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1. Introduction

In an old paper [7] on diophantine approximation, Erdös, Szüsz and Turán

considered the set of real numbers S(m,α, c) defined by

S(m,α, c) = {ξ : 0 ≤ ξ ≤ 1, there exist integers a, q for which

m ≤ q ≤ mc, gcd(a, q) = 1, |qξ − a| ≤ α/q},

wherem ∈ N, α > 0, c ≥ 1. They studied the Lebesque measure µ(S(m,α, c))

of S(m,α, c), and showed that

(1) lim
m→∞

µ(S(m,α, c)) =
12α

π2
log c,

provided α ≤ c/(1 + c2). Then they raised the following problem:

Problem. For α > 0, c ≥ 1, does the limit

(2) lim
m→∞

µ(S(m,α, c))

exists, and if so, what is its explicit form? (see also [6]).

The topic was later developed by Kesten [20], who, building on previous

work of Friedman and Niven [17], proved that the limit (2) exists in the

wider range αc ≤ 1 and obtained the following formulas for the limit:

If c ≥ 1 and c/(1 + c2) ≤ α ≤ min(1/2, 1/c), then

limm→∞ µ(S(m,α, c)) = 12α
π2 log c− 12

π2

(
αc+ α

c
− αβ − α

β

+α
(

1
β
− β

)
log c

β
− 1

2

(
log c

β

)2
)
,

(3)

where

β =
1 + (1− 4α2)1/2

2α
.

If 1/2 ≤ α ≤ 1/c, then

(4) lim
m→∞

µ(S(m,α, c)) =
12α

π2
log c− 12

π2

(
αc− 2α +

α

c
− 1

2
(log c)2

)
.
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Finally the problem was solved by Kesten and Sós ([19]), who, based on

a result concerning another problem posed by Erdös, Szüsz and Turán in

the same paper ([7]), proved that the limit (2) exists for any α > 0, c ≥ 1

without actually finding explicit formulas in the general case. Our approach

below relies on the development in recent years of the theory of local spacing

distribution of visible lattice points and related objects, which equips one

with enough tools to attack this problem directly. The first goal for us is to

give another proof of the existence of the limit (2) for all α > 0, c ≥ 1, and

along the way obtain explicit formulas to compute it. This is Theorem 2 in

Section 4.

Second, once the limit (2) is established, call it ρ(α, c), a natural question

that arises is the following: How is this positive mass of measure ρ(α, c)

distributed inside the interval [0, 1]? Is it uniformly distributed? In other

words, for any subinterval I ⊂ [0, 1], if we let

SI(m,α, c) = {ξ : ξ ∈ I, there exist integers a, q for which

m ≤ q ≤ mc, gcd(a, q) = 1, |qξ − a| ≤ α/q},

is it true that the limit limm→∞ µ(SI(m,α, c)) exists and equals |I|ρ(α, c) ?

We will prove that this is the case.

Theorem 1. For any α > 0, c ≥ 1 and any subinterval I ⊂ [0, 1], the limit

limm→∞ µ(SI(m,α, c)) exists and

lim
m→∞

µ(SI(m,α, c)) = |I|ρ(α, c).

As it is the case for other distribution problems where Farey fractions

play a central role, such as the problem raised by Hall and investigated in

[2], if one wants to understand the distribution in subintervals I of [0, 1],

the key is to establish a connection between the given problem and the

distribution of visible lattice points with congruence constraints. This in

turn allows one to relate the problem with the distribution of inverses in

residue classes, which further enables one to bring in a decisive way the

Kloosterman machinery into play and ultimately solve the problem.

2. Farey fractions, Visible points and Kloosterman sums

We start by recalling some results on Farey fractions. For an exposi-

tion of their basic properties, the reader is referred to [10]. Let F
Q

=

{γ1, . . . , γN(Q)} denote the Farey sequence of order Q with 1/Q = γ1 <

γ2 < · · · < γN(Q) = 1. It is well-known that

N(Q) =

Q∑
j=1

φ(j) =
3Q2

π2
+O(Q logQ).
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Write γi = ai/qi in reduced form, i.e., ai, qi ∈ Z, 1 ≤ ai ≤ qi ≤ Q, gcd(ai, qi) =

1. For any two consecutive Farey fractions ai/qi < ai+1/qi+1, one has

ai+1qi−aiqi+1 = 1 and qi+qi+1 > Q. Conversely, if q and q′ are two coprime

integers in {1, . . . , Q} with q+ q′ > Q, then there are unique a ∈ {1, . . . , q}
and a′ ∈ {1, . . . , q′} for which a′q− aq′ = 1, and a/q < a′/q′ are consecutive

