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Abstract. Let Fq be a finite field of cardinality q and l ≥ 2 be a prime number

such that q ≡ 1 (mod l). Extending the work of Faifman and Rudnick [6] on

hyperelliptic curves, we study the distribution of zeros of zeta functions of curves

over Fq varying over the moduli spaces of cyclic l-fold covers of P1(Fq), in the limit

of large genus. The zeros all lie on a circle, according to the Riemann Hypothesis

for curves, and their angles are uniformly distributed. Moreover, the number of

angles inside a fixed symmetric interval I is asymptotically a sum of l−1
2 identical

independent Gaussian random variables, each of which comes naturally from a

Dirichlet character and has mean 4g|I|/(l − 1) and variance 4
π2 log(2g|I|). These

results continue to hold for shrinking intervals as long as the expected number of

angles 2g|I| tends to infinity.

1. Introduction

Let C be a smooth projective curve of genus g ≥ 1 over a finite field Fq of

cardinality q. Its zeta function ZC(u) is a rational function of the form

ZC(u) =
PC(u)

(1− u)(1− qu)
,
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where PC(u) ∈ Z[u] is a polynomial of degree 2g with PC(0) = 1, satisfying the

functional equation

PC(u) =
(
qu2
)g
PC

(
1

qu

)
,

and having all its zeros on the circle |u| = 1/
√
q (this is the Riemann Hypothesis

for curves [19]). There is a unitary symplectic matrix ΘC ∈ USp(2g), defined up to

conjugacy, such that

PC(u) = det (I − u√qΘC) .

The eigenvalues of ΘC are of the form e(θC,j), j = 1, . . . , 2g, where e(θ) = e2πiθ. We

may assume that {θC,j} ⊂
(
−1

2
, 1

2

]
.

In a recent beautiful paper [6] Faifman and Rudnick studied the statistics of the

set of angles {θC,j} as C is drawn at random from a family of hyperelliptic curves

of genus g defined over Fq (q is odd). More precisely, denote by H2g+2 the family of

curves having an affine equation of the form Y 2 = F (X), with F ∈ Fq[X] a monic

square-free polynomial of degree 2g+ 2 and assign the uniform probability measure

on H2g+2. Given a subinterval I ⊂
[
−1

2
, 1

2

]
, let

NI(C) = # {j : θC,j ∈ I} , C ∈ H2g+2.

They proved that if 2g|I| → ∞ as g →∞, then

lim
g→∞

ProbH2g+2

a < NI − 2g|I|√
2
π2 log(2g|I|)

< b

 =
1√
2π

∫ b

a

e−x
2/2 dx .

This result is in analogy to the work of Selberg ([15],[16],[17]), who studied the fluc-

tuations in the number N(t) of zeros of the Riemann zeta function ζ(s) up to height

t. It also complements the well-known work of Katz and Sarnak [9], who proved
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that when the genus g is fixed and q →∞, the conjugacy classes {ΘC : C ∈ H2g+2}

become uniformly distributed in USp(2g), hence the statistics of NI are the same as

those of the corresponding quantity for a random matrix in USp(2g). Showing con-

sistency with this theory, moreover, in the limit of large matrix size, i.e. g →∞, the

statistics of this and other related quantities, such as the logarithm of the character-

istic polynomial of a random matrix, have been found to have Gaussian fluctuations

in various ensembles of random matrices ([14],[4],[1],[8],[10],[18], [5],[7],[20]). This

implies, in particular, that if 2g|I| → ∞ as g →∞, then

lim
g→∞

 lim
q→∞

ProbH2g+2

a < NI − 2g|I|√
2
π2 log(2g|I|)

< b

 =
1√
2π

∫ b

a

e−x
2/2 dx .

However, in the above approach of Katz and Sarnak it is crucial to take q →∞ first.

The result of Faifman and Rudnick reveals what happens if q is fixed and g → ∞

instead.

Instead of averaging over the family of hyperelliptic curves arising from monic

square-free polynomials, the proof of Faifman and Rudnick can be easily adapted to

the moduli space of hyperelliptic curves of a fixed genus. Let l ≥ 2 be a fixed prime

number such that q ≡ 1 (mod l). Extending the work of Faifman and Rudnick, in

this paper we study the statistics of the set of angles {θC,j} when the curve C varies

over the moduli spaces of cyclic l-fold covers of P1(Fq), in the limit of large genus.

More precisely, denote by Hg,l the moduli space of cyclic l-fold covers of P1(Fq) of

genus g. The moduli space Hg,l is not irreducible for l ≥ 3, so we break it into a

disjoint union of irreducible components H(d1,...,dl−1) indexed by the inertia type of
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the branch points, and

Hg,l =
⋃

d1+2d2+···+(l−1)dl−1≡0 (mod l)

g= l−1
2

(d1+···+dl−1−2)

H(d1,...,dl−1).

For any symmetric subinterval I ⊂
[
−1

2
, 1

2

]
and any curve C ∈ Hg,l, denote

NI(C) = # {j : θC,j ∈ I} ,

we will study the distribution of the quantity NI(C) as C varies over any irreducible

component H(d1,...,dl−1) of the moduli space Hg,l in the limit g → ∞. It turns out

there is a more subtle structure which we would like to stress as follows.

Each curve C ∈ Hg,l is equipped with affine model

C : Y l = F (X)

for some l-th power-free polynomial F (X) ∈ Fq[X]. The Zeta function of the curve

C can be decomposed as

ZC(u) = ZP1(Fq)(u)
l−1∏
j=1

L

((
F

·

)j
l

, u

)
,

where
(
F
·

)
l
is the l-th power residue symbol and L

((
F
·

)j
l
, u
)

is the L-function

attached to the character
(
F
·

)j
l
(see Section 2 for more details). We may choose

a different affine model hence a different l-th power free polynomial F (X) for the

same curve C, however, a little thought reveals that the L-function L
((

F
·

)j
l
, u
)
is

independent of the choice of F (X). For each j, it is known that L
((

F
·

)j
l
, u
)
is a

polynomial of degree g̃ = 2g
l−1

and the Riemann hypothesis holds true, that is, we
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can factor it as

L

((
F

·

)j
l

, u

)
=

g̃∏
i=1

(1− u√qe (θC,j,i)) .

The collection of all the angles {θC,j,i : 1 ≤ j ≤ l − 1, 1 ≤ i ≤ g̃} gives the set of

angles {θC,j} for the Zeta function ZC(u). Denote for each j

Nj,I(C) = #{1 ≤ i ≤ g̃ : θC,j,i ∈ I},

we will investigate the more subtle question, the joint distribution of the quantities

Nj,I(C) for all j when C runs over any irreducible component H(d1,...,dl−1) of Hg,l as

g →∞. Since I is symmetric we have

Nj,I(C) = Nl−j,I(C),

it is enough to consider Nj,I(C) for 1 ≤ j ≤ l−1
2
. Assigning the uniform probability

measure on each irreducible component H(d1,...,dl−1) so that each curve C in the

component is counted with weight 1/|Aut(C)|, we prove the following result.

