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Abstract. We prove two versions of the Erdős-Kac type theorem
for polynomials of several variables on some varieties arising from
translation and affine linear transformation.

1. Introduction

For a positive integer n, let ω(n) be the number of distinct prime
divisors of n. The remarkable theorem of Erdős and Kac ([7]) asserts
that, for any γ ∈ R,

lim
X→∞

1

X
#

{
1 ≤ n ≤ X :

ω(n)− log log n√
log log n

≤ γ

}
= G(γ),

where

G(γ) :=
1√
2π

∫ γ

−∞
e−

t2

2 dt

is the Gaussian distribution function.
Erdős and Kac proved it by a probabilistic idea, building upon

the work of Hardy and Ramanujan ([10]) and Turán ([21]) on the
normal order of ω(n). Since then there has been a very rich liter-
ature on various aspects of the Erdős-Kac theorem (see for example
[1, 9, 11, 13, 14, 15, 16, 17, 19, 20]). Interested readers can refer to
Granville and Soundararajan’s paper [8] for the most recent account
and Elliot’s monograph [6] for a comprehensive treatment of the sub-
ject. In particular, Halberstam in [9] proved that

(1) lim
X→∞

1

X
#

{
n : 1 ≤ n ≤ X,

ω(g(n))− A(n)√
B(n)

≤ γ

}
= G(γ),

where g(x) ∈ Z[x] is an irreducible polynomial,

A(n) =
∑
p<n

r(p)

p
, B(n) =

∑
p<n

r(p)2

p
,
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and r(p) is the number of solutions of g(m) ≡ 0 (mod p), 0 ≤ m < p.
In a recent paper ([3]) Bourgain, Gamburd and Sarnak showed among

other things that a large family of polynomials is “factor finite”, that
is, the subset at which the polynomial has a bounded number of prime
factors is Zariski dense in the orbit obtained by translation and affine
linear transformation. By adapting their proofs and applying a crite-
rion of Liu ([15]), in this paper we obtain two versions of the Erdős-Kac
type theorem for polynomials of several variables.

To state the first result, we need some notation.
For an additive subgroup Λ ⊂ Zn of rank k (1 ≤ k ≤ n), explic-

itly given by Λ = Ze1

⊕
· · ·
⊕

Zek for Q-linearly independent vectors
e1, . . . , ek ∈ Zn, we denote by V = Zcl(Λ) the Zariski closure of Λ in
the affine space An over Q. For any b ∈ Zn, denote Ob = Λ + b and for
any L > 0, denote

Ob(L) = {y1e1 + · · ·+ ykek + b ∈ Ob : |yi| ≤ L, yi ∈ Z, 1 ≤ i ≤ k} .

Theorem 1. Let Λ be as above. Suppose each of the polynomials
f1, . . . , ft ∈ Z[x1, . . . , xn] generates a distinct prime ideal in the co-
ordinate ring Q̄[V ]. Let f = f1 · · · ft. Then for any b ∈ Zn and for any
γ ∈ R, we have

lim
L→∞

1

#Ob(L)
#

{
x ∈ Ob(L) :

ω(f(x))− t log logL√
t log logL

≤ γ

}
= G(γ) .

When k = n = 1, Theorem 1 coincides with (1) on the special case
that g(x) ∈ Z[x] is absolutely irreducible. As another example we may
choose Λ = Z2 and fi(x, y) = xi − y for 1 ≤ i ≤ t. One sees that this
choice of Λ and fi’s satisfies all the above conditions.

To state the second result, we use the following notation.
Let Λ ⊂ GL(n,Z) be a free subgroup generated by the d elements

A1, . . . , Ad. Suppose the Zariski closure G = Zcl(Λ) is isomorphic to
SL2 over Q. Given a matrix b ∈ Matm×n(Z), Λ acts on b by right
multiplication. Suppose StabΛ(b) is trivial and the G orbit V = b ·G is
Zariski closed and hence defines a variety over Q. Assume dimV > 0.
Denote Ob = b · Λ. We turn Ob into a 2d-regular tree by joining the
vetex x ∈ Ob with the vertices x ·A1, x ·A−1

1 , . . . , x ·Ad, x ·A−1
d . (This

is indeed a tree because Λ is free on the generators and StabΛ(b) is
trivial.) For x, y ∈ Ob, let v(x, y) denote the distance in the tree from
x to y. For any L > 0, we denote

Ob(L) = {x ∈ Ob : v(x, b) ≤ logL} .
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Theorem 2. Let Λ, b be as above. Suppose each of the polynomials
f1, . . . , ft ∈ Z[x1, . . . , xmn] generates a distinct prime ideal in the coor-
dinate ring Q̄[V ], let f = f1 · · · ft. Then for any γ ∈ R, we have

lim
L→∞

1

#Ob(L)
#

{
x ∈ Ob(L) :

ω(f(x))− t log logL√
t log logL

≤ γ

}
= G(γ) .

