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Abstract
For the finite field IF, of ¢ elements (¢ odd) and a quadratic non-
residue a € IF;, we define the distance function
(u—2)*—a(v—y)?*
vy
on the upper half plane H, = {z + y/a | v € Fy,y € IF;} C IFpe.

For two sets £, F C Hy with #& = F, #F = F and a non-trivial
additive character ¢ on IFy, we give the following estimate

§ (u+vva,z+yva) =

3 $((w.2)| < min {\/§q5/4,q + \/2qE} VEF,

we€ zeF

which is non-trivial if EF/q?> — oo as ¢ — oo.

2000 Mathematics Subject Classification: 11723, 52C10

1 Introduction

1.1 Background

Since the groundbreaking result of Jean Bourgain, Nets Katz and Terence
Tao [4] on the sum-product problem in finite fields, there have been a burst of
activity in the area of discrete analogues of classical combinatorial problems,
which have recently culminated in a solution of the Kakeya problem over
finite fields by Z. Dvir [6]. In particular, A. losevich and M. Rudnev [7] have
introduced a finite field analogue of the Erdds distance problem. Namely, it
is shown in [7] that there are absolute constants ¢, co > 0 such that for any
odd ¢q and any set & C Iy of cardinality #& > c1¢™? the number D(&) of

distances
n

d(x,y) = Z(%‘ —y)?

=1

between all pairs of vectors

X= (21, %), Y= (Y1, Yn) €E,

satisfies

D(E) > comin {q, q_(”_l)/z#é'} )
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In fact one can also obtain a more general result for the number of pairwise
distances between elements of two sets £, F C I (see also [16]).

The argument of A. Tosevich and M. Rudnev [7] is based on Fourier
analysis on finite fields, more specifically, on analysis on “Q)-spheres” in finite
fields. L. A. Vinh [19] has revisited the problem in a more general setting.
Instead of the Euclidean distance function, L. A. Vinh [19] considers any
non-degenerate quadratic forms and obtains similar results. The new idea
in [19] is to combine sharp eigenvalue estimate resulting from Ramanujan
graphs related with non-degenerate quadratic forms and a result in graph
theory. While this method, as pointed out in [19], is essentially equivalent to
that of A. Tosevich and M. Rudnev [7], this approach is more elementary.

Furthermore, L. A. Vinh [19] has considered an analogue of the Erdds
distance problem for points of the upper half plane H, on the finite field IF,,
where the upper half plane H, is

Hy={r+yvo | zeF,yclF;} CIFp,

for a fixed quadratic non-residue a € IF,, and the distance between two

points is

2 2

—a(v—y)
vy '

(u — =)

§ (u+vva,z +yva) =
For two sets £, F C 'H, he defines
Ap, (E,F)=#{0(w,z) | we&, zecF},
and by using similar ideas he obtains

AHq(ga:F) > min{%aq_ 1} :

More details can be found in the original paper of L. A. Vinh [19]. For
various structural properties of H,, interested readers can see the series of
papers [2, 3,9, 15, 17, 18] and references therein. In particular, they naturally
lead to new examples of Ramanugjan graphs (see [5, 10, 11, 12, 13]).

1.2 Main Result
For an additive character ¢ on IF, (¢ odd) and two sets £, F C H,, we define

the character sum
Su(&,F) =" > (d(w,z))

weE zeF
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(see [14] for basic properties of additive characters).
Our main result is the following.

Theorem 1. For arbitrary sets £, F C 'H, with #& = E, #F = F and any
non-trivial additive character ¢ on IF,, we have

Sy(€,F) < min {q +v/2qF, \/§q5/4} VEF.

Clearly, the bound of Theorem 1 is non-trivial if EF/¢* — oo as ¢ — oo.

Our method is a combination of Fourier analysis on finite fields of A. To-
sevich and M. Rudnev [7] with the graph theory method of L. A. Vinh [19].
We note that each of the above methods can be used independently, but their
combination leads to a stronger result.

We remark that if we consider any non-degenerate quadratic form ) on
the n-dimensional vector space IFy, then for any two sets £, F C IF) with
#E = E, #F = F and any non-trivial additive character ) on IF,, we can
obtain

> (Qw,2)| <

we€ zeF

q"EF,

which for n = 2 looks a little better than Theorem 1 (although of course it
applies to a different distance functions so the results are incomparable).

