THE ERDÖS-KAC THEOREM FOR POLYNOMIALS OF SEVERAL VARIABLES

MAOSHENG XIONG

Abstract

We prove two versions of the Erdős-Kac type theorem for polynomials of several variables on some varieties arising from translation and affine linear transformation.

1. Introduction

For a positive integer n, let $\omega(n)$ be the number of distinct prime divisors of n. The remarkable theorem of Erdős and Kac ([7]) asserts that, for any $\gamma \in \mathbb{R}$,

$$
\lim _{X \rightarrow \infty} \frac{1}{X} \#\left\{1 \leq n \leq X: \frac{\omega(n)-\log \log n}{\sqrt{\log \log n}} \leq \gamma\right\}=G(\gamma)
$$

where

$$
G(\gamma):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\gamma} e^{-\frac{t^{2}}{2}} \mathrm{~d} t
$$

is the Gaussian distribution function.
Erdős and Kac proved it by a probabilistic idea, building upon the work of Hardy and Ramanujan ([10]) and Turán ([21]) on the normal order of $\omega(n)$. Since then there has been a very rich literature on various aspects of the Erdős-Kac theorem (see for example $[1,9,11,13,14,15,16,17,19,20])$. Interested readers can refer to Granville and Soundararajan's paper [8] for the most recent account and Elliot's monograph [6] for a comprehensive treatment of the subject. In particular, Halberstam in [9] proved that

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{1}{X} \#\left\{n: 1 \leq n \leq X, \frac{\omega(g(n))-A(n)}{\sqrt{B(n)}} \leq \gamma\right\}=G(\gamma) \tag{1}
\end{equation*}
$$

where $g(x) \in \mathbb{Z}[x]$ is an irreducible polynomial,

$$
A(n)=\sum_{p<n} \frac{r(p)}{p}, \quad B(n)=\sum_{p<n} \frac{r(p)^{2}}{p}
$$

and $r(p)$ is the number of solutions of $g(m) \equiv 0(\bmod p), 0 \leq m<p$.
In a recent paper ([3]) Bourgain, Gamburd and Sarnak showed among other things that a large family of polynomials is "factor finite", that is, the subset at which the polynomial has a bounded number of prime factors is Zariski dense in the orbit obtained by translation and affine linear transformation. By adapting their proofs and applying a criterion of Liu ([15]), in this paper we obtain two versions of the Erdős-Kac type theorem for polynomials of several variables.

To state the first result, we need some notation.
For an additive subgroup $\Lambda \subset \mathbb{Z}^{n}$ of rank $k(1 \leq k \leq n)$, explicitly given by $\Lambda=\mathbb{Z} \underline{e}_{1} \bigoplus \cdots \bigoplus \mathbb{Z} \underline{e}_{k}$ for \mathbb{Q}-linearly independent vectors $\underline{e}_{1}, \ldots, \underline{e}_{k} \in \mathbb{Z}^{n}$, we denote by $V=Z c l(\Lambda)$ the Zariski closure of Λ in the affine space \mathbb{A}^{n} over \mathbb{Q}. For any $\underline{b} \in \mathbb{Z}^{n}$, denote $\mathcal{O}_{b}=\Lambda+\underline{b}$ and for any $L>0$, denote

$$
\mathcal{O}_{\underline{b}}(L)=\left\{y_{1} \underline{e}_{1}+\cdots+y_{k} \underline{e}_{k}+\underline{b} \in \mathcal{O}_{\underline{b}}:\left|y_{i}\right| \leq L, y_{i} \in \mathbb{Z}, 1 \leq i \leq k\right\}
$$

Theorem 1. Let Λ be as above. Suppose each of the polynomials $f_{1}, \ldots, f_{t} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ generates a distinct prime ideal in the coordinate ring $\mathbb{Q}[V]$. Let $f=f_{1} \cdots f_{t}$. Then for any $\underline{b} \in \mathbb{Z}^{n}$ and for any $\gamma \in \mathbb{R}$, we have

$$
\lim _{L \rightarrow \infty} \frac{1}{\# \mathcal{O}_{\underline{b}}(L)} \#\left\{\underline{x} \in \mathcal{O}_{\underline{b}}(L): \frac{\omega(f(\underline{x}))-t \log \log L}{\sqrt{t \log \log L}} \leq \gamma\right\}=G(\gamma) .
$$

When $k=n=1$, Theorem 1 coincides with (1) on the special case that $g(x) \in \mathbb{Z}[x]$ is absolutely irreducible. As another example we may choose $\Lambda=\mathbb{Z}^{2}$ and $f_{i}(x, y)=x^{i}-y$ for $1 \leq i \leq t$. One sees that this choice of Λ and f_{i} 's satisfies all the above conditions.