As an example we may choose b to be the 2 by 2 identity matrix,
fi(x1, x2, x3, x4) = xi1 − x4 for each 1 ≤ i ≤ t and the subgroup Λ ⊂
SL(2,Z) to be generated by two elements

Λ =

〈[
1 2
0 1

]
,

[
1 0
2 1

]〉
.

Since Λ is a non-elementary subgroup of SL(2,Z) and Λ ⊂ Γ(2), it is
known that Zcl(Λ) = SL2 and Λ is a free group ([2]). One can check
that fi’s generate distinct prime ideals in Q̄[V ] and Λ, the fi’s and b
satisfy the conditions of Theorem 2.

This paper is organized as follows. Liu’s criterion is briefly reviewed
in Section 2. In Section 3, we use it to prove Theorem 1 by adapting
the sieving process of the proof of Theorem 1.6 in [3]. Since the proof
of Theorem 2 is similar, it is sketched in Section 4.

Acknowledgments. The author is grateful to the referee for many
valuable suggestions.

2. Preliminaries

We shall need the following criterion obtained by Liu ([15]). For
completeness and for later applications we reproduce the statement
with some adjustment.

Let O be an infinite set. For any L > 1, assign a finite subset O(L) ⊂
O such that #O(L)→∞ as L→∞ and #O(L1/2) = o (#O(L)). Let
f : O −→ Z \ {0} be a map. Put X = X(L) = #O(L) and write, for
each prime l,

1

X
# {n ∈ O(L) : f(n) is divisible by l} = λl(X) + el(X)

as a sum of major term λl(X) and error term el(X). For any u distinct
primes l1, l2, . . . , lu, we write

1

X
# {n ∈ O(L) : f(n) is divisible by l1l2 · · · lu} =

u∏
i=1

λli(X)+el1l2···lu(X).

To ease our notation, the dependence on X will be dropped when there
is no ambiguity.
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In order gain information on the distribution of ω(f(n)), some control
on λl and el is needed. Liu’s criterion uses the conditions below.

Suppose there exist absolute constants β, c, where 0 < β ≤ 1 and
c > 0, and a function Y = Y (X) ≤ Xβ such that the following hold:
(i) For each n ∈ O(L), the number of distinct prime divisors l of f(n)
with l > Xβ is bounded uniformly.
(ii)

∑
Y <l≤Xβ λl = o((log logX)1/2).

(iii)
∑

Y <l≤Xβ |el| = o((log logX)1/2).

(iv)
∑

l≤Y λl = c log logX + o((log logX)1/2).

(v)
∑

l≤Y λ
2
l = o((log logX)1/2).

The sums in (ii)–(v) are over primes l in the given range.
(vi) For any r ∈ N and any integer u with 1 ≤ u ≤ r, we have

lim
X→∞

∑′′
|el1···lu|

(log logX)−r/2
= 0,

where for each u, the sum
∑′′ extends over all u distinct primes

l1, l2, . . . , lu with li ≤ Y .

Theorem 3. (Liu[15, Theorem 3]) If O and f : O → Z \ {0} satisfy
all the above conditions, then for γ ∈ R, we have

lim
L→∞

1

X(L)
#

{
n ∈ O(L) :

ω(f(n))− c log logX(L)√
c log logX(L)

≤ γ

}
= G(γ) .

While the conditions of Theorem 3 may appear complicated, in our
applications, the terms λl and el can be easily identified and the con-
ditions easily verified, as we shall see in the proofs of Theorems 1 and
2 below.

3. Proof of Theorem 1

We denote the basis ei, 1 ≤ i ≤ k, of Λ by ei = (ai1, . . . , ain) ∈ Zn.
Put

A =

 a11 · · · a1n

· · ·
ak1 · · · akn

 ,

which is a matrix of rank k. For a row vector y, let |y| be the maximum
modulus of its components. Then for L large, denote

Ob(L) = {yA+ b : y ∈ Zk, |y| ≤ L}.
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We write X for #Ob(L) = (2[L] + 1)k. To apply Theorem 3, one needs
to estimate, for each square-free integer d, the sum∑

x∈Ob(L)
f(x)≡0 (mod d)

1 =
∑
y∈Zk
|y|≤L

f(yA+b)≡0 (mod d)

1 =
∑

y∈(Z/dZ)k

f(yA+b)≡0 (mod d)

∑
x∈Zk
|x|≤L

xi≡yi (mod d)

1 .

Suppose d ≤ L. The inner sum can be estimated as

(2[L] + 1)k

dk
+O

(
(2[L] + 1)k−1

dk−1

)
=
X

dk
+O

(
X1− 1

k

dk−1

)
.

