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The fluctuations in the number of points on a
family of curves over a finite field

par Maosheng Xiong

Abstract. Let l ≥ 2 be a positive integer, Fq a finite field of
cardinality q with q ≡ 1 (mod l). In this paper, inspired by [7, 4,
5] and using a slightly different method, we study the fluctuations
in the number of Fq-points on the curve CF given by the affine
model CF : Y l = F (X), where F is drawn at random uniformly
from the set of all monic l-th power-free polynomials F ∈ Fq[X]
of degree d as d → ∞. The method also enables us to study
the fluctuations in the number of Fq-points on the same family of
curves arising from the set of monic irreducible polynomials.

1. Introduction

Given a finite field Fq of cardinality q and a monic square-free polynomial
F ∈ Fq[X] of degree d ≥ 3, we get a smooth projective hyperelliptic curve
CF with the affine model

CF : Y 2 = F (X)

having genus g = (d − 2)/2 when d is even and g = (d − 1)/2 when d is
odd. The number of (affine) Fq-points on CF can be expressed as q+S(F ),
where S(F ) is the character sum

S(F ) =
∑
x∈Fq

χ (F (x))

and χ is the quadratic character of F×q (with the convention that χ(0) =
0). In an interesting paper ([7]) Kurlberg and Rudnick investigated the
fluctuations in the number of (affine) Fq-points on CF or more precisely
the value of S(F ) when F is drawn at random from the set of all monic
square-free polynomials F ∈ Fq[X] of degree d. They found that
(i) For q fixed and the genus g → ∞, S(F ) is distributed asymptotically

as a sum of q independent identically distributed (i.i.d.) trinomial
random variables {Xi}qi=1, i.e., random variables taking values in 0,±1
with probabilities 1/(q+1), 1/2(1+q−1) and 1/2(1+q−1), respectively.

(ii) When both g →∞ and q →∞, S(F )/
√
q has a Gaussian value distri-

bution with mean zero and variance unity.
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These results complement the well-known theorem due to Katz and Sarnak
[8, 9], which states that, if the genus g is fixed and q →∞, then S(F )/

√
q

is distributed as the trace of a random matrix in the group USp(2g) of
2g× 2g unitary symplectic matrices. Showing consistency with (ii), if both
q, g →∞ with q →∞ first, then S(F )/

√
q is distributed as that of the trace

of a random matrix in USp(2g) as g →∞, which is known to be a standard
Gaussian by a theorem of Diaconis and Shahshahani [6]. Related to this
work [7], problems of similar flavor with various arithmetic and geometric
applications have been considered before by Larsen [12], Knizhnerman and
Sokolinskii [10, 11] and Bergström [1]. Recently, extending the results of
Kurlberg and Rudnick [7], Bucur, David, Feigon and Lalín in a series of
two beautiful papers [4, 5] successfully obtain interesting results on the
distribution of the trace of the Frobenius endomorphism FrobC over moduli
spaces of cyclic l-fold covers of genus g when g →∞. Interested reader may
refer to their papers [4, 5] for more details and for other results related with
the subject.

The proofs of [7, 4, 5] are similar and are based on an ingenious counting
argument. The main purpose of this paper is to give a slightly treatment
of the proof. We start with the observation that, in writing

S(χ, F ) =
∑
x∈Fq

χx(F ),

where χx(F ) = χ(F (x)) for each F ∈ Fq[X], then χx : Fq[X] → C is
a Dirichlet character of order l modulo X − x. Our strategy is to study
the distribution of S(χ, F ) by manipulating appropriate character sums,
which in term can be treated by using various tools such as the Riemann
hypothesis for algebraic curves over finnite fields [14], the Möbius function
and other arithmetic functions. The results of [7, 4, 5] then can be derived
directly. Our proofs follow the ideas of [7, 4, 5], however, the properties of
character sums will be used in an essential way.

Building upon this idea, let l ≥ 2 be any positive integer such that
q ≡ 1 (mod l) and denote by Fd,l ⊂ Fq[X] the set of monic l-th power-free
polynomials of degree d, we investigate the fluctuations in the number of
affine Fq-points on the curve CF given by the affine model

CF : Y l = F (X) ,(1.1)

where F is drawn at random uniformly from the set Fd,l. Denote by C0
F (Fq)

the set of affine Fq-points on CF .