Farey fractions of order Q. Therefore, the pairs of coprime integers (q, q′)

with q+ q′ > Q are in one-to-one correspondence with the pairs of consecu-

tive Farey fractions of order Q. Moreover, the denominator qi+2 of γi+2 can

be expressed (cf. [14]) by means of the denominators of γi and γi+1 as

qi+2 =

[
Q+ qi
qi+1

]
qi+1 − qi,

where [ . ] denotes the integer part function. By induction, for any j ≥ 2,

the denominator qi+j of γi+j can be expressed in terms of the denominators

of γi, γi+1. More precisely, let T denote the Farey triangle

T = {(x, y) ∈ [0, 1]2 : x+ y > 1},

and consider, for each (x, y) ∈ T , the sequence (Li(x, y))i≥0 defined by

L0(x, y) = x, L1(x, y) = y and recursively, for i ≥ 2,

Li(x, y) =

[
1 + Li−2(x, y)

Li−1(x, y)

]
Li−1(x, y)− Li−2(x, y).

Then for all i, j ≥ 0 with i+ j ≤ N(Q), we have

qi+j
Q

= Lj

(
qi
Q
,
qi+1

Q

)
.

Such formulas prove to be useful in the study of various questions on the

distribution of Farey fractions (see, for example [1]–[5], [11]–[14], [16], [18]).

The bijective, piecewise smooth and area preserving map T : T −→ T

defined by ([2])

T (x, y) =

(
y,

[
1 + x

y

]
y − x

)
,

also plays an important role in recent developments of the subject. The set

T decomposes as a disjoint union of convex polygons

Tk = {(x, y) ∈ T :

[
1 + x

y

]
= k}, k ∈ N,

and

T (x, y) = (y, ky − x), (x, y) ∈ Tk.

For any integer i ≥ 0,

T

(
qi
Q
,
qi+1

Q

)
=

(
qi+1

Q
,
qi+2

Q

)
,

and

T i(x, y) = (Li(x, y), Li+1(x, y)) .
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We need some more notation. Denote

Z2
pr = {(a, b) ∈ Z2 : gcd(a, b) = 1}.

For each region Ω in R2 and each C1 function f : Ω −→ C, we denote

||f ||∞,Ω = sup
(x,y)∈Ω

|f(x, y)|,

and

||Df ||∞,Ω = sup
(x,y)∈Ω

(∣∣∣∣∂f∂x (x, y)

∣∣∣∣+

∣∣∣∣∂f∂y (x, y)

∣∣∣∣) .
We need the following variations of results from [2].

Lemma 1. Let Ω ⊂ [1, R] × [1, R] be a convex region and let f be a C1

function on Ω. Then∑
(a,b)∈Ω

⋂
Z2
pr

f(a, b) =
6

π2

∫∫
Ω

f(x, y) dxdy + ER,Ω,f ,

where

ER,Ω,f � ||f ||∞,ΩR logR + ||Df ||∞,ΩArea(Ω) logR.

This is Corollary 1 in [2].

For any subinterval J = [t1, t2] of [0, 1], denote Ja = [(1− t2)a, (1− t1)a].

Lemma 2. Let Ω ⊂ [1, R] × [1, R] be a convex region and let f be a C1

function on Ω. For any subinterval J ⊂ [0, 1] one has∑
(a,b)∈Ω

⋂
Z2
pr,

b̄∈Ja

f(a, b) =
6|J|
π2

∫∫
Ω

f(x, y) dxdy + FR,Ω,f,J,

where

FR,Ω,f,J �δ mf ||f ||∞,ΩR3/2+δ + ||f ||∞,ΩR logR

+||Df ||∞,ΩArea(Ω) logR,

for any δ > 0, where b̄ denotes the multiplicative inverse of b (mod a), i.e.,

1 ≤ b̄ ≤ a − 1, bb̄ ≡ 1 (mod a), mf is an upper bound for the number of

intervals of monotonicity of each of the functions y 7→ f(x, y).

This is Lemma 8 in [2], where Weil type estimates ([21], [15], [8]) for certain

weighted incomplete Kloosterman sums play a crucial role in the proof.
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3. Two Lemmas

We first explain the strategy we will employ in investigating Erdös, Szüsz

and Turán’s problem, which may also be useful in the study of other prob-

lems.

For α > 0, c ≥ 1,m ∈ N, let Q = [mc] and F
Q

= {γ1, . . . , γN(Q)} be the

Farey sequence of order Q with 1/Q = γ1 < γ2 < · · · < γN(Q) = 1. Write

γi = ai/qi in reduced form. For every γi ∈ F
Q

, let

J(γi) =

[
ai
qi
− α

q2
i

,
ai
qi

+
α

q2
i

]
.

We have

S(m,α, c) =
⋃

γi∈F
Q

;qi≥m

J(γi).

