) \sum_{\substack{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{2} \in \mathcal{E} \\ 4 \alpha \delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=\tau^{2}}} 1 . \tag{9}
\end{equation*}
$$

To estimate the second sum on the right hand side, we use Lemma 3. As we have mentioned in Section 2.2, for $\tau \neq 0,4 \alpha$ each graph $V_{q}\left(\alpha, \tau^{2} /(4 \alpha)\right)$ is a $\left(q^{2}-q, q+1,2 \sqrt{q}\right)$-regular graph. So, by Lemma 3, whenever $\tau \neq 0,4 \alpha$, we have

$$
\begin{equation*}
\left|\sum_{\substack{\mathbf{w}_{1} \neq \mathbf{w}_{2} \in \mathcal{E} \\ 4 \alpha \delta\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)=\tau^{2}}} 1-\frac{q+1}{q^{2}-q} E^{2}\right|=\left|e(\mathcal{E})-\frac{q+1}{q^{2}-q} E^{2}\right| \leq 2 \sqrt{q} E . \tag{10}
\end{equation*}
$$

Also, trivially for $\tau=4 \alpha$ the solutions of the equation $\delta\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=4 \alpha$ are of the forms $\mathbf{w}_{\mathbf{1}}=(a, b), \mathbf{w}_{\mathbf{2}}=(a,-b)$. Hence for $\tau=4 \alpha$,

$$
\begin{equation*}
\sum_{\substack{\mathbf{w}_{1} \neq \mathbf{w}_{2} \in \mathcal{E} \\ 4 \alpha \delta\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)=\tau^{2}}} 1 \leq E . \tag{11}
\end{equation*}
$$

Using (10) for $\tau \neq 4 \alpha$ and (11) for $\tau=4 \alpha$, we derive from (9) that

$$
\sum_{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}} \in \mathcal{E}} T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)=-\frac{q(q+1) E^{2}}{q^{2}-q} \sum_{\substack{\tau \in \mathbb{F}_{q}^{*} \\ \tau \neq 4 \alpha}} \psi(\tau)+R=\frac{2(q+1) E^{2}}{q-1}+R
$$

where

$$
|R| \leq 2 q(q-2) \sqrt{q} E+q E .
$$

Therefore

$$
\begin{aligned}
\left|\sum_{\mathbf{w}_{\mathbf{1}} \neq \mathbf{w}_{\mathbf{2}} \in \mathcal{E}} T_{\psi}\left(\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}\right)\right| & \leq \frac{2(q+1) E^{2}}{q-1}+2 q(q-2) \sqrt{q} E+q E \\
& \leq 2 q(q+1) E+2 q(q-2) \sqrt{q} E+q E
\end{aligned}
$$

since trivially $E \leq q(q-1)$. Inserting this bound in (7), and we obtain

$$
\begin{aligned}
W & \leq q(q-1) E+2 q(q+1) E+2 q^{3 / 2}(q-2) E+q E \\
& =2 q E\left(q^{3 / 2}+\frac{3 q}{2}-2 \sqrt{q}+1\right)<3 q^{5 / 2} E
\end{aligned}
$$

since

$$
\frac{3 z}{2}-2 z^{1 / 2}+1 \leq \frac{1}{2} z^{3 / 2}
$$

for $z \geq 1$. Now, recalling (6) we finally derive

$$
S_{\psi}(\mathcal{E}, \mathcal{F}) \leq q^{5 / 4} \sqrt{3 E \cdot F}
$$

which completes the proof of Theorem 1.

References

[1] N. Alon and J. H. Spencer, 'The probabilistic method', 2nd ed., WileyIntersci., 2000.
[2] J. Angel, 'Finite upper half planes over finite fields', Finite Fields and Their Appl., 2 (1996), 62-86.
[3] J. Angel and R. Evans, 'Diameters of finite upper half plane graphs', J. Graph Theory, 23 (1996), 129-137.
[4] J. Bourgain, N. Katz and T. Tao, 'A sum product estimate in finite fields and Applications’, Geom. Funct. Analysis, 14 (2004), 27-57.
[5] C.-L. Chai and W.-C. W. Li, 'Character sums, automorphic forms, equidistribution, and Ramanujan graphs. II. Eigenvalues of Terras graphs', Forum Math., 16 (2004), 631-661.
[6] Z. Dvir, 'On the size of Kakeya sets in finite fields', J. Amer. Math. Soc. (to appear).
[7] A. Iosevich and M. Rudnev, 'Erdős distance problem in vector spaces over finite fields', Trans. Amer. Math. Soc., 359 (2007), 6127-6142.
[8] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc., Providence, RI, 2004.
[9] A. Katamoto, 'On 3rd and 4th moments of finite upper half plane graphs', Finite Fields and Their Appl., 13 (2007), 249-258.
[10] N. M. Katz, 'Estimates for Soto-Andrade sums', J. Reine Angew. Math., 438 (1993), 143-161.
[11] W.-C. W. Li, 'A survey of Ramanujan graphs', Arithmetic, Geometry, and Coding Theory (Luminy, France, 1993), de Gruyter, Berlin, 1996, 127-143.
[12] W.-C. W. Li, 'Eigenvalues of Ramanujan graphs', Emerging Applications of Number Theory (Minneapolis, MN, 1996), Springer, New York, 1999, 387-403.
[13] W.-C. W. Li, 'Ramanujan graphs and Ramanujan hypergraphs', Automorphic Forms and Applications, Amer. Math. Soc., Providence, RI, 2007, 401-427.
[14] R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, Cambridge, 1997.
[15] A. Shaheen and A. Terras, 'Fourier expansions of complex-valued Eisenstein series on finite upper half planes', Intern. J. Math. and Math. Sci., 2006 (2006), Article ID 63916, 1-17.
[16] I. E. Shparlinski, 'On the set of distances between two sets over finite fields', Intern. J. Math. and Math. Sci., 2006 (2006), Article ID 59482, $1-5$.
[17] J. Soto-Andrade and J. Vargas, 'Twisted spherical functions on the finite Poincare upper half-plane', J. Algebra, 248 (2002), 724-746.
[18] A. Terras, Fourier analysis on finite groups and applications, Cambridge Univ. Press, Cambridge, 1999.
[19] L. A. Vinh, 'Explicit Ramsey graphs and Erdos distance problem over finite Euclidean and non-Euclidean spaces', Electronic J. of Combin., 15 (2008), Aricle R5.