Theorem 1.1. (1). If q is fixed and d → ∞, then as F ranges over all
elements in Fd,l , the limiting distribution of the value #C0

F (Fq)− q is that
of a sum of q i.i.d random variables {Yi}qi=1, where each Yi takes values
0,−1, l − 1 with probabilities

(
1− 1−q−1

1−q−l ,
l−1
l

1−q−1

1−q−l ,
1
l

1−q−1

1−q−l

)
respectively.
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(2). If d, q both tend to infinity, then as F ranges over all elements in
Fd,l , the limiting distribution of the value (#C0

F (Fq) − q)/
√
q(l − 1) is a

standard Gaussian with mean zero and variance one.

If q is fixed and d tend to infinity, or q and d both tend to infinity in such
a way that d ≥ q(2l−1)

l−1 , we have a more precise statement.

Theorem 1.2. Let the random variables {Yi}qi=1 be as in Theorem 1.1.
Then for any s ∈ Z, we have

#
{
F ∈ Fd,l : #C0

F (Fq) = q + s
}

#Fd,l
= Prob

(
q∑
i=1

Yi = s

)(
1 +O

(
2qq−(1−

1
l )d+(1− 1

l )q
))

.

One of the benefits of our method is its flexibility: it enables us to consider
such statistics for other families of curves whenever similar estimates on the
character sums apply. As another example, we study the fluctuations of
#C0

F (Fq) for the same family of curves as F arises from Pd ⊂ Fq[X], the
set of monic irreducible polynomials of degree d.

Theorem 1.3. (1). If q is fixed and d → ∞, then as F ranges over all
elements in Pd, the limiting distribution of the value #C0

F (Fq) − q is that
of a sum of q i.i.d random variables {Yi}qi=1, where each Yi takes values
−1, l − 1 with probabilities

(
1− 1

l ,
1
l

)
respectively.

(2). If d, q both tend to infinity, then as F ranges over all elements in Pd,
the limiting distribution of the value (#C0

F (Fq)−q)/
√
q(l − 1) is a standard

Gaussian with mean zero and variance one.

If q is fixed and d tend to infinity, or q and d both tend to infinity in such
a way that d ≥ 4q, we have a more precise statement.

Theorem 1.4. Let the random variables {Yi}qi=1 be as in Theorem 1.3.
Then for any s ∈ Z, we have

#
{
F ∈ Pd : #C0

F (Fq) = q + s
}

#Pd
= Prob

(
q∑
i=1

Yi = s

)(
1 +O

(
2qq(2q−d)/2

))
.

We remark that first, if l = 2, Theorems 1.1 and 1.2 reduces to (i) and
(ii) obtained by Kurlberg and Rudnick mentioned above. For a general l,
Theorems 1.2 and 1.4 are analogous to [5, Theorems 1.1 and 1.4] obtained
by Bucur, David, Feigon and Lalín in terms of the Frobenius endomorphism.
Moreover, denote by CF (Fq) the set of Fq-points on the curve CF given in
(1.1) (i.e., including the points at infinity). For F ∈ Fd,l or F ∈ Pd, we
have

#CF (Fq) = #C0
F (Fq) +

{
1 : d 6≡ 0 (mod l),
l : d ≡ 0 (mod l),

so Theorems 1.1–1.4 can be translated as statements about the distribution
of #CF (Fq) for F ∈ Fd,l and F ∈ Pd as d → ∞, and the results depend
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on d ≡ 0 (mod l) or not. It may be interesting know to what happens for
these two familes Fd,l and Pd if d is fixed and q goes to infinity instead.

In the above theorems and in all results below, the implied constants in
the notation “O” and “�” are absolute.
Acknowledgment. The author would like to express his gratitude to Prof.
Wen-Ching Winnie Li for bringing this problem to his attention. The author
also thanks the anonymous referee for many valuable suggestions.

2. Preliminaries

In this section we collect several standard results which will be used later.
We use Rosen [13] as a general reference.