To state the second result, we use the following notation.
Let $\Lambda \subset \mathbf{G L}(n, \mathbb{Z})$ be a free subgroup generated by the d elements A_{1}, \ldots, A_{d}. Suppose the Zariski closure $G=Z c l(\Lambda)$ is isomorphic to $\mathbf{S L}_{2}$ over \mathbb{Q}. Given a matrix $\underline{b} \in \operatorname{Mat}_{m \times n}(\mathbb{Z}), \Lambda$ acts on \underline{b} by right multiplication. Suppose $\operatorname{Stab}_{\Lambda}(\underline{b})$ is trivial and the G orbit $V=\underline{b} \cdot G$ is Zariski closed and hence defines a variety over \mathbb{Q}. Assume $\operatorname{dim} V>0$. Denote $\mathcal{O}_{\underline{b}}=\underline{b} \cdot \Lambda$. We turn $\mathcal{O}_{\underline{b}}$ into a $2 d$-regular tree by joining the vetex $\underline{x} \in \mathcal{O}_{\underline{b}}$ with the vertices $\underline{x} \cdot A_{1}, \underline{x} \cdot A_{1}^{-1}, \ldots, \underline{x} \cdot A_{d}, \underline{x} \cdot A_{d}^{-1}$. (This is indeed a tree because Λ is free on the generators and $\operatorname{Stab}_{\Lambda}(\underline{b})$ is trivial.) For $\underline{x}, \underline{y} \in \mathcal{O}_{\underline{b}}$, let $v(\underline{x}, \underline{y})$ denote the distance in the tree from \underline{x} to y. For any $L>0$, we denote

$$
\mathcal{O}_{\underline{b}}(L)=\left\{\underline{x} \in \mathcal{O}_{\underline{b}}: v(\underline{x}, \underline{b}) \leq \log L\right\} .
$$

Theorem 2. Let Λ, \underline{b} be as above. Suppose each of the polynomials $f_{1}, \ldots, f_{t} \in \mathbb{Z}\left[x_{1}, \ldots, x_{m n}\right]$ generates a distinct prime ideal in the coordinate ring $\overline{\mathbb{Q}}[V]$, let $f=f_{1} \cdots f_{t}$. Then for any $\gamma \in \mathbb{R}$, we have

$$
\lim _{L \rightarrow \infty} \frac{1}{\# \mathcal{O}_{\underline{b}}(L)} \#\left\{\underline{x} \in \mathcal{O}_{\underline{b}}(L): \frac{\omega(f(\underline{x}))-t \log \log L}{\sqrt{t \log \log L}} \leq \gamma\right\}=G(\gamma)
$$

As an example we may choose \underline{b} to be the 2 by 2 identity matrix, $f_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{i}-x_{4}$ for each $1 \leq i \leq t$ and the subgroup $\Lambda \subset$ $\mathbf{S L}(2, \mathbb{Z})$ to be generated by two elements

$$
\Lambda=\left\langle\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\right\rangle
$$

Since Λ is a non-elementary subgroup of $\mathbf{S L}(2, \mathbb{Z})$ and $\Lambda \subset \Gamma(2)$, it is known that $Z c l(\Lambda)=\mathrm{SL}_{2}$ and Λ is a free group ([2]). One can check that f_{i} 's generate distinct prime ideals in $\mathbb{Q}[V]$ and Λ, the f_{i} 's and \underline{b} satisfy the conditions of Theorem 2.

