THE ERDOS-KAC THEOREM FOR POLYNOMIALS OF
SEVERAL VARIABLES
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ABSTRACT. We prove two versions of the Erdés-Kac type theorem
for polynomials of several variables on some varieties arising from
translation and affine linear transformation.

1. INTRODUCTION

For a positive integer n, let w(n) be the number of distinct prime
divisors of n. The remarkable theorem of Erdés and Kac ([7]) asserts
that, for any v € R,
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is the Gaussian distribution function.

Erdés and Kac proved it by a probabilistic idea, building upon
the work of Hardy and Ramanujan ([10]) and Turdn ([21]) on the
normal order of w(n). Since then there has been a very rich liter-
ature on various aspects of the Erdés-Kac theorem (see for example
(1, 9, 11, 13, 14, 15, 16, 17, 19, 20]). Interested readers can refer to
Granville and Soundararajan’s paper [8] for the most recent account
and Elliot’s monograph [6] for a comprehensive treatment of the sub-
ject. In particular, Halberstam in [9] proved that

1 , w(g(n)) — A(n) _
(1)  lim }#{n.lgnﬁX, Bn) S’Y}—G(”Y):

where g(x) € Z[x] is an irreducible polynomial,
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and r(p) is the number of solutions of g(m) =0 (mod p), 0 < m < p.

In a recent paper ([3]) Bourgain, Gamburd and Sarnak showed among
other things that a large family of polynomials is “factor finite”, that
is, the subset at which the polynomial has a bounded number of prime
factors is Zariski dense in the orbit obtained by translation and affine
linear transformation. By adapting their proofs and applying a crite-
rion of Liu ([15]), in this paper we obtain two versions of the Erdds-Kac
type theorem for polynomials of several variables.

To state the first result, we need some notation.

For an additive subgroup A C Z™ of rank k£ (1 < k < n), explic-
itly given by A = Ze, @ - - - @ Ze,, for Q-linearly independent vectors
ey, ...,e € Z", we denote by V = Zcl(A) the Zariski closure of A in
the affine space A" over Q. For any b € Z", denote O, = A + b and for
any L > 0, denote

Oy(L) ={me; +--+umep, +b€ Oy |ys| < L, y; €Z, 1 <i < k}.

Theorem 1. Let A be as above. Suppose each of the polynomials
fi,-- o, [t € Zlxy,...,x,]| generates a distinct prime ideal in the co-
ordinate ring Q[V]. Let f = fi--- f,. Then for any b € Z" and for any
v € R, we have

=G(7).

#{EG OQ(L) . (,U(f(&)) —tloglogL S ’Y}

Vtloglog L

When k& =n = 1, Theorem 1 coincides with (1) on the special case
that g(z) € Z[z] is absolutely irreducible. As another example we may
choose A = Z? and f;(z,y) = 2° —y for 1 < i < t. One sees that this
choice of A and f;’s satisfies all the above conditions.

To state the second result, we use the following notation.

Let A C GL(n,Z) be a free subgroup generated by the d elements
Ay, ..., Ag. Suppose the Zariski closure G = Zcl(A) is isomorphic to
SL; over Q. Given a matrix b € Mat,,»,(Z), A acts on b by right
multiplication. Suppose Staby (b) is trivial and the G orbit V =b-G is
Zariski closed and hence defines a variety over Q. Assume dimV > 0.
Denote O, = b- A. We turn O, into a 2d-regular tree by joining the
vetex z € Oy, with the vertices z - A,z - AT', ...,z Ag,x - A", (This
is indeed a tree because A is free on the generators and Staba(b) is
trivial.) For z,y € O, let v(z,y) denote the distance in the tree from
z to y. For any L > 0, we denote

Oy(L) ={z € Op: v(z,b) < log L} .