Theorem 1. Let I ⊂
[
−1

2
, 1

2

]
be a symmetric subinterval and |I| be the length of I.

Assume that g|I| → ∞ as g →∞. Then

lim
g→∞

ProbH(d1,...,dl−1)

aj < Nj,I − g̃|I|√
2
π2 log(g̃|I|)

< bj, 1 ≤ j ≤ l − 1

2

 =

l−1
2∏
j=1

1√
2π

∫ bj

aj

e−
x2

2 dx ,

where

g̃ =
2g

l − 1
= d1 + d2 + · · ·+ dl−1 − 2,
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and H(d1,...,dl−1) is any irreducible component of the moduli space Hg,l with non-

negative integers d1, . . . , dl−1 satisfying the conditions
∑l−1

i=1 idi ≡ 0 (mod l) and

g = l−1
2

(∑l−1
i=1 di − 2

)
.

This result implies that as C varies over any irreducible component of the moduli

space Hg,l, asymptotically in the limit of g → ∞, the number of angles inside a

symmetric interval I of the zeros of the Zeta function ZC(u) arising from different

characters are independent identical Gaussian distribution with mean g̃|I| and vari-

ance 2
π2 log(g̃|I|). This holds true as long as g|I| → ∞ when g → ∞. Secondly,

since

NI(C) =
l−1∑
j=1

Nj,I(C) = 2

l−1
2∑
j=1

Nj,I(C),

NI is asymptotically Gaussian distribution with mean value 2g|I| and variance (l−

1) 2
π2 log(g|I|). Finally, when l = 2, there is only one quadratic character, this reduces

to the result of Faifman and Rudnick.

This paper is organized as follows. In Section 2 we collect several results which

will be used later. In Section 3–5 we actually prove a more general result. Applying

it in Section 6 we complete the proof of Theorem 1.

Acknowledgment. The author would like to express his gratitude to the anony-

mous referee for valuable suggestions which substantially improve the quality of the

paper. The author also thanks Wen-Ching W. Li, Yuri Zarhin, Ming-Hsuan Kang,

Alexandru Zaharescu and Zeev Rudnick for stimulus discussions on this project.

2. Preliminaries

In this section we collect several results which will be used later. Interested readers

can refer to [13] for more details.
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2.1. The Zeta functions of function fields. Fq is a finite field of cardinality q,

l ≥ 2 is a prime number such that q ≡ 1 (mod l) and F (X) ∈ Fq[X] is an l-th

power-free polynomial of degree d ≥ 1. Let K = Fq(X) be the rational function

field over Fq and let L = K(Y ) be a finite extension of K, where Y satisfies the

equation

C : Y l = F (X).(1)

We list several facts about the extension L/K (see [13, Chapter 9 and 10] for more

details and more general situation of Galois extensions of function fields).

First, denote by ζL(s) the zeta function of the function field L given by

ζL(s) =
∏
P∈SL

(
1−NP−s

)−1
,

where the product is over SL, the set of all primes of L. For the rational function

field K we have

ζK(s) =
(
1− q−s

)−1 (
1− q1−s)−1

.(2)

The curve given by affine model (1) is singular in general, however, there is a com-

plete non-singular curve defined over Fq which gives the function field L. This is

what we mean for the curve C. For such a curve, ZC (q−s) = ζL(s), i.e., the zeta

function of the curve C coincides with the zeta function of the function field L (see

[13, pp. 57, Chap 5] for details).

Next, since q ≡ 1 (mod l), Fq contains a primitive l-th root of unity, hence L/K

is a geometric Abelian extension of function fields over Fq with Galois group G =

Gal(L/K) ' Z/lZ. Let χ : G→ C∗ be a character, we define the Artin L-function



8 XIONG

L(s, χ) as follows. For a prime P ofK which is unramified in L, denote (P,L/K) ∈ G

to be the Frobenius automorphism at P , we define the local factor LP (s, χ) as

LP (s, χ) =
(
1− χ ((P,L/K))NP−s

)−1
.

If P is ramified in L, then χ ((P,L/K)) = 0, and the local factor in this case is

LP (s, χ) = 1. The Artin L-function L(s, χ) is given by

L(s, χ) =
∏
P∈SK

(
1− χ ((P,L/K))NP−s

)−1
,

where the product is over SK , the set of all primes of K, which consists of monic

irreducible polynomials P ∈ Fq[X] with NP = qdegP and P = ∞ with N(∞) = q.

If χ = χ0, the trivial character, then L(s, χ0) = ζK(s) given by (2). We have the

relation

ζL(s) = ζK(s)
∏

χ0 6=χ∈Ĝ

L(s, χ) .(3)

Each function L(s, χ) is a polynomial of degree dχ of which by the Riemann hypoth-

esis for algebraic curves over finite fields ([19]) all inverse roots have absolute value
√
q. The degree dχ can also be determined explicitly ([13, pp. 131]).

Lastly, let
(
F
·

)
l
be the l-th power residue symbol constructed from a fixed char-

acter η : F∗q → C∗ of order l (see exercises 3–6a, p.p. 85–86, [12]), then all the

non-trivial characters of G are given by
(
F
·

)j
l
, 1 ≤ j ≤ l − 1. We write χ =

(
F
)
l
.

The relation (3) can be written explicitly as

ζL(s) = ζK(s)
l−1∏
j=1

L
(
s, χj

)
.
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Here

L
(
s, χj

)
=
∏
P∈SK

(
1− χ (P )j q−sdegP

)−1

, 1 ≤ j ≤ l − 1 ,(4)

where the set SK consists of all monic irreducible polynomials P ∈ Fq[X] and

P =∞.

For each j, the degree of the polynomials L(s, χj) is given by

dj = degK F
(
χj
)
− 2,(5)

where in our special case F (χj) is defined to be the minimal effective divisor F

such that χj is trivial on the ray module F , that is, the group of principal divisors

generated by elements a ∈ K∗ such that ordP (a − 1) ≥ordPF for all primes P in

the support of F ([13, pp. 253]). Since χ is of order l, l is a prime number, we are

contended with the fact that

d1 = d2 = · · · = dl−1.

We also remark that
(
F
·

)
l

: Fq[X] → C is a Dirichlet character modulo F (X)

satisfying the following property: for D ∈ Fq[X] with D =
∏

P P
mP , then(

F

D

)
l

:=
∏
P

(
F

P

)mP
l

.

2.2. Beurling-Selberg functions. Let I = [−β/2, β/2] be an interval, symmetric

about the origin, of length 0 < β < 1, and K ≥ 1 an integer. Beurling-Selberg

polynomials I±K are trigonometric polynomials approximating the indicator function

1I satisfying (see the exposition in [11, Chapter 1.2]):

• I±K are trigonometric polynomials of degree ≤ K.
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• Monotonicity:

I−K ≤ 1I ≤ I+
K

• The integral of I±K is close to the length of the interval:∫ 1

0

I±K(x) dx =

∫ 1

0

1I(x) dx± 1

K + 1
(6)

• I±K(x) are even (since the interval I is symmetric about the origin).