2 Preparations

2.1 Some Auxiliary Character Sums

First we need to evaluate the following character sums.
For a additive character ¢ of IF, and wq, wo € H,, define

(W1, Wa) Z W (6(wy,2) — §(wa,2)) .

z€EHq

Lemma 2. For a non-trivial additive character 1 of I, and two vectors
w1, Wo € H, with w1 # W, we have

{ —q((1) + (1)), where 7% = 4ad(wy, wa), T € IF},
0,

Ty (W1, Wa) = if 0(wy,Wa) is a square in ]FZ.



Proof. First we rewrite Ty, (Wq, Wa) as

Ty (wi,wa) = Y )Ny (w1, wa;t),

telF,

where

Ny(wy,wot) =#{z € H,: d (W1,2) — § (Wa,2) = t}.

Let
Wi = ((I,b),Wz - (Ca d) < Hq

with wy # wo and z = (z,y) € ‘H,. Then 6 (wy,2) — 0 (Wo,2z) =t if and
only if

d((z —a)* — a(y — b)*) = b((z — ¢)* — a(y — d)*) = bdty.
Recall the orthogonality property of additive characters
ifyelF
St ={ 1 §IEN )
55 q, if y=0.

Then we write

N Wl,Wz, Z Z w W1 W2t T y))

yelry uEIF‘q
mEIF‘q

where
Uiy wat(2,y) = d(x — a)2 —do(y — b)2 +b(x — 0)2 — ba(y — d)2 — bdty.

To simplify, we isolate the cases for u = 0 and y = 0 and define the functions

Gy(wi,wasu) = Y ¢ (ufd(x —a)® = b(z —¢)*})

zelF,
Hy(wy,wasu,t) = Y 1 (uf{ba(y — d)* — da(y — b)> — bdyt}) ,
y€elFy
1 2 2
Jyp(Wi,We) = q¢—1-— p Z Gy(wi, wa;u)y (u{bad® — dab’}) .
uelFy



Then Ny (w1, Wa;t) can be written as

N¢(W1,W2, ) sz W1,W2 Z Gzp Wi, W2, U w1 W2(U 15)
uGIF*

By using the orthogonality property of additive characters (1) and noticing
that J,(wq, wz) is independent of ¢, we obtain

Tw Wl,Wz Z w Z qu Wi, W2, U w1 WQ(U t)

tEIFq u€lFy

Since wq # Wa, if b = d, then a # ¢ and

d(z — a)? — bz — ¢)? = 2b(c — a) (x—“‘gc).

Hence, by (1) again we have Gy (wq, wa;u) = 0 for any u # 0. Therefore, if
b = d then
Tw (Wl, Wz) = 0.

If b # d, then

d(z — a)? — bz — )2 = (d—b) (x _ “Z = zc) _ bd?__bc)Q.

To evaluate G, (W1, Wa; u), we recall some standard properties of Gauss sums
over IF, (we refer to [14] for details). The classical Gauss sum G(v)) is defined

=) v

zelF,

It is easy to see that

zelF,

where 7 is the quadratic character of IF,. We know that

G(¢)? =n(=1)q,

and

Y v(t?) = n(t)G (). (2)

z€lF,



If b # d, then by using (2) we see that

Guwhwmm—4%wmwd—mw(—@ﬁlﬁﬁﬂ.

d—>b
For H, (w1, Wa;u,t), noticing that

ba(y — d)* — da(y — b)* — bdyt

bt \’ V2d2t2
:Oé(b—d) (y—m) —f‘bda(d—b)—f—m,

we obtain again from (2) that

Hy(wa,wai ) = GO )i(ua( )0 (ubdald =)+ 020
Since G(¢)? = n(—1)q and n(a) = —1, using (3), (4) and (1), we may rewrite
T¢ (Wl, Wz) as

Ty (Wi, W) = = Y () > ¥ (ufuwsma(t)) (5)

telF, u€lFy
where
N b2 d*t* bd(a — c)?
da(d—b) d—b
Recalling (1) one sees that in the identity (5) there is no contribution from

the terms t € IF, with fuw, w,(t) # 0. One derives that fy, w,(t) = 0 if and
only if

fW1,W2 (t) = bda(d - b)

(a —¢)* — a(d — b)?
bd
Therefore if §(wy, w2) is a square in IFy, then Ty (wy, wz) = 0, otherwise,

let

2 = 4o

= 4ad (w1, Wa).