By restating the problem in the language of Farey fractions, one realizes

the importance of the local spacing distribution of Farey fractions. In order

to understand the limit (2), one needs to control the statistic behavior of

long chains of consecutive Farey points. We want to emphasize that as h

increases it becomes more difficult to keep under control the behavior of

an entire h-tuple of consecutive Farey fractions. From this point of view,

Lemma 3 below, which establishes a bound for the length of any chain of

consecutive Farey fractions that contribute to the measure of the given set

S(m,α, c), is a simple, yet crucial ingredient in our proof.

Lemma 3. For any α > 0, c ≥ 1, there exists an integer K = K(α, c) ≥ 0

such that for any integer m > 0 and any γi, γj ∈ F
Q

with Q = [mc], qi ≥
m, qj ≥ m and J(γi) ∩ J(γj) 6= Φ, we have |i− j| ≤ K.

Proof. Assume i < j and write j = i+k. The relation J(γi)∩J(γi+k) 6= Φ

implies that
ai+k
qi+k

− α

q2
i+k

≤ ai
qi

+
α

q2
i

,

and since mc ≥ Q ≥ qi, qi+k ≥ m,

k

Q2
≤ 1

qi+kqi+k−1

+
1

qi+k−1qi+k−2

+ . . .+
1

qi+1qi

=
ai+k
qi+k

− ai
qi
≤ α

q2
i+k

+
α

q2
i

≤ 2α

m2
.

Therefore

k ≤ 2αQ2

m2
≤ 2αc2,

and choosing K = [2αc2], the lemma is proved.

A concept that plays an important role in questions on the local distri-

bution of Farey points is that of the index of a Farey fraction, recently
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introduced by Hall and Shiu [13]. In the language of visible points, the in-

dex is intrinsically related with the position of consecutive visible points in

terms of their distance to the origin and the angle between the correspond-

ing rays from the origin to these points, and in this way it naturally appears

in some applications to questions originating in mathematical physics (bil-

liards, periodic Lorentz gas).

Definition. For 1 < i < N(Q), the index of the fraction γi in F
Q

is

defined by

v
Q

(γi) =

[
Q+ qi−1

qi

]
.

We remark that the existence of an upper bound for the length of any

chains does not imply any bound for the index. For a suggestive example,

the reader is referred to Figure 2 from [1]. The idea of trying to under-

stand an entire distribution by understanding each individual piece of it

that corresponds to a fixed value of the index is very valuable in dealing

with questions related with the local spacing distribution of Farey points,

and we will also make use of it in this paper. Another aspect worth mention-

ing is the following: Fractions with large index, or h-tuples of consecutive

Farey fractions for which at least one of the fractions has a large index, are

hard to control. The reason for this is that it is hard to control the regions

inside the so-called Farey triangle that produce such tuples, as they have

small areas compared to the length of their boundary.

In our problem, a simple but key device is Lemma 4 below, which provides

us with a uniform bound for the index of any of the fractions in any chain

that contributes to the measure of the given set S(m,α, c).

Lemma 4. For any α > 0, c ≥ 1, there exists an integer T = T (α, c) ≥ 1

with the following property: For any integer m > 0 and any γi, γj ∈ F
Q

with

Q = [mc], i < j, qi ≥ m, qj ≥ m and J(γi) ∩ J(γj) 6= Φ, we have v
Q

(γs) ≤ T

for any s with i < s ≤ j.

Proof. Write j = i+ k. Since J(γi) ∩ J(γi+k) 6= Φ,

ai+k
qi+k

− ai
qi
≤ α

q2
i+k

+
α

q2
i

≤ 2α

m2
.

For any s such that i < s ≤ i+ k,

asqi − aiqs
qsqi

≤ ai+k
qi+k

− ai
qi
.

Here asqi − aiqs ≥ 1 and qi ≤ Q, hence 1
Qqs
≤ 2α

m2 , and so qs ≥ m2

2αQ
. Thus

for any i < s ≤ i+ k

v
Q

(γs) =

[
Q+ qs−1

qs

]
≤ Q+Q

m2/(2αQ)
≤ 4αc2.
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We may choose T = [4αc2] and this completes the proof of the lemma.

4. The case I = [0, 1]

In this section we present a proof of the existence of the limit (2) and

also provide an explicit formula for the limit. With the length of the chains

as well as the sizes of the index bounded, we will proceed to connect our

problem to the distribution of visible points inside expanding regions, which

can then be treated with the aid of Lemma 1 and 2.