2.1. The (partial) zeta function of the rational function field is

Z(U) :=
∏
P

(
1− UdegP

)−1
, |U | < q−1 ,(2.1)

the product over all irreducible monic polynomials (“primes”) in Fq[X]. By
the fundamental theorem of arithmetic in Fq[X], Z(U) can be expressed as
a sum over all monic polynomials:

Z(U) =
∑

F monic

UdegF ,

and hence

Z(U) = (1− qU)−1 .(2.2)

Denote by Vd ⊂ Fq[X] the set of monic polynomials of degree d ≥ 0. We
use the Möbius function to pick out the l-th power-free polynomials via the
formula ∑

Al|F

µ(A) =
{

1 : F is l-th power-free
0 : otherwise

where we sum over all monic polynomials A whose l-th power divides F .
Hence ∑

d≥0

#Fd,lUd =
∑
d≥0

∑
F∈Vd

∑
Al|F

µ(A)UdegF .

Writing F = AlF ′, we have∑
d≥0

#Fd,lUd =
∑
A

µ(A)U l degA
∑
F

UdegF

=
∏
P

(
1− U l degP

)∏
P

(
1− UdegP

)−1
,

where in the above equations and all results below, A,F denote monic
polynomials and P is reserved for monic irreducible polynomials.



The number of points on a family of curves over a finite field 5

Using (2.1) and (2.2) we obtain∑
d≥0

#Fd,lUd = Z(U)/Z(U l) =
(
1− qU l

)
(1− qU)−1 .

Expanding the right hand side as a power series in terms of U and equating
the coefficients on both sides, we find

#Fd,l = qd
(
1− q1−l

)
, d ≥ l .(2.3)

Lemma 2.1. Suppose that ψ : Fq[X] → C is a non-trivial Dirichlet char-
acter modulo h ∈ Fq[X]. Then for any d ≥ 1,∣∣∣∣∣∣

∑
F∈Fd,l

ψ (F )

∣∣∣∣∣∣� q
d
l
+(1− 1

l )deg h .

Proof. If d ≤ l, then the statement of Lemma 2.1 is trivial. Now suppose
d ≥ l. We write∑
F∈Fd,l

ψ (F ) =
∑
F∈Vd

ψ(F )
∑
Al|F

µ(A) =
∑

degA≤d/l

µ(A)ψ(A)l
∑

degF=d−l degA

ψ(F ),

where the sums are over monic polynomials. It is easy to see that∑
degF=n

ψ(F ) = 0, n ≥ deg h,

hence we have∣∣∣∣∣∣
∑

F∈Fd,l

ψ (F )

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(d+1−deg h)/l≤degA≤d/l

µ(A)ψ(A)l
∑

degF=d−l degA

ψ(F )

∣∣∣∣∣∣
≤

∑
(d+1−deg h)/l≤n≤d/l

qd−ln+n � q
d
l
+(1− 1

l )deg h .

This completes the proof of Lemma 2.1. �

Lemma 2.2. Suppose that h ∈ Fq[X] is a polynomial with deg h = m ≥ 1.
Then for any d ≥ 1, we have∑

F∈Fd,l

gcd(F,h)=1

1 = qd
(
1− q1−l

)∏
P |h

1− q−degP

1− q−l degP
+O

(
q

d
l
+(1− 1

l )m
)
.

Proof. We may assume that d ≥ m. First we compute∑
F∈Vd

gcd(F,h)=1

1 =
∑
F∈Vd

∑
D|F,D|h

µ(D) =
∑
D|h

µ(D)
∑

degF=d−degD

1 .
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This in turn gives∑
F∈Vd

gcd(F,h)=1

1 =
∑
D|h

µ(D)qd−degD = qd
∏
P |h

(
1− q− degP

)
.(2.4)

Next ∑
F∈Fd,l

gcd(F,h)=1

1 =
∑
F∈Vd

gcd(F,h)=1

∑
Al|F

µ(A) =
∑

degA≤d/l
gcd(A,h)=1

µ(A)
∑

degQ=d−l degA
gcd(Q,h)=1

1 .

We find that

I2 =
∑

degA>(d−m)/l
gcd(A,h)=1

∑
degQ=d−l degA

gcd(Q,h)=1

1 ≤
∑

n>(d−m)/l

qnqd−ln � q
d
l
+(1− 1

l )m .