As a consequence of (6), the non-zero Fourier coefficients of I± satisfy

∣∣∣Î±K(k)− 1̂I(k)
∣∣∣ ≤ 1

K + 1

and in particular

∣∣∣Î±K(k)
∣∣∣ ≤ 1

K + 1
+ min

(
β,

π

|k|

)
, 0 < |k| ≤ K.

This implies

∣∣∣Î±K(k)k
∣∣∣� 1, k ∈ Z.

• If Kβ > 1, then ([6, Propsition 4.1])

∑
n≥1

nI±K(n)2 =
1

2π2
logKβ +O(1).(7)

All the implied constants above are independent of K and β. We consider

∑
P

Î±K(degP )2(degP )2|P |−1,
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where the sum is over monic irreducible polynomials P ∈ Fq[X]. The prime number

theorem # {P : degP = n} = qn/n+O (qn/2/n) gives

∑
P

Î±K(degP )2(degP )2|P |−1 =
∑

1≤n≤K

Î±K(degP )2
(
n+O

(
nq−n/2

))
.

Using (7) we obtain (this is equation (7.4) in [6])

∑
P

Î±K(degP )2(degP )2|P |−1 =
1

2π2
logKβ +O(1) .

2.3. Arithmetic of polynomials over Fq. We collect several lemmas which are

only used in Section 6. Let χ : Fq[X] → C be a non-trivial Dirichlet character

modulo Q with degQ = m. All polynomials F ∈ Fq[X] appearing in this subsection

are monic.

Lemma 1. As d→∞, ∣∣∣∣∣∣∣∣
∑

gcd(F,G)=1,
degF=d

χ(F )

∣∣∣∣∣∣∣∣ ≤ qmσ(G),

where σ(G) is the number of monic divisors of G given by σ(G) =
∑

D|G 1.

Proof. We use the Möbius function µ to treat the condition gcd(F,G) = 1. Hence

∑
gcd(F,G)=1,

degF=d

χ(F ) =
∑

degF=d

χ(F )
∑

D|F,D|G

µ(D) =
∑
D|G

µ(D)
∑

degF=d,
D|F

χ(F ).

The right hand side can be written as

∑
D|G,

degD≤d

µ(D)χ(D)
∑

degF=d−degD

χ(F ).
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Since ∑
degF=n

χ(F ) = 0, n ≥ m,

we have ∣∣∣∣∣∣∣∣
∑

gcd(F,G)=1,
degF=d

χ(F )

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
D|G

µ(D)χ(D)
∑

degF=d−degD≤m

χ(F )

∣∣∣∣∣∣
≤

∑
D|G

qm ≤ qmσ(G).

For each nonnegative integers d1, . . . , dr, denote by Gd1,...,dr the set of vectors (F1, . . . , Fr) ∈

Fq[X]r such that F1, . . . , Fr are monic, square-free, relatively prime and degFi = di

for 1 ≤ i ≤ r.

Lemma 2. As d→∞, ∣∣∣∣∣∣∣∣
∑

gcd(F,G)=1,
F∈Gd

χ(F )

∣∣∣∣∣∣∣∣� qm+d/2σ(G).

Proof. We use the Möbius function µ to pick out the monic square-free polynomials

via the formula ∑
A2|F

µ(A) =

 1 : F is square-free

0 : otherwise

where we sum over all monic polynomials whose second power divides F . Hence

∑
gcd(F,G)=1,

F∈Gd

χ(F ) =
∑

gcd(F,G)=1,
degF=d

χ(F )
∑
A2|F

µ(A) =
∑

gcd(F,G)=1,
degF=d

χ(F )
∑

F=A2B

µ(A).
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The right hand side can be written as

∑
gcd(A,G)=1,
degA≤d/2

µ(A)χ(A)2
∑

gcd(B,G)=1,
degB=d−2 degA

χ(B).

By Lemma 1 we find that∣∣∣∣∣∣∣∣
∑

gcd(F,G)=1,
F∈Gd

χ(F )

∣∣∣∣∣∣∣∣ ≤
∑

gcd(A,G)=1,
degA≤d/2

qmσ(G) ≤ qm+d/2σ(G).

Lemma 3. Denote

S(χ,Gd1,...,dr) =
∑

(F1,...,Fr)∈G(d1,...,dr)

χ(F1F
2
2 · · ·F r

r ).

Assume that the order of χ is at least r + 1. Then as d1 + · · ·+ dr →∞,

|S(χ,Gd1,...,dr)| � (dmax)r qd1+···+dr+m−dmax/2 ,

where dmax = max{di : 1 ≤ i ≤ r}.

Proof. By symmetry, we may assume that d1 = dmax. Hence

S(χ,Gd1,...,dr) =
∑

(F2,...,Fr)∈G(d2,...,dr)

χ(F 2
2 · · ·F r

r )
∑

gcd(F1,F2···Fr)=1,
F1∈Gd1

χ(F1) .

By Lemma 2

S(χ,Gd1,...,dr)�
∑

(F2,...,Fr)∈G(d2,...,dr)

qm+d1/2σ(F2 · · ·Fr) ≤ qm+d1/2

r∏
j=2

∑
F∈Gdj

σ(F ) .
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Since

∑
F∈Gd

σ(F ) =
∑
FG∈Gd

1 ≤ 2
∑

degF≤d/2

∑
degG=d−degF

1 = 2
∑

degF≤d/2

qd−degF ,

this implies that ∑
F∈Gd

σ(F ) ≤ 2
∑
n≤d/2

qd−nqn � (d+ 1)qd .

Therefore

S(χ,Gd1,...,dr)� qm+d1/2

r∏
j=2

(dj + 1)qdj � (d1)
rq
∑r
j=1 dj+m−d1/2.

This completes the proof of Lemma 3.

Lemma 4. If d1 + · · ·+ dr →∞, then

#Gd1,...,dr � qd1+···+dr .(8)

Proof. If d1, . . . , dr →∞, Lemma 4 is implied by a simplified version of Proposi-

tion 3.1 of [3], which actually proved a more precise asymptotic formula

#Gd1,...,dr ∼ Cqd1+···+dr ,

where C is a constant depending on r. The proof is based on the function field version

of the Wiener-Ikehara Tauberian Theorem [13]. Our condition d1 + · · ·+ dr →∞ is

slightly more general, however, it is straightforward to modify their proof accordingly

to obtain a lower bound

#Gd1,...,dr � qd1+···+dr .

We omit the details here. Since trivially #Gd1,...,dr ≤ qd1+···+dr , this completes the

proof of Lemma 4.
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3. Proof of A General Result: preparation

3.1. A general result. Denote by Fd,l the set of l-th power free polynomials

F (X) ∈ Fq[X] of degree d ≥ 2. Given F ∈ Fd,l, denote by CF the curve defined by

affine model

CF : Y l = F (X).