Since the affine variety V ′ = V + b is absolutely irreducible, and the
polynomials f1, . . . , ft generate distinct prime ideals in the coordinate
ring Q̄[V ], one sees that all the varieties

Wi = V ′
⋂
{fi = 0}, i = 1, 2, . . . , t

are defined over Q, absolutely irreducible, and of dimension equal to
dimV ′ − 1 = k − 1 ≥ 0. Consider the reduction of the varieties
V ′,Wi (mod p). According to Noether’s theorem [18], for p outside
a finite set S1 of primes, the reductions of V ′ and Wi, i = 1, . . . , t,
yield absolutely irreducible affine varieties over Fp = Z/pZ. Denote by
V ′(Fp), V ′(Z/dZ), etc. the reduction of the varieties in the correspond-
ing ring. By the Lang-Weil Theorem [12] we have that for p 6∈ S1,

#V ′(Z/pZ) = pk +O
(
pk−

1
2

)
,

#Wi(Z/pZ) = pk−1 +O
(
pk−

3
2

)
.

Since the map
Ak −→ V ′

y 7→ yA+ b

is a bijection, one obtains∑
y∈(Z/dZ)k

f(Ay+b)≡0 (mod d)

1 =
∑

y∈V ′(Z/dZ)

f(y)≡0 (mod d)

1 = #W (Z/dZ) ,

where

W (Z/dZ) = {y ∈ V ′(Z/dZ) : f(y) ≡ 0 (mod d)}.
Let

λd =
#W (Z/dZ)

dk
.
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By Chinese Remainder Theorem, λd is multiplicative for d coprime to∏
p∈S1

p. Since

W (Z/dZ) =
t⋃
i=1

Wi(Z/dZ),

for such square-free d one has

#W (Z/dZ) ≤
t∑
i=1

#Wi(Z/dZ) =
t∑
i=1

∏
p|d

#Wi(Z/pZ)

=
t∑
i=1

∏
p|d

(
pk−1 +O(pk−3/2)

)
�ε d

k−1+ε.

Therefore for d ≤ L and gcd
(
d,
∏

p∈S1
p
)

= 1, we obtain∑
x∈Ob(L)

f(x)≡0 (mod d)

1 = X(λd + ed) ,where ed �ε d
εX−

1
k .(2)

It follows from Lemma 1 below that the estimate (2) still holds if
on the left hand side the points x ∈ Ob(L) such that f(x) = 0 are
removed. Thus we may assume that f(x) 6= 0 for all x ∈ Ob(L). Now
we return to λd. For d = l a prime and l 6∈ S1 we have

W (Z/lZ) =
t⋃
i=1

Wi(Z/lZ).

For fixed i 6= j, the algebraic subset W ′ = Wi(Z/lZ)
⋂
Wj(Z/lZ) is

defined over the finite field Fl = Z/lZ and has dimension at most
k − 2, it follows from Lemma 2.1 of [4] that

#
(
Wi(Z/lZ)

⋂
Wj(Z/lZ)

)
� lk−2,

where the implied constant depends on f and V only. By the inclusion-
exclusion principle

t∑
i=1

#Wi(Z/lZ)−
∑

1≤i<j≤t

#
(
Wi(Z/lZ)

⋂
Wj(Z/lZ)

)
≤ #W (Z/lZ) ≤

t∑
i=1

#Wi(Z/lZ) ,

from which one obtains

#W (Z/lZ) = tlk−1 +O
(
lk−

3
2

)
.
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This implies that

(3) λl =
t

l
+O

(
l−

3
2

)
.

Using (2) and (3) and choosing

Y = exp

(
logX

log logX

)
, β =

1

2k
,

one can verify the conditions (i)–(vi) of Theorem 3 for f and Ob. For
example, for (i), noticing that f ∈ Z[x1, . . . , xn] and x ∈ Ob(L), one

has f(x) � Ldeg f � X
deg f
k , thus

∑
l>Xβ

l|f(x)

1 � 1, i.e., the number of

distinct prime divisors l of f(x) with l > Xβ is bounded uniformly.
For (ii), noticing log log Y = log logX − log log logX, one has∑
Y <l≤Xβ

l 6∈S1

λl ≤
∑

Y <l≤Xβ

t

l
+O

(
l−

3
2

)
� t log logXβ − t log log Y +O(1) ,

which is o((log logX)1/2) as X goes to infinity. The conditions (iii)–(v)
can be verified similarly.