This paper is organized as follows. Liu's criterion is briefly reviewed in Section 2. In Section 3, we use it to prove Theorem 1 by adapting the sieving process of the proof of Theorem 1.6 in [3]. Since the proof of Theorem 2 is similar, it is sketched in Section 4.

Acknowledgments. The author is grateful to the referee for many valuable suggestions.

2. Preliminaries

We shall need the following criterion obtained by Liu ([15]). For completeness and for later applications we reproduce the statement with some adjustment.

Let \mathcal{O} be an infinite set. For any $L>1$, assign a finite subset $\mathcal{O}(L) \subset$ \mathcal{O} such that $\# \mathcal{O}(L) \rightarrow \infty$ as $L \rightarrow \infty$ and $\# \mathcal{O}\left(L^{1 / 2}\right)=o(\# \mathcal{O}(L))$. Let $f: \mathcal{O} \longrightarrow \mathbb{Z} \backslash\{0\}$ be a map. Put $X=X(L)=\# \mathcal{O}(L)$ and write, for each prime l,

$$
\frac{1}{X} \#\{n \in \mathcal{O}(L): f(n) \text { is divisible by } l\}=\lambda_{l}(X)+e_{l}(X)
$$

as a sum of major term $\lambda_{l}(X)$ and error term $e_{l}(X)$. For any u distinct primes $l_{1}, l_{2}, \ldots, l_{u}$, we write
$\frac{1}{X} \#\left\{n \in \mathcal{O}(L): f(n)\right.$ is divisible by $\left.l_{1} l_{2} \cdots l_{u}\right\}=\prod_{i=1}^{u} \lambda_{l_{i}}(X)+e_{l_{1} l_{2} \cdots l_{u}}(X)$.
To ease our notation, the dependence on X will be dropped when there is no ambiguity.

In order gain information on the distribution of $\omega(f(n))$, some control on λ_{l} and e_{l} is needed. Liu's criterion uses the conditions below.

Suppose there exist absolute constants β, c, where $0<\beta \leq 1$ and $c>0$, and a function $Y=Y(X) \leq X^{\beta}$ such that the following hold:
(i) For each $n \in \mathcal{O}(L)$, the number of distinct prime divisors l of $f(n)$ with $l>X^{\beta}$ is bounded uniformly.
(ii) $\sum_{Y<l \leq X^{\beta}} \lambda_{l}=o\left((\log \log X)^{1 / 2}\right)$.
(iii) $\sum_{Y<l \leq X^{\beta}}\left|e_{l}\right|=o\left((\log \log X)^{1 / 2}\right)$.
(iv) $\sum_{l \leq Y} \lambda_{l}=c \log \log X+o\left((\log \log X)^{1 / 2}\right)$.
(v) $\sum_{l \leq Y} \lambda_{l}^{2}=o\left((\log \log X)^{1 / 2}\right)$.

The sums in (ii)-(v) are over primes l in the given range.
(vi) For any $r \in \mathbb{N}$ and any integer u with $1 \leq u \leq r$, we have

$$
\lim _{X \rightarrow \infty} \frac{\sum^{\prime \prime}\left|e_{l_{1} \cdots l_{u}}\right|}{(\log \log X)^{-r / 2}}=0
$$

where for each u, the sum $\sum^{\prime \prime}$ extends over all u distinct primes $l_{1}, l_{2}, \ldots, l_{u}$ with $l_{i} \leq Y$.

Theorem 3. (Liu[15, Theorem 3]) If \mathcal{O} and $f: \mathcal{O} \rightarrow \mathbb{Z} \backslash\{0\}$ satisfy all the above conditions, then for $\gamma \in \mathbb{R}$, we have

$$
\lim _{L \rightarrow \infty} \frac{1}{X(L)} \#\left\{n \in \mathcal{O}(L): \frac{\omega(f(n))-c \log \log X(L)}{\sqrt{c \log \log X(L)}} \leq \gamma\right\}=G(\gamma)
$$

While the conditions of Theorem 3 may appear complicated, in our applications, the terms λ_{l} and e_{l} can be easily identified and the conditions easily verified, as we shall see in the proofs of Theorems 1 and 2 below.