The genus of such curve CF is given by the formula g
F

= (l − 1)(R − 2)/2, where

R is the number of branch points of the cyclic cover CF → P1. In particular if we

write

F (X) = aF1(X)F 2
2 (X) · · ·F l−1

l−1 (X),

where a ∈ F∗q and F1, . . . , Fl−1 are monic square-free, pairwise coprime polynomials

of degrees d1, . . . , dl−1, respectively, then the genus of CF is given by

g
F

=
l − 1

2
(d1 + · · ·+ dl−1 − 2 + δd) ,

here δd = 0 if l|d and δd = 1 otherwise. We are contended with the fact that

g
F
� d = degF, as d→∞.

The zeta function of the curve CF can be written as

ZCF (u) = ZP1(Fq)(u)
l−1∏
j=1

L

(
u,

(
F

·

)j
l

)
,
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where
(
F
·

)
l
is the l-th power residue symbol and L

(
u,
(
F
·

)j
l

)
is the L-function

attached to the character
(
F
·

)j
l
given by

L

(
u,

(
F

·

)j
l

)
=
∏
P∈SK

(
1−

(
F

P

)j
l

udegP

)−1

.(9)

Moreover, for each j, from (5) we known that L
(
u,
(
F
·

)j
l

)
is a polynomial of degree

g̃
F

=
2g

F

l − 1
� d, as d→∞

and the Riemann hypothesis holds true, that is, we can factor it as

L

(
u,

(
F

·

)j
l

)
=

g̃
F∏

i=1

(1− u√qe (θCF ,j,i)) .(10)

For any symmetric subinterval I ⊂
(
−1

2
, 1

2

]
, denote

Nj,I(CF ) = # {1 ≤ i ≤ g̃
F

: θCF ,j,i ∈ I} , 1 ≤ j ≤ l − 1.

We are interested in the distribution of Nj,I(CF )’s as F varies over a subset of Fd,l.

We will prove the following general result.

Theorem 2. For a sequence of d → ∞, suppose that the subsets Xd ⊂ Fd,l satisfy

the following two conditions: there exist real positive numbers ε, A, C1, C2, C3 such

that

(i) if χ : Fq[X]→ C is a non-trivial Dirichlet character modulo f ∈ F [X], then

1

#Xd

∑
F∈Xd

χ(F ) ≤ C2q
−dε+A deg f ,
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(ii) if P ∈ Fq[X] is a monic irreducible polynomial, then

1

#Xd

∑
F∈Xd
P |F

1 ≤ C3q
−ε degP .

We assign uniform probability measure on Xd. Assume that d|I| → ∞ as d → ∞.

Then

lim
d→∞

ProbXd

aj < Nj,I(F )− g̃
F
|I|√

2
π2 log(g̃

F
|I|)

< bj, 1 ≤ j ≤ l − 1

2

 =

l−1
2∏
j=1

1√
2π

∫ bj

aj

e−
x2

2 dx .

3.2. Proof of Theorem 2: Preparation. For each j, computing u d
du

logL
(
u,
(
F
·

)j
l

)
in two different ways by using the expressions of (9) and (10) and equating the co-

efficients, we derive for each n ≥ 1 the identity

−qn/2
g̃
F∑

i=1

e (nθCF ,j,i) =
∑
P

degP |n

degP

(
F

P

)jn/degP

l

+

(
F

∞

)jn
l

,

where the sum is over all monic irreducible polynomials P ∈ Fq[X] of degree dividing

n. Taking complex conjugate we have for each integer 0 6= n ∈ Z the equation

g̃
F∑

i=1

e (nθCF ,j,i) = −q|n|/2

 ∑
P

degP |n

degP

(
F

P

)jn/degP

l

+

(
F

∞

)jn
l

 .(11)

For the symmetric subinterval I = [−β/2, β/2], 0 < β < 1/2, let I±K(x) be the

trigonometric polynomials of degree K defined in Section 2 such that I−K ≤ 1I ≤ I+
K .

Since d|I| = dβ → ∞ as d → ∞, we can choose integers K = K(d) in such a way
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that

d

K
→∞, Kβ →∞, and

d

K
� (logKβ)1/4 as d→∞.(12)

From the monotonicity of I±K , we have

N−j,K(F ) ≤ Nj,I(CF ) ≤ N+
j,K(F ),

where

N±j,K(F ) =

g̃
F∑

i=1

I±K (θCF ,j,i) .

Let IK(x) =
∑

n c(n)e(nx) = I±K(x). We collect several properties of the Fourier

coefficients c(n) from Section 2 as follows:

(i) c(n) = 0 if |n| > K.

(ii) c(0) = β +O (K−1).

(iii) |c(n)n| � 1 for any n ∈ Z.

(iv) We have

∑
P

c(degP )2(degP )2|P |−1 =
1

2π2
logKβ +O(1),

where the sum runs over monic irreducible polynomials P ∈ Fq[X].

Denote Nj,K(F ) = N±j,K(F ). Then

Nj,K(F ) =

g̃
F∑

i=1

Ij,K (θCF ,j,i) =
∑
n∈Z

c(n)

g̃
F∑

i=1

e (nθCF ,j,i) .



STATISTICS FOR ZEROS OF ZETA FUNCTIONS IN A FAMILY OF CURVES 19

From the identity (11) we obtain

Nj,K(F ) = g̃
F
c(0)−

∑
06=n∈Z

c(n)q−|n|/2

 ∑
P

degP |n

degP

(
F

P

)jn/degP

l

+
l−1∑
j=1

(
F

∞

)jn
l

 .

Since |c(n)n| � 1, ∑
|n|≤K

|c(n)|q−|n|/2 � 1 .

Using the fact that
∣∣( F
∞

)
l

∣∣ ≤ 1, and c(n) = c(−n) ∈ R, we derive

Nj,K(F ) = g̃
F
β−

∑
1≤n≤K

c(n)q−n/2
∑
P

degP |n

degP

((
F

P

)jn/degP

l

+

(
F

P

)−jn/degP

l

)
+O

(
g̃
F

K

)
.

We may rewrite it as

Nj,K(F ) = g̃
F
β + Sj,K(F ) +O

(
g̃
F

K

)
,

where

Sj,K(F ) = −
∑
f

c (deg f) |f |−1/2Λ(f)

((
F

f

)j
l

+

(
F

f

)l−j
l

)
,

here the sum is over monic polynomials f ∈ Fq[X], |f | := qdeg f , and Λ(f) = degP

if f = P k is a power of a monic irreducible polynomial P ∈ Fq[X], and Λ(f) = 0

otherwise.