1
lim
L—oo #Oy(L)
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Theorem 2. Let A,b be as above. Suppose each of the polynomials
fi,.., fi € @[:vl, ooy Tmn] generates a distinct prime ideal in the coor-
dinate ring Q[V], let f = fi--- fi. Then for any v € R, we have

: 1 w(f(z)) —tloglog L
lim ——— € Op(L) : < =G(y).
Jim. #Ob(L)#{z b(L) Tosloal =7 (7)
As an example we may choose b to be the 2 by 2 identity matrix,
filwy, 29, w3, 04) = x% — w4 for each 1 < i < ¢ and the subgroup A C
SL(2,7Z) to be generated by two elements

SCEIRER )

Since A is a non-elementary subgroup of SL(2,7Z) and A C I'(2), it is
known that Zcl(A) = SLy and A is a free group ([2]). One can check
that f;’s generate distinct prime ideals in Q[V] and A, the f;’s and b
satisfy the conditions of Theorem 2.

This paper is organized as follows. Liu’s criterion is briefly reviewed
in Section 2. In Section 3, we use it to prove Theorem 1 by adapting
the sieving process of the proof of Theorem 1.6 in [3]. Since the proof
of Theorem 2 is similar, it is sketched in Section 4.

Acknowledgments. The author is grateful to the referee for many
valuable suggestions.

2. PRELIMINARIES

We shall need the following criterion obtained by Liu ([15]). For
completeness and for later applications we reproduce the statement
with some adjustment.

Let O be an infinite set. For any L > 1, assign a finite subset O(L) C
O such that #O(L) — 0o as L — oo and #O(LY?) = o (#0O(L)). Let
f: O —Z\ {0} be amap. Put X = X(L) = #0O(L) and write, for

each prime [,
1
}# {n € O(L) : f(n) is divisible by I} = \(X) + ¢;/(X)

as a sum of major term \;(X) and error term e;(X). For any u distinct
primes I, s, ..., l,, we write

1 u
<7 {n € O(L) : f(n) is divisible by lily -1} = [T GO +enya, (X).
i=1

To ease our notation, the dependence on X will be dropped when there
is no ambiguity.
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In order gain information on the distribution of w( f(n)), some control
on A\; and e; is needed. Liu’s criterion uses the conditions below.
Suppose there exist absolute constants (3, ¢, where 0 < § < 1 and
¢ >0, and a function Y = Y (X) < X? such that the following hold:
(i) For each n € O(L), the number of distinct prime divisors [ of f(n)
with [ > X7 is bounded uniformly.
(ii) ZY<1§X6 A = o((log logX)l/Q).
(iii) Yy cjexs ler] = o((loglog X)'/2).
(iv) >,y N = cloglog X + o((log log X)*/?).
(v) Zlgy >‘12 = o((loglog X)l/Q)-
The sums in (ii)—(v) are over primes [ in the given range.
(vi) For any r € N and any integer v with 1 < u < r, we have

1
P (loglog X)=r/2

where for each u, the sum Y. extends over all u distinct primes
ll,lz, ey lu with ll S Y.

Theorem 3. (Liu[l5, Theorem 3]) If O and f : O — Z\ {0} satisfy

all the above conditions, then for v € R, we have

w(f(n)) — cloglog X (L)
cloglog X (L)

: 1 .
ng{)lo m# {n €eO(L):

< 7} =G(7).
While the conditions of Theorem 3 may appear complicated, in our

applications, the terms \; and e; can be easily identified and the con-

ditions easily verified, as we shall see in the proofs of Theorems 1 and

2 below.

3. PROOF OF THEOREM 1

We denote the basis e;, 1 <i < k, of A by ¢; = (as,...,ain) € Z".
Put
ayp - Qip
A= e ’
ag1 -+ Qgn
which is a matrix of rank k. For a row vector y, let |y| be the maximum
modulus of its components. Then for L large; denote

Op(L) = {yA+b:yeZF |y < L}.
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We write X for #0,(L) = (2[L] +1)*. To apply Theorem 3, one needs
to estimate, for each square-free integer d, the sum

o1 = > 1= > > oL

€0 (L) yEeZ* yE(Z/dZ)* z€Zk
f(z)=0 (mod d) lyl<L f(yA+b)=0 (mod d) |lz|<L
fyA+b)=0 (mod d) 2=y (mod d)