3. Proof of Theorem 1

We denote the basis $\underline{e}_{i}, 1 \leq i \leq k$, of Λ by $\underline{e}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in \mathbb{Z}^{n}$. Put

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
& \cdots & \\
a_{k 1} & \cdots & a_{k n}
\end{array}\right)
$$

which is a matrix of rank k. For a row vector \underline{y}, let $|\underline{y}|$ be the maximum modulus of its components. Then for L large, denote

$$
\mathcal{O}_{\underline{b}}(L)=\left\{\underline{y} A+\underline{b}: \underline{y} \in \mathbb{Z}^{k},|y| \leq L\right\} .
$$

We write X for $\# \mathcal{O}_{\underline{b}}(L)=(2[L]+1)^{k}$. To apply Theorem 3 , one needs to estimate, for each square-free integer d, the sum

$$
\sum_{\substack{\underline{x} \in \mathcal{O}_{b}(L) \\ f(\underline{x}) \equiv 0}} 1=\sum_{\substack{\left.\underline{y} \in \mathbb{Z}^{k} \\ \mid \bmod d\right)}} \sum_{\substack{\underline{y} \mid \leq L}} \sum_{\substack{\underline{y} \in(\mathbb{Z} / d \mathbb{Z})^{k} \\ f(\underline{y} A+\underline{b}) \equiv 0}} 1 .
$$

Suppose $d \leq L$. The inner sum can be estimated as

$$
\frac{(2[L]+1)^{k}}{d^{k}}+O\left(\frac{(2[L]+1)^{k-1}}{d^{k-1}}\right)=\frac{X}{d^{k}}+O\left(\frac{X^{1-\frac{1}{k}}}{d^{k-1}}\right) .
$$

Since the affine variety $V^{\prime}=V+\underline{b}$ is absolutely irreducible, and the polynomials f_{1}, \ldots, f_{t} generate distinct prime ideals in the coordinate ring $\overline{\mathbb{Q}}[V]$, one sees that all the varieties

$$
W_{i}=V^{\prime} \bigcap\left\{f_{i}=0\right\}, \quad i=1,2, \ldots, t
$$

are defined over \mathbb{Q}, absolutely irreducible, and of dimension equal to $\operatorname{dim} V^{\prime}-1=k-1 \geq 0$. Consider the reduction of the varieties $V^{\prime}, W_{i}(\bmod p)$. According to Noether's theorem [18], for p outside a finite set S_{1} of primes, the reductions of V^{\prime} and $W_{i}, i=1, \ldots, t$, yield absolutely irreducible affine varieties over $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$. Denote by $V^{\prime}\left(\mathbb{F}_{p}\right), V^{\prime}(\mathbb{Z} / d \mathbb{Z})$, etc. the reduction of the varieties in the corresponding ring. By the Lang-Weil Theorem [12] we have that for $p \notin S_{1}$,

$$
\begin{aligned}
& \# V^{\prime}(\mathbb{Z} / p \mathbb{Z})=p^{k}+O\left(p^{k-\frac{1}{2}}\right) \\
& \# W_{i}(\mathbb{Z} / p \mathbb{Z})=p^{k-1}+O\left(p^{k-\frac{3}{2}}\right)
\end{aligned}
$$

Since the map

$$
\begin{array}{ccc}
\mathbb{A}^{k} & \longrightarrow & V^{\prime} \\
\underline{y} & \mapsto & \underline{y} A+\underline{b}
\end{array}
$$

is a bijection, one obtains

$$
\sum_{\substack{\left.\underline{y} \in(\mathbb{Z} / d \mathbb{Z})^{k} \\ A \underline{\underline{y}}+\underline{b}\right) \equiv 0(\bmod d)}} 1=\sum_{\substack{\underline{y} \in V^{\prime}(\mathbb{Z} / d \mathbb{Z}) \\ f(\underline{y}) \equiv 0 \\(\bmod d)}} 1=\# W(\mathbb{Z} / d \mathbb{Z}),
$$

where

$$
W(\mathbb{Z} / d \mathbb{Z})=\left\{\underline{y} \in V^{\prime}(\mathbb{Z} / d \mathbb{Z}): f(\underline{y}) \equiv 0 \quad(\bmod d)\right\}
$$