Using property (iii) of c(n) in the form c(deg f)Λ(f) = O(1), we find

Sj,K(F )�
∑

deg f≤K

|f |−1/2 � qK/2

and hence

|Nj,K(F )− g̃
F
β| � g̃

F

K
+ qK/2 .
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Noting |I| = β, g̃
F
� d and taking K � logq d− logq log d, we have deduced that the

zeros are uniformly distributed:

Proposition 3. As d → ∞, for each F ∈ Fd,l, every fixed symmetric interval

I = [−β/2, β/2] contains asymptotically g̃
F
|I| angles θCF ,j,i for each j. In fact

Nj,I(CF ) = g̃
F
|I|+O

(
g̃
F

log g̃
F

)
.

Denote

Tj,K(F ) = −
∑
P

c(degP ) degP |P |−1/2

((
F

P

)j
l

+

(
F

P

)l−j
l

)
,(13)

and

4j,K(F ) = −
∑
P

c(2 degP ) degP |P |−1

((
F

P

)2j

l

+

(
F

P

)l−2j

l

)
,(14)

where the sums are over monic irreducible polynomials P ∈ Fq[X]. Then

Sj,K(F )− Tj,K(F )−4j,K(F ) = −
∑

f=P r,r≥3

c(deg f)|f |−1/2Λ(f)

((
F

f

)j
l

+

(
F

f

)l−j
l

)
.

Using c(deg f)Λ(f) = O(1), it is easy to see that this is bounded by

�
∑

f=P r,r≥3

q−r degP/2 ≤
∑
r≥3

∑
n≤K/3

q−rn/2qn � 1.

Therefore

Nj,K(F )− g̃
F
β = Tj,K(F ) +4j,K(F ) +O

(
g̃
F

K

)
.(15)
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We denote by 〈•〉 the mean value of any quantity defined on Xd, that is, let χ :

Fd,l → C be a map, then

〈χ〉 :=
1

#Xd

∑
F∈Xd

χ(F ) .

The goal is to compute for any fixed nonnegative integers r1, r2, . . . , r(l−1)/2 the

moment
〈∏(l−1)/2

j=1 (Nj,K(•)− g̃•β)rj
〉
. For this purpose we need to compute various

moments for 4j,K(•) and Tj,K(•) first.

4. Moments of 4j,K and Tj,K

4.1. Moments of 4j,K(F ). For each j and each fixed positive integer r, we have

from (14)

4j,K(F )2r =
∑

P1,...,P2r

2r∏
i=1

c(2 degPi)|Pi|−1 degPi
∑

λ1,...,λ2r∈{2j,l−2j}

(
F

P λ1
1 · · ·P λ2r

2r

)
l

.

Hence

〈42r
j,K〉 =

∑
P1,...,P2r

2r∏
i=1

c(2 degPi)|Pi|−1 degPi
∑

λ1,...,λ2r∈{2j,l−2j}

〈(
•

P λ1
1 · · ·P λ2r

2r

)
l

〉
.

If P λ1
1 · · ·P λ2r

2r is not an l-th power in Fq[X], then
(

•
P
λ1
1 ···P

λ2r
2r

)
l

: Fq[X] → C is

a non-trivial Dirichlet character modulo a polynomial dividing P1 · · ·P2r. By the

condition (i) of Theorem 2 and using the property |c(n)n| � 1, we find that the

total contribution in this case is

〈42r
j,K〉1 �

∑
P1,...,P2r

2r∏
i=1

|Pi|−1
∑

λ1,...,λ2r∈{2j,l−2j}

q−dε+A(degP1+...+degP2r).
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Noting the range of K in (12), as d→∞ we obtain that for the fixed r

〈42r
j,K〉1 � 22rq−dε

 ∑
P

degP≤K

q(A−1) degP


2r

� 22rq−dε+2AKr � 1 .

If P λ1
1 · · ·P λ2r

2r = al for some a ∈ Fq[X], then
(

•
P
λ1
1 ···P

λ2r
2r

)
l
is a trivial Dirichlet

character. We assume that l ≥ 3 since l = 2 has been handled in [6]. For this to

happen, in the set {P1, P2, . . . , P2r}, each Pi must be paired off with at least one

Pj, i 6= j such that Pi = Pj. Hence the total contribution in this case is at most

〈42r
j,K〉2 �

(∑
P

|P |−2

)r

� 1 .

We conclude that

〈42r
j,K〉 = 〈42r

j,K〉1 + 〈42r
j,K〉2 � 1 .(16)

4.2. Moments of Tj,K(F ). For the sake of clarity, we deal with the moment 〈(Tj,K)r〉

first. This already contains almost all the important features of the proof. Then we

will compute in general the moment
〈∏(l−1)/2

j=1 (Tj,K)rj
〉
.

For each fixed positive integer r, from (13) we have

Tj,K(F )r = (−1)r
∑

P1,...,Pr

r∏
i=1

c(degPi)|Pi|−1/2(degPi)
∑

λ1,...,λr∈{j,l−j}

(
F

P λ1
1 · · ·P λr

r

)
l

.

Hence

〈(Tj,K)r〉 = (−1)r
∑

P1,...,Pr

r∏
i=1

c(degPi)|Pi|−1/2(degPi)
∑

λ1,...,λr∈{j,l−j}

〈(
•

P λ1
1 · · ·P λr

r

)
l

〉
.
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If P λ1
1 · · ·P λr

r is not an l-th power in Fq[X], then
(

•
P
λ1
1 ···P

λr
r

)
l
: Fq[X]→ C is a non-

trivial Dirichlet character modulo a polynomial dividing P1 · · ·Pr. By the condition

(i) of Theorem 2, and using the property that |c(n)n| � 1, the total contribution in

this case is

〈(Tj,K)r〉1 �
∑

P1,...,Pr

r∏
i=1

|Pi|−1/2
∑

λ1,...,λr∈{j,l−j}

q−dε+A(degP1+...+degPr).

Noting the range of K in (12), we obtain that

〈(Tj,K)r〉1 � 2rq−dε

 ∑
P

degP≤K

qAdegP


r

,

which yields

〈(Tj,K)r〉1 � 2rq−dε+(A+1)Kr � 1.(17)

If P λ1
1 · · ·P λr

r = al for some a ∈ Fq[X], then
(

•
P
λ1
1 ···P

λr
r

)
l
is a trivial Dirichlet

character. For this to happen, in the set {P1, P2, . . . , Pr}, each Pi must be paired

off with at least one Pj, i 6= j such that Pi = Pj. There are two cases.

4.2.1. Case one. If each Pi is paired off with exactly one Pj, i 6= j such that Pi = Pj,

then r = 2s is an even number. The number of choices for such Pi’s is (2s)!
s!2s

. Moreover,

the exponents must satisfy the condition λi+λj = l, and there are exactly two choices

for λi and λj. Hence the total contribution in this case is

〈(Tj,K)r〉0 = 2s
(2s)!

s!2s

∑
P1,...,Ps
distinct

s∏
i=1

c(degPi)
2|Pi|−1(degPi)

2

〈(
•

P1 · · ·Ps

)l
l

〉
.
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For F ∈ Xd, we may write

(
F

P1 · · ·Ps

)l
l

= 1−

 1, ∃Pi|F

0, otherwise
,

and hence 〈(
•

P1 · · ·Ps

)l
l

〉
= 1− 1

#Xd

∑
F∈Xd
∃Pi|F

1 .