Finally, for (vi), for any fixed r ∈ N and 1 ≤ u ≤ r,∑′′

li≤Y

|el1···lu| ≤ε
∑
li≤Y

X−
1
k (l1 · · · lu)ε ≤ X−

1
kY r(1+ε) ≤ X−

1
k (logX)2r ,

which is o((log logX)−r/2) as X goes to infinity.
Since the conditions (i)–(vi) of Theorem 3 are satisfied for f and Ob,

the desired conclusion follows from Theorem 3. The proof of Theorem
1 will be completed once we prove Lemma 1 below.

Lemma 1. Let W be a proper closed subset of V ′ = V + b defined over
Q. Then as L→∞ one has

#
(
Ob(L)

⋂
W
)
� X1− 1

dimV .

Proof. The proof is very similar to that of Proposition 3.2 in [3]. For
the sake of completeness we give a detailed proof here.

Since V ′ = V + b is irreducible, W is defined over Q and has di-
mension at most dimV − 1 = k− 1. Let W1, . . . ,Wr be the irreducible
components of W . Then we have W =

⋃r
i=1Wj, where Wj’s are defined

over a finite extension K of Q and dimWj ≤ k − 1 for each j. For P
outside a finite set of prime ideals of the ring of integers OK , Wj is an
absolutely irreducible variety over the finite field OK/P ([18]). Hence
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by [12] we have

#Wj(OK/P)� N(P)dim(Wj) ≤ N(P)k−1.

Here, as usual, N(P) = #(OK/P). Choose p so that it splits com-
pletely in K and let P|(p). Then OK/P ∼= Fp and we have

#W (Z/pZ) ≤
r∑
j=1

#Wj(OK/P)� N(P )k−1 = pk−1.(4)

Now proceed as before. For L→∞ and any large p as above, we have

#
(
Ob(L)

⋂
W
)

=
∑

x∈Ob(L)
x∈W

1 ≤
∑

x∈W (Z/pZ)

∑
y∈Zk ,|y|≤L

yA+b≡x (mod p)

1.

Similarly the right hand side can be estimated as∑
x∈W (Z/pZ)

(
X

pk
+O

(
X1−1/k

pk−1

))
.

Hence for large p as in (4),

#
(
Ob(L)

⋂
W
)
� Xp−1 +X1−1/k.

By the Chebotarev density theorem ([5]) we can choose p which splits
completely in K and which satisfies

X1/k/2 ≤ p ≤ 2X1/k.

With this choice we get the bound claimed in Lemma 1. �

4. Proof of Theorem 2

It is elementary that the number of points on a 2d-regular tree whose
distance to a given vertex is at most [logL] is equal to X = #Ob(L) =
d(2d−1)[logL]−1

d−1
. By the assumptions of Theorem 2, V is an absolutely

irreducible affine variety defined over Q with dimV > 0 and f1, . . . , ft
generate distinct prime ideals in Q̄[V ]. Hence for i = 1, . . . , t, the
varieties

Wi = V
⋂
{fi = 0}

are defined over Q, absolutely irreducible, and of dimension equal to
dimV − 1. We consider the reduction of the varieties (mod p). By
Noether’s theorem [18] and the Lang-Weil Theorem [12], there is a finite
set S1 of primes such that if p 6∈ S1, the varieties V (Z/pZ),Wi(Z/pZ)
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are absolutely irreducible and

#V (Z/pZ) = pdimV +O
(
pdimV− 1

2

)
,

#Wi(Z/pZ) = pdimV−1 +O
(
pdimV− 3

2

)
.

By using the uniform expansion property of SL2 established in [2] (or
assuming a conjecture of Lubotzy for a more general setting), Bourgain,
Gamburd and Sarnak proved (Proposition 3.1, [3]) that

(5)
1

X

∑
x∈Ob(L)
v(x,b)≤L

f(x)≡0 (mod d)

1 = λd + ed ,

for square-free integers d ≤ X coprime to
∏

p∈S2
p. Here S2 is a finite

set of primes containing S1 and

λd =
#V0(Z/dZ)

#V (Z/dZ)
, ed �ε d

dimV−1+εXγ−1 ,

where

V0(Z/dZ) = {y ∈ V (Z/dZ) : f(y) ≡ 0 (mod d)},
and the absolute constant γ < 1 is bounded below by some δ > 0. Also
by Proposition 3.2 in [3], in the sum the terms x ∈ Ob(L) with f(x) = 0
can also be omitted without altering (5). Clearly λd is a multiplicative
function of d coprime to

∏
p∈S2

p. With similar arguments as in the
proof of Theorem 1, for d = l a prime and l 6∈ S2 we have

(6) λl =
t

l
+O

(
l−

3
2

)
.

Now using (5), (6), choosing Y = exp(logX/ log logX) and β > 0 to
be sufficiently small, we can similarly verify that the conditions (i)–(vi)
of Theorem 3 for f and Ob hold. This completes the proof of Theorem
2.

References
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