Let

$$
\lambda_{d}=\frac{\# W(\mathbb{Z} / d \mathbb{Z})}{d^{k}}
$$

By Chinese Remainder Theorem, λ_{d} is multiplicative for d coprime to $\prod_{p \in S_{1}} p$. Since

$$
W(\mathbb{Z} / d \mathbb{Z})=\bigcup_{i=1}^{t} W_{i}(\mathbb{Z} / d \mathbb{Z})
$$

for such square-free d one has

$$
\begin{aligned}
\# W(\mathbb{Z} / d \mathbb{Z}) & \leq \sum_{i=1}^{t} \# W_{i}(\mathbb{Z} / d \mathbb{Z})=\sum_{i=1}^{t} \prod_{p \mid d} \# W_{i}(\mathbb{Z} / p \mathbb{Z}) \\
& =\sum_{i=1}^{t} \prod_{p \mid d}\left(p^{k-1}+O\left(p^{k-3 / 2}\right)\right) \ll_{\epsilon} d^{k-1+\epsilon} .
\end{aligned}
$$

Therefore for $d \leq L$ and $\operatorname{gcd}\left(d, \prod_{p \in S_{1}} p\right)=1$, we obtain

$$
\begin{equation*}
\sum_{\substack{x \in \mathcal{O}_{\underline{b}}(L) \\ f(\underline{x}) \equiv 0}} 1=X\left(\lambda_{d}+e_{d}\right) \text {, where } e_{d}<_{\epsilon} d^{\epsilon} X^{-\frac{1}{k}} \text {. } \tag{2}
\end{equation*}
$$

It follows from Lemma 1 below that the estimate (2) still holds if on the left hand side the points $\underline{x} \in \mathcal{O}_{\underline{b}}(L)$ such that $f(\underline{x})=0$ are removed. Thus we may assume that $f(\underline{x}) \neq 0$ for all $\underline{x} \in \mathcal{O}_{\underline{b}}(L)$. Now we return to λ_{d}. For $d=l$ a prime and $l \notin S_{1}$ we have

$$
W(\mathbb{Z} / l \mathbb{Z})=\bigcup_{i=1}^{t} W_{i}(\mathbb{Z} / l \mathbb{Z})
$$

For fixed $i \neq j$, the algebraic subset $W^{\prime}=W_{i}(\mathbb{Z} / l \mathbb{Z}) \bigcap W_{j}(\mathbb{Z} / l \mathbb{Z})$ is defined over the finite field $\mathbb{F}_{l}=\mathbb{Z} / l \mathbb{Z}$ and has dimension at most $k-2$, it follows from Lemma 2.1 of [4] that

$$
\#\left(W_{i}(\mathbb{Z} / l \mathbb{Z}) \bigcap W_{j}(\mathbb{Z} / l \mathbb{Z})\right) \ll l^{k-2}
$$

where the implied constant depends on f and V only. By the inclusionexclusion principle

$$
\begin{aligned}
& \sum_{i=1}^{t} \# W_{i}(\mathbb{Z} / l \mathbb{Z})-\sum_{1 \leq i<j \leq t} \#\left(W_{i}(\mathbb{Z} / l \mathbb{Z}) \bigcap W_{j}(\mathbb{Z} / l \mathbb{Z})\right) \\
\leq & \# W(\mathbb{Z} / l \mathbb{Z}) \leq \sum_{i=1}^{t} \# W_{i}(\mathbb{Z} / l \mathbb{Z})
\end{aligned}
$$

from which one obtains

$$
\# W(\mathbb{Z} / l \mathbb{Z})=t l^{k-1}+O\left(l^{k-\frac{3}{2}}\right)
$$

This implies that

$$
\begin{equation*}
\lambda_{l}=\frac{t}{l}+O\left(l^{-\frac{3}{2}}\right) . \tag{3}
\end{equation*}
$$