It is easy to see that ∑
F∈Xd
∃Pi|F

1 ≤
s∑
i=1

∑
F∈Xd
Pi|F

1.

Hence by the condition (ii) of Theorem 2〈(
•

P1 · · ·Ps

)l
l

〉
= 1 +O

(
s∑
i=1

|Pi|−ε
)
.

The contribution from the error term O (
∑s

i=1 |Pi|−ε) is bounded by

E � s2s(2s)!

s!2s

(∑
P

c(degP )2(degP )2|P |−1

)s−1(∑
P

|P |−1−ε

)
.

Using property (iv) of c(n) and the estimate
∑

P |P |−1−ε � 1, we find

E � (logKβ)s−1 .

The main term is

(2s)!

s!

∑
P1,...,Ps
distinct

s∏
i=1

c(degPi)
2|Pi|−1(degPi)

2 .
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Now we remove the restriction that P1, . . . , Ps are distinct, introducing again an

error of O
(
(logKβ)s−2). This gives us

〈(Tj,K)r〉0 =
(2s)!

s!

(∑
P

c(degP )2(degP )2|P |−1

)s

+O
(
(logKβ)s−1) .

Using property (iv) of c(n) again we derive that

〈(Tj,K)r〉0 =
(2s)!

s!

(
1

2π2
logKβ +O(1)

)s
+O

(
(logKβ)s−1) ,

and from it we obtain

〈(Tj,K)r〉0 =
(2s)!

2sπ2ss!
(logKβ)s +O

(
(logKβ)s−1) ,(18)

where r = 2s is an even number.

4.2.2. Case two. This is the case that in the set {P1, P2, . . . , Pr}, each Pi is paired

off with at least one Pj, i 6= j such that Pi = Pj, and there is one Pi which is paired

off with at least two others Pj1 , Pj2 , i 6= j1 6= j2 such that Pi = Pj1 = Pj2 . To

describe this case we denote by σ:

σ : {1, 2, . . . , r} =
t⋃
i=1

Ii

a disjoint partition of the set {1, 2, . . . , r} such that

δ1 = |I1| ≥ 3, δi = |Ii| ≥ 2, 2 ≤ i ≤ t.(19)

From
t∑
i=1

δi = r ≥ 3 + 2(t− 1),
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we have

t− 1 ≤ r − 3

2
.(20)

The contribution of this case with respect to σ is bounded by

Eσ �
∑

P1,...,Pl
distinct

t∏
i=1

∣∣c(degPi)
δi
∣∣ (degPi)

δi |Pi|−δi/2 .

For each δ > 0, denote

α(δ) =
∑
P

∣∣c(degP )δ
∣∣ (degP )δ|P |−δ/2.

It is clear that

α(δ)� 1, if δ ≥ 3,

and from property (iv) of c(n),

α(2)� logKβ .

Hence we obtain, using (19) and (20) that

Eσ � α(δ1)
t∏
i=2

α(δi)� (logKβ)(r−3)/2 .

Since the number of such partitions σ depends only on r, which is a fixed positive

integer, the total contribution of this case to 〈(Tj,K)r〉 is still bounded by

E � (logKβ)(r−3)/2 .
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Combining this estimate with (17) and (18) we conclude that

〈(Tj,K)r〉 =
δ(r)r!

2r/2πr (r/2)!
(logKβ)r/2 +O

(
(logKβ)−1+r/2

)
,

where δ(r) = 1 is r is even, and δ(r) = 0 if r is odd.

4.3. General moments of Tj,k. Denote t = l−1
2
. For any nonnegative integers

r1, . . . , rt, let r =
∑t

j=1 rj. We have

t∏
j=1

Tj,K(F )rj = (−1)r
∑
Pj,i

∏
j,i

c (degPj,i) |Pj,i|−1/2 degPj,i
∑

λj,i∈{j,l−j}

(
F∏

j,i P
λj,i
j,i

)
l

,

where the index j, i run over the range 1 ≤ j ≤ t and 1 ≤ i ≤ rj. Hence〈
t∏

j=1

(Tj,K)rj

〉
= (−1)r

∑
Pj,i

∏
j,i

c (degPj,i) |Pj,i|−1/2 degPj,i
∑

λj,i∈{j,l−j}

〈(
•∏

j,i P
λj,i
j,i

)
l

〉
.

Similarly, if
∏

j,i P
λj,i
j,i is not an l-th power in Fq[X], then

(
•∏

j,i P
λj,i
j,i

)
l

: Fq[X]→ C

is a nontrivial Dirichlet character modulo a polynomial dividing
∏

j,i P
λj,i
j,i , by the

condition (i) of Theorem 2, the total contribution in this case is bounded by O(1). If∏
j,i P

λj,i
j,i = al for some a ∈ Fq[X], then

(
•∏

j,i P
λj,i
j,i

)
l

is a trivial Dirichlet character.

For this to happen, each element of the set {Pj,i} must be paired off with others.

There are also two cases. If there is one element that is paired off with at least

two other elements, using similar argument the total contribution in this case is

bounded by O
(

(logKβ)(r−3)/2
)
. The main contribution comes from the remaining

case, that is, in the set {Pj,i}, each Pj,i is paired off with exactly one Pj′,i′ such

that (j, i) 6= (j′, i′). Since l ≥ 3,
∏

j,i P
λj,i
j,i = al, λj,i ∈ {j, l − j} and 1 ≤ j ≤ t,

this happens if and only if for each j, 1 ≤ j ≤ t, rj = 2sj is even, and in the set

{Pj,i : 1 ≤ i ≤ rj}, each Pj,i is paired off with exactly one Pj,i′ such that i 6= i′, and
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λj,i + λj,i′ = l. The number of such choices of Pj,i and λj,i for each j is 2sj
(2sj)!

2sj sj !
.

Hence the total contribution in this case is〈
t∏

j=1

(Tj,K)rj

〉
0

=
t∏

j=1

2sj
(2sj)!

sj!2sj

∑
Pj,i

all distinct

∏
j,i

c(degPj,i)
2|Pj,i|−1(degPj,i)

2

〈(
•∏
j,i Pj,i

)l

l

〉
,

where the index j, i runs over the range 1 ≤ j ≤ t and 1 ≤ i ≤ sj. Since〈(
•∏
j,i Pj,i

)l

l

〉
= 1 +O

(∑
j,i

|Pj,i|−ε
)
,

the error term arising from O
(∑

j,i |Pj,i|−ε
)
is E � (logKβ)−1+

∑
j sj , and the main

term is
t∏

j=1

2sj
(2sj)!

sj!2sj

∑
Pj,i

all distinct

∏
j,i

c(degPj,i)
2|Pj,i|−1(degPj,i)

2 .