On the other hand, using (2.4) we have

I1 =
∑

degA≤(d−m)/l
gcd(A,h)=1

µ(A)
∑

degQ=d−l degA
gcd(Q,h)=1

1 =
∑

degA≤(d−m)/l
gcd(A,h)=1

µ(A)qd−l degA
∏
P |h

(
1− q− degP

)
,

and this gives us

I1 =
∑
A

gcd(A,h)=1

µ(A)qd−l degA
∏
P |h

(
1− q− degP

)
+O(I2) .

The main term can be rewritten as

qd
∏
P |h

(
1− q− degP

) ∏
gcd(P,h)=1

(
1− q−l degP

)
,

which is

qd
∏
P |h

(
1− q− degP

)∏
P |h

(
1− q−l degP

)−1 (
1− q1−l

)
,

by appealing to (2.1) and (2.2). Since∑
F∈Fd,l

gcd(F,h)=1

1 = I1 +O(I2),

this completes the proof of Lemma 2.2. �
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2.2. Denote by Pd ⊂ Fq[X] the set of monic irreducible polynomials of
degree d ≥ 1. The prime number theorem for polynomials [13] states that

#Pd =
qd

d

(
1 +O

(
q−d/2

))
.(2.5)

The following result is also standard, based on a deep result of Weil ([14]),
the analogue of the Riemann hypothesis for function fields over a finite field.

Lemma 2.3. Let ψ : Fq[X]→ C be a non-trivial Dirichlet character modulo
Q in Fq[X], then ∣∣∣∣∣∣

∑
P∈Pd

ψ(P )

∣∣∣∣∣∣� deg(Q)
d

qd/2 .

3. Proofs of Theorem 1.1 and Theorem 1.3

We first prove a general result, then Theorem 1.1 and Theorem 1.3 can
be derived directly. The idea of the proof is similar to that of [7, 4, 5],
though it is presented in a slightly different way via character sums.

Let l ≥ 2 be a positive integer such that q ≡ 1 (mod l). Denote ζl =
exp (2πi/l). We fix a non-trivial character χ : F×q → C of order l. For each
x ∈ Fq, let χx : Fq[X]→ C be the Dirichlet character given by

χx(F ) := χ(F (x)), F ∈ Fq[X] .

For any U ⊂ Fq, denote

g(U) :=
∏
x∈U

(X − x).

For the curve CF given by the affine model (1.1), denote by C0
F (Fq) the set

of the affine Fq-points on CF . It is known that

#C0
F (Fq) = q +

l−1∑
j=1

∑
x∈Fq

χjx(F ) .(3.1)

For each d, there is a finite subset Xd ⊂ Fq[X], on which we assign the
uniform probability measure, so that {χx}x∈Fq can be viewed as q random
variables. We assume that there exist C, ε > 0 and 0 ≤ γq ≤ 1 such that
(a). For any non-trivial Dirichlet character ψ : Fq[X] → C modulo h ∈

Fq[X], we have

1
#Xd

∑
F∈Xd

ψ(F ) ≤ q−εd+C deg h .
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(b). For any U ⊂ Fq,

1
#Xd

∑
F∈Xd

gcd(F,g(U))=1

1 = γ#U
q +O

(
q−εd+C#U

)
.

Theorem 3.1. For each d, suppose that Xd ⊂ Fq[X] satisfies the conditions
(a) and (b). Then

(1). For q fixed and d → ∞, on Xd, #C0
F (Fq) is distributed asymp-

totically as a sum of q i.i.d. random variables {Yx}x∈Fq , where for each

x, Yx takes the values 0,−1, l − 1 with probabilities
(
1− γq, (l−1)γq

l ,
γq

l

)
respectively.

(2). Moreover, if limq→∞ γq = γ > 0, then as q, d → ∞, on Xd, the
limiting distribution of #C0

F (Fq)−q√
q(l−1)γ

is a standard Gaussian with mean zero

and variance one.

Proof. For any vector of nonnegative integers r = (rx)x∈Fq , denote

n(r) = min

∑
x∈Fq

rx, q

 , U(r) = {x ∈ Fq : rx > 0} .