Using (2) and (3) and choosing

$$
Y=\exp \left(\frac{\log X}{\log \log X}\right), \quad \beta=\frac{1}{2 k},
$$

one can verify the conditions (i)-(vi) of Theorem 3 for f and $\mathcal{O}_{\underline{b}}$. For example, for (i), noticing that $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ and $\underline{x} \in \mathcal{O}_{\underline{b}}(L)$, one has $f(\underline{x}) \ll L^{\operatorname{deg} f} \ll X^{\frac{\operatorname{deg} f}{k}}$, thus $\sum_{\substack{l>X^{\beta} \\ l \mid f(\underline{x})}} 1 \ll 1$, i.e., the number of distinct prime divisors l of $f(\underline{x})$ with $l>X^{\beta}$ is bounded uniformly. For (ii), noticing $\log \log Y=\log \log X-\log \log \log X$, one has

$$
\sum_{\substack{Y<l \leq X^{\beta} \\ l \notin S_{1}}} \lambda_{l} \leq \sum_{Y<l \leq X^{\beta}} \frac{t}{l}+O\left(l^{-\frac{3}{2}}\right) \ll t \log \log X^{\beta}-t \log \log Y+O(1)
$$

which is $o\left((\log \log X)^{1 / 2}\right)$ as X goes to infinity. The conditions (iii)-(v) can be verified similarly.

Finally, for (vi), for any fixed $r \in \mathbb{N}$ and $1 \leq u \leq r$,

$$
\sum_{l_{i} \leq Y}^{\prime \prime}\left|e_{l_{1} \cdots l_{u}}\right| \leq \epsilon \sum_{l_{i} \leq Y} X^{-\frac{1}{k}}\left(l_{1} \cdots l_{u}\right)^{\epsilon} \leq X^{-\frac{1}{k}} Y^{r(1+\epsilon)} \leq X^{-\frac{1}{k}}(\log X)^{2 r}
$$

which is $o\left((\log \log X)^{-r / 2}\right)$ as X goes to infinity.
Since the conditions (i)-(vi) of Theorem 3 are satisfied for f and $\mathcal{O}_{\underline{b}}$, the desired conclusion follows from Theorem 3. The proof of Theorem 1 will be completed once we prove Lemma 1 below.

Lemma 1. Let W be a proper closed subset of $V^{\prime}=V+\underline{b}$ defined over \mathbb{Q}. Then as $L \rightarrow \infty$ one has

$$
\#\left(\mathcal{O}_{\underline{b}}(L) \bigcap W\right) \ll X^{1-\frac{1}{\operatorname{dim} V}}
$$

Proof. The proof is very similar to that of Proposition 3.2 in [3]. For the sake of completeness we give a detailed proof here.

Since $V^{\prime}=V+\underline{b}$ is irreducible, W is defined over \mathbb{Q} and has dimension at most $\operatorname{dim} V-1=k-1$. Let W_{1}, \ldots, W_{r} be the irreducible components of W. Then we have $W=\bigcup_{i=1}^{r} W_{j}$, where W_{j} 's are defined over a finite extension K of \mathbb{Q} and $\operatorname{dim} W_{j} \leq k-1$ for each j. For \mathcal{P} outside a finite set of prime ideals of the ring of integers \mathcal{O}_{K}, W_{j} is an absolutely irreducible variety over the finite field $\mathcal{O}_{K} / \mathcal{P}$ ([18]). Hence
by [12] we have

$$
\# W_{j}\left(\mathcal{O}_{K} / \mathcal{P}\right) \ll N(\mathcal{P})^{\operatorname{dim}\left(W_{j}\right)} \leq N(\mathcal{P})^{k-1}
$$

Here, as usual, $N(\mathcal{P})=\#\left(\mathcal{O}_{K} / \mathcal{P}\right)$. Choose p so that it splits completely in K and let $\mathcal{P} \mid(p)$. Then $\mathcal{O}_{K} / \mathcal{P} \cong \mathbb{F}_{p}$ and we have

$$
\begin{equation*}
\# W(\mathbb{Z} / p \mathbb{Z}) \leq \sum_{j=1}^{r} \# W_{j}\left(\mathcal{O}_{K} / \mathcal{P}\right) \ll N(P)^{k-1}=p^{k-1} \tag{4}
\end{equation*}
$$