Suppose d < L. The inner sum can be estimated as

CULEV' o (D) X g (X“'i> |

dk dk—1 dk dk—1

Since the affine variety V' = V + b is absolutely irreducible, and the
polynomials fi,..., f; generate distinct prime ideals in the coordinate
ring Q[V], one sees that all the varieties

W, =V/([{fi=0}, i=12,. .t

are defined over Q, absolutely irreducible, and of dimension equal to
dimV’' —1 = k-1 > 0. Consider the reduction of the varieties
V', W; (mod p). According to Noether’s theorem [18], for p outside
a finite set S; of primes, the reductions of V/ and W;,1 = 1,...,1,
yield absolutely irreducible affine varieties over F, = Z/pZ. Denote by
V'(F,),V'(Z/dZ), etc. the reduction of the varieties in the correspond-
ing ring. By the Lang-Weil Theorem [12] we have that for p & Sy,

#VI(Z/pE) = 1"+ O (1)),
$WAZ/pZ) = p* 4 O (p3)).

Since the map
AP — Vv’
y — yA+b

is a bijection, one obtains

> 1= > 1=#W(z/dz),

y€e(Z/dz)® yeV'(Z/dZ)
F(Ay+b)=0 (mod d) f(¥=0 (mod d)
where
W(Z/dZ) ={y € VI(Z/dZ) : f(y) =0 (mod d)}.
Let

_ W (z/dz)

Ad T
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By Chinese Remainder Theorem, \; is multiplicative for d coprime to
[I,es, p- Since

Wz /az) = | Wiz /z),

for such square-free d one has

W(Z/dZ) < Y #Wi(Z/dZ)=> ] #W:Z/pZ)

i=1 i=1 pld

t

ZH (051 + 0P 312)) <, dF1te,
=1 p|d

Therefore for d < L and ged (d [Les, P ) = 1, we obtain

(2) Y 1=X(Mi+eq), where g < dXE

z€0(L)
f(z)=0 (mod d)

It follows from Lemma 1 below that the estimate (2) still holds if
on the left hand side the points x € O,(L) such that f(z) = 0 are
removed. Thus we may assume that f(z) # 0 for all z € Oy(L). Now
we return to A\y. For d =1 a prime and [ ¢ S; we have

W(Z/IZ) = U Wi(Z)1Z).

For fixed i # j, the algebraic subset W' = W(ZJIZ) W;(Z]IZ) is
defined over the finite field F; = Z/IZ and has dimension at most
k — 2, it follows from Lemma 2.1 of [4] that

# (W2 \wy(z/iz)) <17,

where the implied constant depends on f and V only. By the inclusion-
exclusion principle

Z#W ziz)y - Y #( (Z/1Z) W, Z/lZ))

1<i<y<t

< #W(Z/1Z) < Z #Wi(Z/IZ),

i=1
from which one obtains

W(ZJIZ) =t + O (zk-%) .
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This implies that
t
(3) A= I +0 (l_%) .
Using (2) and (3) and choosing
log X 1
Y = = S— —
P (loglogX) P 2k’
one can verify the conditions (i)—(vi) of Theorem 3 for f and O,. For
example, for (i), noticing that f € Z[z1,...,x,] and z € Oy(L), one

has f(z) < L8/ <« X, thus > isxs 1 < 1, ie., the number of

Uf(z)
distinct prime divisors [ of f(x) with [ > X* is bounded uniformly.

For (ii), noticing loglog Y = loglog X — logloglog X, one has

REEDY §+o(z—3><<t1og10gxﬁ—tloglog§/+0(1),

Y<i<X?B Y<iI<X8
1€5,

which is o((loglog X)'/?) as X goes to infinity. The conditions (iii)(v)
can be verified similarly.
Finally, for (vi), for any fixed r € Nand 1 <u <,

S eten] <0 S0 X TR 1)< XTRYTH < Xk (log X

Li<Y Li<Y

which is o((loglog X)™"/?) as X goes to infinity.