Let

Mr(χ,Fq,Xd) :=
1

#Xd

∑
F∈Xd

∏
x∈Fq

χrxx (F ).

If rx 6≡ 0 (mod l) for some x ∈ Fq, then
∏
x∈Fq

χrxx (F ) is a non-trivial
Dirichlet character modulo h = g(U(r)) with deg h ≤ n(r); If rx ≡ 0
(mod l) for any x ∈ Fq, then

∏
x∈Fq

χrxx (F ) is a trivial Dirichlet character
modulo h = g(U(r)) with deg h ≤ n(r), and∑

F∈Xd

∏
x∈Fq

χrxx (F ) =
∑
F∈Xd

gcd(F,g(U(r)))=1

1.

Hence the conditions (a) and (b) can be summarized as

Mr(χ,Fq,Xd) =

{
O
(
q−εd+Cn(r)

)
rx 6≡ 0 (mod l)∃x ∈ Fq,

γ
#U(r)
q +O

(
q−εd+Cn(r)

)
rx ≡ 0 (mod l)∀x ∈ Fq.

(3.2)

For any nonnegative integer k, we consider the k-th moment

Mk(d, q) =
1

#Xd

∑
F∈Xd

(∑
x∈Fq

∑l−1
j=1 χ

j
x(F )

√
q

)k
.
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We can expand∑
x∈Fq

l−1∑
j=1

χjx(F )

k

=
∑

r=(rx)x∈Fq

a(r)
∏
x∈Fq

χrxx (F ),(3.3)

where on the right hand side the sum is over all vectors of nonnegative
integers r = (rx)x∈Fq such that n(r) ≤

∑
x rx ≤ k(l − 1), and a(r)’s are

nonnegative combinatorial constants such that∑
r=(rx)x∈Fq

a(r) = (l − 1)kqk.(3.4)

Using (3.3) we find that

Mk(d, q) = q−k/2
∑

r=(rx)x∈Fq

a(r)
1

#Xd

∑
F∈Xd

∏
x∈Fq

χrxx (F ) .

Applying (3.2) and (3.4) we obtain

Mk(d, q) = q−k/2
∑

r=(rx)x∈Fq

(∗∗∗)

a(r)γ#U(r)
q +O

(
lkq−εd+

k
2
+Cmin{k(l−1),q}

)
,

where the extra condition (∗∗∗) means that rx ≡ 0 (mod l) for any x ∈ Fq.
On the other hand, let {Xx}x∈Fq

be i.i.d. random variables, taking value
0 with probability 1−γq and each value ζjl , 1 ≤ j ≤ l with equal probability
γq/l, we have for each positive integer λ > 0,

E
(
Xλ
x

)
=
{

0 λ 6≡ 0 (mod l)
γq λ ≡ 0 (mod l) , x ∈ Fq.(3.5)

Expanding Mk = E

{(∑
x∈Fq

∑l−1
j=1X

j
x

√
q

)k}
in the same way as for Mk(q, d),

we see that
Mk = q−k/2

∑
r=(rx)x∈Fq

(∗∗∗)

a(r)γ#U(r)
q ,

where the condition (∗ ∗ ∗) is the same as in the expression of Mk(q, d). All
other terms become zero because of independence of Xx’s and the identities
(3.5). We conclude that for any nonnegative integer k,

Mk(d, q) = E


(∑

x∈Fq

∑l−1
j=1X

j
x

√
q

)k(1 +O
(
lkq−εd+k+Cmin{k(l−1),q}

))
.(3.6)
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Finally, denote

Yx =
l−1∑
j=1

Xj
x, ∀x ∈ Fq.

It is easy to see that {Yx}x∈Fq are q i.i.d. random variables and for any
x ∈ Fq, 

Prob (Yx = 0) = 1− γq,
Prob (Yx = −1) = (l−1)γq

l ,
Prob (Yx = l − 1) = γq

l .