Now proceed as before. For $L \rightarrow \infty$ and any large p as above, we have

$$
\#\left(\mathcal{O}_{\underline{b}}(L) \bigcap W\right)=\sum_{\substack{\underline{x} \in \mathcal{O}_{b}(L) \\ \underline{x} \in W}} 1 \leq \sum_{\substack{x \in W(\mathbb{Z} / p \mathbb{Z})}} \sum_{\substack{\underline{y} \in \mathbb{Z}^{k},|y| \leq L \\ \underline{y} A+\underline{b}=\underline{x}(\bmod p)}} 1 .
$$

Similarly the right hand side can be estimated as

$$
\sum_{\underline{x} \in W(\mathbb{Z} / p \mathbb{Z})}\left(\frac{X}{p^{k}}+O\left(\frac{X^{1-1 / k}}{p^{k-1}}\right)\right)
$$

Hence for large p as in (4),

$$
\#\left(\mathcal{O}_{\underline{b}}(L) \bigcap W\right) \ll X p^{-1}+X^{1-1 / k}
$$

By the Chebotarev density theorem ([5]) we can choose p which splits completely in K and which satisfies

$$
X^{1 / k} / 2 \leq p \leq 2 X^{1 / k}
$$

With this choice we get the bound claimed in Lemma 1.

4. Proof of Theorem 2

It is elementary that the number of points on a $2 d$-regular tree whose distance to a given vertex is at most $[\log L]$ is equal to $X=\# \mathcal{O}_{b}(L)=$ $\frac{d(2 d-1)^{[\log L]}-1}{d-1}$. By the assumptions of Theorem $2, V$ is an absolutely irreducible affine variety defined over \mathbb{Q} with $\operatorname{dim} V>0$ and f_{1}, \ldots, f_{t} generate distinct prime ideals in $\overline{\mathbb{Q}}[V]$. Hence for $i=1, \ldots, t$, the varieties

$$
W_{i}=V \bigcap\left\{f_{i}=0\right\}
$$

are defined over \mathbb{Q}, absolutely irreducible, and of dimension equal to $\operatorname{dim} V-1$. We consider the reduction of the varieties $(\bmod p)$. By Noether's theorem [18] and the Lang-Weil Theorem [12], there is a finite set S_{1} of primes such that if $p \notin S_{1}$, the varieties $V(\mathbb{Z} / p \mathbb{Z}), W_{i}(\mathbb{Z} / p \mathbb{Z})$
are absolutely irreducible and

$$
\begin{aligned}
& \# V(\mathbb{Z} / p \mathbb{Z})=p^{\operatorname{dim} V}+O\left(p^{\operatorname{dim} V-\frac{1}{2}}\right) \\
& \# W_{i}(\mathbb{Z} / p \mathbb{Z})=p^{\operatorname{dim} V-1}+O\left(p^{\operatorname{dim} V-\frac{3}{2}}\right)
\end{aligned}
$$

By using the uniform expansion property of $\mathbf{S L}_{2}$ established in [2] (or assuming a conjecture of Lubotzy for a more general setting), Bourgain, Gamburd and Sarnak proved (Proposition 3.1, [3]) that

$$
\begin{equation*}
\frac{1}{X} \sum_{\substack{x \in \mathcal{O}_{b}(L) \\ v(\underline{x}, b) \leq L \\ f(\underline{x}) \equiv 0}} 1=\lambda_{d}+e_{d}, \tag{5}
\end{equation*}
$$

for square-free integers $d \leq X$ coprime to $\prod_{p \in S_{2}} p$. Here S_{2} is a finite set of primes containing S_{1} and

$$
\lambda_{d}=\frac{\# V_{0}(\mathbb{Z} / d \mathbb{Z})}{\# V(\mathbb{Z} / d \mathbb{Z})}, \quad e_{d} \ll_{\epsilon} d^{\operatorname{dim} V-1+\epsilon} X^{\gamma-1}
$$

where

$$
V_{0}(\mathbb{Z} / d \mathbb{Z})=\{\underline{y} \in V(\mathbb{Z} / d \mathbb{Z}): f(\underline{y}) \equiv 0 \quad(\bmod d)\}
$$