We may remove the restriction that all Pj,i’s are distinct, introducing again an error

of O
(

(logKβ)−2+
∑
j sj
)
. This gives us

〈
t∏

j=1

(Tj,K)rj

〉
0

=
t∏

j=1

(2sj)!

sj!

(∑
P

c(degP )2(degP )2|P |−1

)sj

+O
(

(logKβ)−1+
∑
j sj
)
.

From it we obtain that〈
t∏

j=1

(Tj,K)rj

〉
0

=
t∏

j=1

(2sj)!

2sjπ
2sjsj!

(logKβ)sj +O
(

(logKβ)−1+
∑
j sj
)
.

Replacing t = (l− 1)/2 and combining the above estimates together we conclude

that〈 l−1
2∏
j=1

(Tj,K)rj

〉
0

=

l−1
2∏
j=1

δ(rj)rj!

2rj/2πrj(rj/2)!
(logKβ)rj/2 +O

(
(logKβ)−1+r/2

)
,(21)
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where δ(s) = 1 if s is even and δ(s) = 0 if s is odd, and r =
∑(l−1)/2

j=1 rj.

5. Proof of Theorem 2

Now we have all the ingredients to prove Theorem 2. Let t = (l − 1)/2. For any

nonnegative integers r1, . . . , rt, from (15) we have

t∏
j=1

(Nj,K(F )− g̃
F
β)rj =

t∏
j=1

(Tj,K(F ))rj + E(F ),

where

E(F )�
∑

∀j,uj+vj+wj=rj∑
j vj+wj≥1

t∏
j=1

|Tj,K(F )|uj |4j,K(F )|vj
(
g̃
F

K

)wj
.

Using the Cauchy-Schwartz inequality we obtain

〈E(•)〉 �
∑

∀j,uj+vj+wj=rj∑
j vj+wj≥1

〈
t∏

j=1

(Tj,K)2uj

〉1/2(
g̃
F

K

)∑
j wj
〈

t∏
j=1

(4j,K)2vj

〉1/2

.

Since g̃
F
/K � (logKβ)1/4, by applying the estimates of Tj,K and 4j,K in (21) and

(16) respectively, we have

〈E(•)〉 �
∑

∀j,uj+vj+wj=rj∑
j vj+wj≥1

(logKβ)
∑
j wj/4 (logKβ)

∑
j uj/2 .

Since
∑

j uj + vj + wj =
∑

j rj = r and
∑

j vj + wj ≥ 1,

∑
j

uj
2

+
wj
4

=
r −

∑
j vj +

wj
2

2
≤
r − 1

2

2
.

We obtain

〈E(•)〉 � (logKβ)(r−
1
2)/2 .
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Therefore〈
t∏

j=1

(
Nj,K(•)− g̃•β√

logKβ

)rj〉
=

〈
t∏

j=1

(
Tj,K√
logKβ

)rj〉
+O

(
(logKβ)−1/4

)
.

Now applying the estimate of Tj,K in (21), we find that〈
t∏

j=1

(
Nj,K(•)− g̃•β√

logKβ

)rj〉
=

t∏
j=1

δ(rj)rj!

2rj/2πrj (rj/2)!
+O

(
(logKβ)−1/4

)
,(22)

where the implied constant depends on the nonnegative integers r1, . . . , rt.

Finally, for each j, since

N−j,K(F ) ≤ Nj,I(CF ) ≤ N+
j,K(F ) ,

and Nj,K(F ) = N±j,K(F ), we can replace Nj,K(•) by Nj,I(C•) and the equation (22)

still holds true. Letting d,K both tend to infinity in such a way that they satisfy

the condition (12) and noting that g̃
F
� d for F ∈ Xd, we conclude that all mo-

ments of
(
N1,I(CF )−g̃

F
β√

2
π2 log g̃

F
β
, . . . ,

N(l−1)/2,I(CF )−g̃
F
β√

2
π2 log g̃

F
β

)
as F varies in Xd are asymptotic to

the corresponding moments of t = (l−1)/2 identical independent standard Gaussian

distribution, where for each of the random variable the odd moments vanish and the

even moments are
1√
2π

∫ ∞
∞

x2re−x
2/2dx =

(2r)!

2rr!
.

This implies that as d→∞ and F varies in the set Xd,
(
N1,I(CF )−g̃

F
β√

2
π2 log g̃

F
β
, . . . ,

Nt,I(CF )−g̃
F
β√

2
π2 log g̃

F
β

)
converges weakly to (l − 1)/2 identical independent standard Gaussian variables.

This completes the proof of Theorem 2. �
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6. Proof of Theorem 1

6.1. The geometric point of view. To prove Theorem 1, we first need an explicit

description of the moduli space Hg,l of cyclic l-fold covers of P1(Fq) of genus g. We

use [2] and [3] as our references and summarize the statement as follows. Interested

readers can refer to the two papers for more details.

q ≡ 1 (mod l). For any (l − 1)-tuples of nonnegative integers (d1, . . . , dl−1), de-

note by F(d1,...,dl−1) the subset of Fq[X] consisting of all polynomials of the form

F1(X)F2(X)2 · · ·Fl−1(X)l−1 such that F1(X), . . . , Fl−1(X) ∈ Fq[X] are monic, square-

free, relatively prime and degFi(X) = di for 1 ≤ i ≤ l − 1. Define

F j(d1,...,dl−1) = F(d1,...,dj−1,dj−1,dj+1,...,dl−1) for 1 ≤ j ≤ l − 1,

F0
(d1,...,dl−1) = F(d1,...,dl−1),

F[d1,...,dl−1] =
l−1⋃
j=0

F j(d1,...,dl−1).

For any F ⊂ Fq[X], denote by F̂ the set of polynomials αF where α ∈ F∗q and

F ∈ F . This defines the sets F̂(d1,...,dl−1), F̂ j(d1,...,dl−1) and F̂[d1,...,dl−1] respectively.

For any F ∈ F̂[d1,...,dl−1] with d1 + 2d2 + · · · + (l − 1)dl−1 ≡ 0 (mod l), it is known

that the genus of the curve CF given by affine model Y l = F (X) is always g =

l−1
2

(d1 + d2 + · · ·+ dl−1 − 2).

The moduli space Hg,l of cyclic l-fold covers of P1(Fq) of genus g splits into ir-

reducible subspaces indexed by equivalence classes of (l − 1)-tuples of nonnegative

integers (d1, . . . , dl−1) with the property that d1 +2d2 + · · ·+(l−1)dl−1 ≡ 0 (mod l)

and g = l−1
2

(d1 + · · ·+ dl−1 − 2), i.e., the moduli space can be written as a disjoint
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union over its connected components,

Hg,l =
⋃

d1+2d2+···+(l−1)dl−1≡0 (mod l)

g= l−1
2

(d1+···+dl−1−2)

H(d1,...,dl−1),

where each component H(d1,...,dl−1) is irreducible. To compute the statistics for each

component, we need to count each curve, seen as a projective variety of dimension

1 up to isomorphism, with the same multiplicity. Since each curve C ∈ H(d1,...,dl−1)

has affine model Y l = F (X) for some F (X) ∈ F̂[d1,...,dl−1], it is enough to count its

different such affine models C ′ : Y l = F (X).