2= dod(wy, wa)

for some 7 € IF, then

Ty (W1, w2) = —q ((7) + ¢(=7)),

which completes the proof. O



2.2 Some Graph Theory Tools

We now recall some graph theory results similar to those of L. A. Vinh [19].

First, for any fixed a € IF,, the finite non-Euclidean graph V(«, a) has
vertices as the points in ‘H, and edges between vertices z, w € 'H,, if and only
if 6(z,w) = a. It is known that, except for a = 0 or 4a, the graph V,(a, a)
is a (¢* — ¢,q + 1,2,/q)-regular graph, that is, the graph V,(a, a) is (¢ + 1)-
regular on (¢* — ¢) vertices with |A| < 2,/g for any non-trivial eigenvalue A
of the adjacency matrix of the graph V,(a,a), see [5, 10, 11, 12, 13, 19] and
references therein.

Next, we use the following well-known result, see [1, Chapter 9.

Lemma 3. Let & be an (n,d, \)-reqular graph. For every set of vertices A
of 8, denote by e(A) the number of pairs (u,v) € Ax A such that uv is an
edge of &. Then

o) — LpAP| < apa

3 Proof of Theorem 1

By the Cauchy inequality,

2

1S, (€, F)? < FW, (6)

)

we€ zeF

where )

ey

zeF

Z¢(5(W zZ

weel

Extending the range of summation over z € F to the whole plane H,, squar-
ing out and changing the order of summation, we obtain

W < Z Zw(é(w Z Z¢ (W1,2) — 6 (w2, 2))

zeH, |wee w1,w2EE 2€H, (7)
=qlq—DE+ > Ty(wi,wa).

wi1#W2€EE




By Lemma 2

Y Ty(wiwz) = —q > (¢(7) +(=7)). (8)

W1F#W2EE wi1#W2€EE
dad(wi,w2)=T2#£0

We now estimate the above sum trivially as

< 2qE2.

Z Tdf (W1> Wz)

wi1Fwa2eE

Therefore, we see from (7) that
W < ¢*E + 2qFE?,
and using (6), we obtain

50(6.7) < (¢ + VEE) VE F.

On the other hand, the right hand side of (8) can be rewritten as

Y Ty(wi,wa)=—q ) ¥(r) > L (9)

wi1F#W2€EE TEIF;‘; wiF#£wW2€EE

4ad(wi ,W2)=T2

To estimate the second sum on the right hand side, we use Lemma 3. As we
have mentioned in Section 2.2, for 7 # 0, 4« each graph V,(a, 72/(4a)) is a
(> —q,q+1, 2,/q)-regular graph. So, by Lemma 3, whenever 7 # 0, 4o, we
have

3 1—Q+1E2:FQU—%iiE2§2¢ﬂJ (10)

?—q ?—q

wiF#wW2€EE
4ad(wi ,wz):7'2

Also, trivially for 7 = 4« the solutions of the equation §(wy, wa) = 4a are
of the forms wy = (a,b), wa = (a, —b). Hence for 7 = 4a,

> 1<E (11)

wiFwW2€EE

4ad(wi ,wz):‘r2

9



Using (10) for 7 # 4o and (11) for 7 = 4a, we derive from (9) that

+1)E? 2(q + 1)E?
> Tolwiwa) = - HLEE S i r = M g
W1#AWEE -9 q
TH4a
where
|R| <2q(q —2)\/qF + qFE.
Therefore
2(q + 1)E?
Z Ty (W1, wa)| < % +2¢(q — 2)\/qE + qFE
wi1F#wW2€EE

< 29(q+1)E+2q(q — 2)\/qE + qF
since trivially F < g(¢ — 1). Inserting this bound in (7), and we obtain
W < qlg—1)E+2(q+1)E+2¢**(q—2)E +qF

3
= 2qFE (q3/2 + 7(1 —2q+ 1) < 3¢°*E,

since 5 ]
EZ — 21211 < 523/2

for z > 1. Now, recalling (6) we finally derive
Sy(E,F) < ¢®*V3E - F,

which completes the proof of Theorem 1.
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