and the absolute constant $\gamma<1$ is bounded below by some $\delta>0$. Also by Proposition 3.2 in [3], in the sum the terms $\underline{x} \in \mathcal{O}_{\underline{b}}(L)$ with $f(\underline{x})=0$ can also be omitted without altering (5). Clearly λ_{d} is a multiplicative function of d coprime to $\prod_{p \in S_{2}} p$. With similar arguments as in the proof of Theorem 1, for $d=l$ a prime and $l \notin S_{2}$ we have

$$
\begin{equation*}
\lambda_{l}=\frac{t}{l}+O\left(l^{-\frac{3}{2}}\right) . \tag{6}
\end{equation*}
$$

Now using (5), (6), choosing $Y=\exp (\log X / \log \log X)$ and $\beta>0$ to be sufficiently small, we can similarly verify that the conditions (i)-(vi) of Theorem 3 for f and $\mathcal{O}_{\underline{\underline{b}}}$ hold. This completes the proof of Theorem 2.

References

[1] K. Alladi, An Erdős-Kac theorem for integers without large prime factors, Acta Arith. 49(1987), no. 1, 81-105.
[2] J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayley graphs of $\mathbf{S L}_{2}\left(\mathbb{F}_{p}\right)$, Annals of Mathematics, to appear.
[3] J. Bourgain, A. Gamburd, P. Sarnak, Sieving, expanders, and sum-product, preprint.
[4] A. Cafurea, G Materab, Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields and Their Applications 12(2006), 155-185
[5] N.G. Chebotarev, Opredelenie plotnosti sovokupnosti prostykh chisel, prinadlezhashchikh zadannomu klassu podstanovok, Izv. Ross. Akad. Nauk. 17(1923), 205-250.
[6] P.D.T.A Elliott, "Probabilistic Number Theory, I \& II. ", Grundlehren Math. Wiss. vol. 239 and 240, Springer, New York, 1979.
[7] P. Erdős, M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62(1940), 738-742.
[8] A. granville, K. Soundararajan, Sieving and the Erdös-Kac theorem, Equidistribution in number theory, an introduction, 15-27, NATO Sci. Ser. II Math. Phys. Chem. 237, Springer, Dordrecht, 2007.
[9] H. Halberstam, On the distribution of additive number theoretic functions, II, J. London Math. Soc. 31(1956), 1-14.
[10] G.H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quar. J. Pure Appl. Math. 48(1917), 76-97.
[11] H. Hwang, On convergence rates in the central limit theorems for combinatorial structures, European J. Combin. 19(1998), no. 3, 329-343.
[12] S. Lang, A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76, 1954, 819-827.
[13] Y. Liu, Prime divisors of number of rational points on elliptic curves with complex multiplication, Bull. London Math. Soc. 37(2005), 658-664.
[14] Y. Liu, A generalization of the Erdős-Kac theorem and its applications, Canad. Math. Bull. 47(2004), no. 4, 589-606.
[15] Y. Liu, Prime analogues of the Erdős-Kac theorem for elliptic curves, J. Number Theory 119(2006), no. 2, 155-170.
[16] R. Murty, K. Murty, An analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms, Indian J. Pure Appl. Math. 15(1984), no. 10, 1090-1101.
[17] R. Murty, F. Saidak, Non-abelian generalizations of the Erdös-Kac theorem, Canad. J. Math. 56(2004), no. 2, 356-372.
[18] E. Noether, Ein algebraisches Kriterium für absolute Irreduzibilität, Mathematische Annalen 85(1922), 26-40.
[19] F. Saidak, New Erdős-Kac type theorems, Arch. Math. (Basel) 85(2005), no. 4, 345-361.
[20] J. Thuswaldner, R. Tichy, An Erdős-Kac theorem for systems of q-additive functions, Indag. Math. (N.S.) 11(2000), no. 2, 283-291.
[21] P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. $\mathbf{9}(1934), 274-276$.

Maosheng Xiong: Department of Mathematics, Eberly College of Science, Pennsylvania State University, McAllister Building, UniverSity Park, PA 16802 USA

E-mail address: xiong@math.psu.edu