Since the conditions (i)—(vi) of Theorem 3 are satisfied for f and O,
the desired conclusion follows from Theorem 3. The proof of Theorem
1 will be completed once we prove Lemma 1 below.

Lemma 1. Let W be a proper closed subset of V! =V +b defined over
Q. Then as L — oo one has

#(ON\W) < X' -av

Proof. The proof is very similar to that of Proposition 3.2 in [3]. For
the sake of completeness we give a detailed proof here.

Since V! = V + b is irreducible, W is defined over Q and has di-
mension at most dimV —1 =k —1. Let Wy, ..., W, be the irreducible
components of W. Then we have W = |J_, W}, where W,’s are defined
over a finite extension K of Q and dim W; < k — 1 for each j. For P
outside a finite set of prime ideals of the ring of integers O, W is an
absolutely irreducible variety over the finite field Ok /P ([18]). Hence
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by [12] we have
#W,(Ox /P) < N(P)"™ ™) < N(P)F.

Here, as usual, N(P) = #(Ogk/P). Choose p so that it splits com-
pletely in K and let P|(p). Then Ok /P = F, and we have

(4)  #W(Z/pZ) <Y #W;(Ox/P) < N(P)F =phL.

J=1

Now proceed as before. For L. — oo and any large p as above, we have

#(@mOw) = Y 1< > ¥ u

z€0(L) zEW(Z/PZ)  yeZF |y|<L
zeW yA+b=z (mod p)

Similarly the right hand side can be estimated as
X Xl—l/k
> (Fro(S5))-
p p
zeW(Z/pZ)

Hence for large p as in (4),
” (OQ(L) N W> < Xp~ 4 X1k,

By the Chebotarev density theorem ([5]) we can choose p which splits
completely in K and which satisfies

XVkjg < p<oxt/k
With this choice we get the bound claimed in Lemma 1. [

4. PROOF OF THEOREM 2

It is elementary that the number of points on a 2d-regular tree whose
distance to a given vertex is at most [log L] is equal to X = #O,(L) =
%ﬂig”_l. By the assumptions of Theorem 2, V' is an absolutely
irreducible affine variety defined over Q with dimV > 0 and fi,..., f;
generate distinct prime ideals in Q[V]. Hence for i = 1,...,t, the

varieties

W=V ﬂ{f i =0}
are defined over QQ, absolutely irreducible, and of dimension equal to
dimV — 1. We consider the reduction of the varieties (mod p). By
Noether’s theorem [18] and the Lang-Weil Theorem [12], there is a finite
set S of primes such that if p € S, the varieties V(Z/pZ), W;(Z/pZ)
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are absolutely irreducible and
#V(Z/pZ) = p™" + O (pdimv‘%) :
#Wl(Z/pZ) _ pdimV—l +0 <pdimvfg) )

By using the uniform expansion property of SLy established in [2] (or
assuming a conjecture of Lubotzy for a more general setting), Bourgain,
Gamburd and Sarnak proved (Proposition 3.1, [3]) that

1
(5) X Z 1:)\d+€d7

z€0y(L)
v(z,b)<L
f(@)=0 (mod d)

for square-free integers d < X coprime to [] p. Here S, is a finite

set of primes containing S; and
_ #i(2/dz)
AV (Z]dL)’

pES2

)\d eg <. ddimV—l—l—eX'y—l’

where
Vo(Z/dZ) = {y € V(Z/dZ) : f(y) =0 (mod d)},

and the absolute constant 7 < 1 is bounded below by some ¢ > 0. Also
by Proposition 3.2 in [3], in the sum the terms z € Oy(L) with f(z) =0
can also be omitted without altering (5). Clearly A\, is a multiplicative
function of d coprime to HpE s, p- With similar arguments as in the
proof of Theorem 1, for d = [ a prime and [ ¢ S5 we have

t
(6) N=c+0 (7).
Now using (5), (6), choosing Y = exp(log X/loglog X) and 5 > 0 to
be sufficiently small, we can similarly verify that the conditions (i)—(vi)
of Theorem 3 for f and O, hold. This completes the proof of Theorem
2.
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