From [3, Section 30] and the relation (4.4) we know that as d→∞, on the
probability space Xd, the value #C0

F (Fq) − q is distributed asymptotically
as
∑

x∈Fq
Yx, and as d, q → ∞, since E(Yx) = 0, Var(Yx) = (l − 1)γq and

γq → γ > 0 as q → ∞, the limiting distribution of the normalized sum
#C0

F (Fq)−q√
q(l−1)γ

is a standard Gaussian with mean zero and variance one. This

completes the proof of Theorem 3.1. �

Now we can prove Theorem 1.1 and Theorem 1.3.
Proofs of Theorem 1.1 and Theorem 1.3. For Fd,l, from (2.3), Lemma
2.1 and Lemma 2.2 in Section 2, we see that Fd,l’s satisfy the conditions (a)
and (b) with

ε = 1− 1
l
, C = 1− 1

l
, γq =

1− q−1

1− q−l
,

and γq → 1 as q → ∞. For Pd, since P ∈ Pd is irreducible of degree d,
if d ≥ 2, then gcd(P, g(U)) = 1 for any U ⊂ Fq. So the condition (b) is
automatically satisfied with γq = 1. Moreover, from (2.5) and Lemma 2.3,
we find that condition (a) is also satisfied with

ε =
1
2
, C = 1 .

Then Theorem 1.1 and Theorem 1.3 follow from Theorem 3.1 directly. �

4. Proofs of Theorem 1.2 and Theorem 1.4

We also prove a general result first, and Theorem 1.2 and Theorem 1.4
can be derived directly.

Kurlberg and Rudnick proved a similar result in [7], and their idea has
been used by Bucur, David, Feigon and Lalín in [4, 5] to obtain various
interesting results. We follow their ideas, however, our proof is based on
properties of character sums.

Theorem 4.1. For each d, suppose that Xd ⊂ Fq[X] satisfies the conditions
(a) and (b) as in Theorem 3.1. Denote

Tl =
{
ζjl : 1 ≤ j ≤ l

}⋃
{0}.
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Then for any vector (sx)x∈Fq ∈ T
q
l , we have

ProbXd
(χx = sx,∀x ∈ Fq) = Prob (Xx = sx,∀x ∈ Fq)

(
1 +O

(
2qq−εd+Cq

))
,

where {Xx}x∈Fq are i.i.d. random variables and for each x ∈ Fq, Xx takes
value 0 with probability 1 − γq and each value ζjl , 1 ≤ j ≤ l with equal
probability γq

l .

Proof. For (sx)x∈Fq ∈ T
q
l , we need to compute

L = ProbXd
(χx = sx,∀x ∈ Fq) .

Let
A = {x ∈ Fq : sx = 0}, B = Fq/A.

Write

L =
1

#Xd
#
{
F ∈ Xd : χx(F ) = 0, ∀x ∈ A

χx(F ) = sx 6= 0, ∀x ∈ B

}
.

It is easy to see that

1− χlx(F ) =
{

1 : χx(F ) = 0,
0 : χx(F ) 6= 0,

and for any sx ∈
{
ζjl : 1 ≤ j ≤ l

}
,

1
l

l∑
rx=1

(
χx(F )s−1

x

)rx =
{

1 : χx(F ) = sx,
0 : χx(F ) 6= sx.

Hence

L =
1

#Xd

∑
F∈Xd

∏
x∈A

(
1− χlx(F )

) ∏
x∈B

1
l

l∑
rx=1

(
χx(F )s−1

x

)rx
.

For any U ⊂ Fq, denote
χU =

∏
x∈U

χx.

We can expand∏
x∈A

(
1− χlx(F )

)
=
∑
A′⊂A

(−1)#A
′
χlA′(F ),(4.1)

where the sum is over all sets A′ with A′ ⊂ A, and∏
x∈B

1
l

l∑
rx=1

(
χx(F )s−1

x

)rx =
1
l#B

∑
1≤rx≤l
∀x∈B

(∏
x∈B

s−rxx

)(∏
x∈B

χrxx (F )

)
.(4.2)
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Using (4.1) and (4.2) and changing the order of summation we obtain

L =
1
l#B

∑
A′⊂A

(−1)#A
′ ∑
1≤rx≤l
∀x∈B

(∏
x∈B

s−rxx

)
1

#Xd

∑
F∈Xd

χlA′
∏
x∈B

χrxx (F ) .