For g > (l − 1)2, all curves C ′ isomorphic to C are obtained from the automor-

phisms of P1(Fq), namely the q(q2 − 1) elements of PGL2(Fq). By running over the

elements of PGL2(Fq), we obtain q(q2−1)/|Aut(C) different models C ′ : Y l = F (X)

where F ∈ F̂[d1,...,dl−1]. This shows that

∣∣H(d1,...,dl−1)
∣∣′ = ∑

C∈H(d1,...,dl−1)

1

|Aut(C)|
=

#F̂[d1,...,dl−1]

q(q2 − 1)
,

where the ′ notation means that curves C on the moduli spaces are counted with

the usual weight 1/|Aut(C). In conclusion counting curves C ∈ H(d1,...,dl−1) with

weight 1/|Aut(C) is the same as counting polynomials F ∈ F̂[d1,...,dl−1] with weight

1/q(q2 − 1).

6.2. Proof of Theorem 1. For any (l−1)-tuples of nonnegative integers (d1, . . . , dl−1)

such that d =
∑l−1

i=1 idi ≡ 0 (mod l) and g = l−1
2

(∑l−1
i=1 di − 2

)
, as g → ∞, it is

easy to see that

d � g � dmax = max{di : 1 ≤ i ≤ l − 1}.(23)
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By Lemma 4 and Lemma 3, for any non-trivial Dirichlet character χ : Fq[X]→ C

modulo Q with degQ = m ≥ l, as d→∞

1

#F(d1,...,dl−1)

∑
F∈F(d1,...,dl−1)

χ(F )� (dmax)lqm−dmax/2 � q−εd+m

for a sufficiently small ε > 0, and for any monic irreducible polynomial P ∈ Fq[X],

1

#F(d1,...,dl−1)

∑
F∈F(d1,...,dl−1)

P |F

1�
l−1∑
j=1

∑
(F1,...,Fl−1)∈Gd1,...,dl−1

P |Fi

1� q− degP .

Hence as d1 + · · ·+dl−1 →∞, the sets X(d1,...,dl−1) = F(d1,...,dl−1) satisfy the conditions

(i) and (ii) of Theorem 2. Moreover, since l and q are both finite, as d→∞, we can

also choose X(d1,...,dl−1) to be the sets

F̂[d1,...,dl−1] =
l−1⋃
j=0

F̂ j(d1,...,dl−1) ⊂
l−1⋃
j=0

F̂d−j,l ,

and they also satisfy the conditions (i) and (ii) of Theorem 2. Since counting curves

C ∈ H(d1,...,dl−1) with weight 1/|Aut(C) is the same as counting polynomials F ∈

F̂[d1,...,dl−1] with weight 1/q(q2 − 1), applying Theorem 2, we finish the proof of

Theorem 1. �

References

[1] T. H. Baker, P. J. Forrester, Finite N fluctuation formulas for random matrices, J. Stat. Phys.

88 (1997), 1371–1385.

[2] A. Bucur, C. David, B. Feigon, M. Lalín, Statistics for traces of cyclic trigonal curves over

finite fields, arxiv.:0907.5434, 2009. To appear in IMRN.

[3] A. Bucur, C. David, B. Feigon, M. Lalín, Biased statistics for traces of cyclic p-fold covers

over finite fields, preprint, 2009.



34 XIONG

[4] O. Costin, J. Lebowitz, Gaussian Fluctuation in Random Matrices, Physical Review Letters

75 (1995), 69–72.

[5] P. Diaconis, S. Evans, Linear functionals of eigenvalues of random matrices, Trans. Amer.

Math. Soc. 353 (2001), no. 7, 2615–2633.

[6] D. Faifman, Z. Rudnick, Statistics of the zeros of zeta functions in families of hyperelliptic

curves over a finite field, arXiv:0803.3534. To appear in Compositio Math.

[7] C. P. Hughes, J. P. Keating, N. O’Connell, On the Characteristic Polynomial of a Random

Unitary Matrix, Commun. Math. Phys. 220 (2001), 429–451.

[8] K. Johansson, On random matrices from classical compact groups, Ann. of Math. 145 (1997),

519–545.

[9] N. M. Katz, P. Sarnak, “Random Matrices, Frobenius Eigenvalues, and Monodromy”, Amer.

Math. Soc. Colloq. Publ., vol. 45, American Mathematical Socitey, Providence, RI, 1999.

[10] J. P. Keating, N. Snaith, Random Matrix Theory and ζ(1/2+ it), Commun. Math. Phys. 214

(2000), 57–89.

[11] H. L. Montgomery, “Ten lectures on the interface between analytic number theory and har-

monic analysis”. CBMS Regional Conference Series in Mathematics, 84. American Mathemat-

ical Society, Providence, RI, 1994.

[12] C. Moreno, “Algebraic curves over finite fields”, Cambridge Tracts in Mathematics 97, Cam-

bridge University Press, 1991.

[13] M. Rosen, “Number theory in function fields”. Graduate Texts in Mathematics, 210. Springer-

Verlag, New York, 2002.

[14] H.D. Politzer, Random-matrix description of the distribution of mesoscopic conductance, Phys.

Rev. B 40. no. 17 (1989), 11917–11919.

[15] A. Selberg, On the remainder in the formula for N(T ), the number of zeros of ζ(s) in the

strip 0 < t < T , Avh. Norske Vid. Akad. Oslo. I. 1944, (1944). no. 1, 1–27.

[16] A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid.

48 (1946), no. 5, 89–155.

[17] A. Selberg, Contributions to the theory of Dirichlet’s L-functions, Skr. Norske Vid. Akad.

Oslo. I. 1946, (1946), no. 3, 1–62.



STATISTICS FOR ZEROS OF ZETA FUNCTIONS IN A FAMILY OF CURVES 35

[18] A. Soshnikov, The central limit theorem for local linear statistics in classical compact groups

and related combinatorial identities, Ann. Probab. 28 (2000), no. 3, 1353–1370.

[19] A. Weil, Sur les Courbes Algébriques et les Variétés qui s’en Déduisent, Publ. Inst. Math.

Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948.

[20] K. Wieand, Eigenvalue distributions of random unitary matrices, Probab. Theory Related

Fields 123 (2002), no. 2, 202–224.

Maosheng Xiong: 210 McAllister Building, Department of Mathematics, Eberly

College of Science, Pennsylvania State University, University Park, PA 16802 USA

E-mail address: xiong@math.psu.edu