If for some x ∈ B, rx 6= l, then χlA′
∏
x∈B χ

rx
x is a non-trivial Dirichlet

character, and from the condition (a),
1

#Xd

∑
F∈Xd

χlA′
∏
x∈B

χrxx (F )� q−εd+Cq .

The total contribution from such cases is bounded by

� 1
l#B

∑
A′⊂A

1
∑

1≤rx≤l
∀x∈B

q−εd+Cq ≤ 2qq−εd+Cq .

The main contribution in L comes from the case that rx = l for all x ∈ B,
that is

1
l#B

∑
A′⊂A

(−1)#A
′ 1
#Xd

∑
F∈Xd

χlA′χ
l
B(F ) .(4.3)

From the condition (b), we find that
1

#Xd

∑
F∈Xd

χlA′χ
l
B(F ) = γ#A′+#B

q +O
(
q−εd+Cq

)
.

Therefore

L =
1
l#B

∑
A′⊂A

(−1)#A
′
γ#A′+#B
q +O

(
2qq−εd+Cq

)
=

1
l#B

γ#B
q (1− γq)#A +O

(
2qq−εd+Cq

)
,

as we collect the error terms together. We conclude that

ProbXd
(χx = sx,∀x ∈ Fq) =

(γq
l

)#B
(1− γq)#A +O

(
2qq−εd+Cq

)
,

where
A = {x ∈ Fq : sx = 0}, B = Fq/A.

On the other hand, let {Xx}x∈Fq be q i.i.d random variables such that
for any x ∈ Fq, Xx takes value 0 with probability 1− γq and each value ζjl ,
1 ≤ j ≤ l with equal probability γq

l . It is easy to see that

Prob (Xx = sx,∀x ∈ Fq) =
∏
x∈Fq

Prob (Xx = sx) =
(γq
l

)#B
(1− γq)#A .
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Therefore for any (sx)x∈Fq ∈ T
q
l ,

ProbXd
(χx = sx,∀x ∈ Fq) = Prob (Xx = sx,∀x ∈ Fq) +O

(
2qq−εd+Cq

)
.

Noting that as d, q →∞,

ProbXd
(χx = sx, ∀x ∈ Fq) = 0 if and only if Prob (Xx = sx,∀x ∈ Fq) = 0 ,

this completes the proof of Theorem 4.1. �

Now we can prove Theorem 1.2 and Theorem 1.4.
Proofs of Theorem 1.2 and Theorem 1.4. As we know, Fd,l’s satisfy
the conditions (a) and (b) with

ε = 1− 1
l
, C = 1− 1

l
, γq =

1− q−1

1− q−l
.

Hence from Theorem 4.1,

ProbXd
(χx = sx,∀x ∈ Fq) = Prob (Xx = sx,∀x ∈ Fq)

(
1 +O

(
2qq−εd+Cq

))
,

where {Xx}x∈Fq
are q i.i.d. random variables such that for any x, Xx takes

value 0 with probability 1 − γq and each value ζjl , 1 ≤ j ≤ l with equal
probability γq

l .
Since

#C0
F (Fq) = q +

l−1∑
j=1

∑
x∈Fq

χjx(F ) ,

for any s ∈ Z, we find that

ProbXd

(
#C0
· (Fq)− q = s

)
=

∑
∑l−1

j=1

∑
x s

j
x=s

sx∈Tl,∀x

ProbXd
(χx = sx,∀x ∈ Fq) .

By Theorem 4.1, we have

ProbXd

(
#C0
· (Fq)− q = s

)
=

∑
∑l−1

j=1

∑
x s

j
x=s

sx∈Tl,∀x

Prob (Xx = sx,∀x ∈ Fq)
(
1 +O

(
2qq−εd+Cq

))

= Prob

 l−1∑
j=1

∑
x∈Fq

Xj
x = s

(1 +O
(
2qq−εd+Cq

))
.

Denoting

Yx =
l−1∑
j=1

Xj
x, x ∈ Fq,

this completes the proof of Theorem 1.2.
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Theorem 1.4 can be proved similarly, noting that Pd’s satisfy the condi-
tions (a) and (b) with

ε =
1
2
, C = 1 , γq = 1 . �
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