Using the inclusion-exclusion principle,

µ(S(m,α, c)) = µ

 ⋃
γi∈F

Q
;qi≥m

J(γi)


=

N(Q)∑
r=1

(−1)r−1
∑

1≤i1<···<ir≤N(Q),
qi1≥m,...,qir≥m

µ

(
r⋂
s=0

J(γis)

)

=

N(Q)−1∑
r=0

(−1)r
∑

1≤j1<···<jr≤N(Q)

∑
i,

qi+js≥m,0≤s≤r

µ

(
r⋂
s=0

J(γi+js)

)
,

where j0 = 0. Denote for simplicity

µj1,...,jr =
∑
i,

qi+js≥m,0≤s≤r

µ

(
r⋂
s=0

J(γi+js)

)
.

Many of these terms vanish by Lemma 3. More precisely,

(5) µ(S(m,α, c)) =
K∑
r=0

(−1)r
∑

1≤j1<···<jr≤K

µj1,...,jr .

Then by Lemma 4, one can further write µj1,...,jr as a finite sum,

(6) µj1,j2,...,jr =
∑

1≤k1,k2,...,kjr≤T

µ
k1,k2,...,kjr
j1,j2,...,jr

,

where

(7) µ
k1,k2,...,kjr
j1,j2,...,jr

=
∑
i,

v
Q

(γi+j)=kj ,1≤j≤jr,
qi+js≥m,0≤s≤r

µ

(
r⋂
s=0

J(γi+js)

)
.

For any integer n > 0 and any positive integers k1, k2, . . . , kn, let

Tk1,...,kn =
n⋂
j=1

T−j+1Tkj .
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Then for any (x, y) ∈ Tk1,...,kn , we have

L0(x, y) = x, L1(x, y) = y,

and recursively,

Li+1(x, y) = kiLi(x, y)− Li−1(x, y), 1 ≤ i ≤ n.

Therefore there exist real numbers ωi, υi depending only on k1, . . . , kn such

that

Li(x, y) = ωix+ υiy, 0 ≤ i ≤ n+ 1.

The set Tk1,...,kn ⊂ T is obtained by intersecting finitely many half planes,

and so it is a convex polygon. For any t > 0 and any 1 ≤ j1 < j2 · · · < js ≤
n, define the set

H j1,j2,...,js
k1,k2,...,kn

(t) = {(x, y) ∈ Tk1,k2,...,kn : Ljv(x, y) ≥ t, 0 ≤ v ≤ s} .

Here H j1,...,js
k1,...,kn

(t) is also a convex polygon. We now return to (7). For any

γi, γi+1 ∈ F
Q

, we see that

v
Q

(γi+1) = k1, vQ(γi+2) = k2, . . . , vQ(γi+jr) = kjr ,
qi ≥ m, qi+j1 ≥ m, qi+j2 ≥ m, . . . , qi+jr ≥ m.

This means that (
qi
Q
, qi+1

Q

)
∈ Tk1,k2,...,kjr

QLjv

(
qi
Q
, qi+1

Q

)
≥ m, 0 ≤ v ≤ r,

that is, (
qi
Q
,
qi+1

Q

)
∈H j1,...,jr

k1,...,kjr

(
m

Q

)
,

and therefore (7) becomes

(8) µ
k1,k2,...,kjr
j1,j2,...,jr

=
∑
i,

( qiQ ,
qi+1
Q )∈H

j1,...,jr
k1,...,kjr

(mQ )

µ

(
r⋂
s=0

J(γi+js)

)
.

Next, fix j1, . . . , jr, k1, . . . , kjr , and denote for simplicity H j1,...,jr
k1,...,kjr

by H .

For any t > 0 and ( qi
Q
, qi+1

Q
) ∈H (t),

µ

(
r⋂
s=0

J(γi+js)

)
= max

{
0, min

0≤s≤r

{
ai+js
qi+js

+
α

q2
i+js

}
− max

0≤s≤r

{
ai+js
qi+js

− α

q2
i+js

}}
.

Since for any 0 ≤ js′ < js ≤ jr,

ai+js
qi+js

−
ai+js′
qi+js′

=

js−js′−1∑
λ=0

1

qi+js−λqi+js−λ−1

,

and

qi+js = QLjs

(
qi
Q
,
qi+1

Q

)
= Q

(
ωjs

qi
Q

+ υjs
qi+1

Q

)
= ωjsqi + υjsqi+1,
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where ωjs , υjs are real numbers which only depend on k1, k2, . . . , kjr , one sees

that the measure µ (
⋂r
s=0 J(γi+js)), when considered as a function of the

variables qi, qi+1, is piecewise smooth. Denote this function by fj1,...,jr(x, y),

so that

fj1,...,jr(qi, qi+1) = µ

(
r⋂
s=0

J(γi+js)

)
.

Here

Q2fj1,...,jr(Qx,Qy) = fj1,...,jr(x, y),

and for any t such that t > δ > 0, one has

||fj1,...,jr ||∞,QH (t) �α,δ
1

Q2
, ||Dfj1,...,jr ||∞,QH (t) �α,δ

1

Q3
.

Given ε > 0, there exists an M > 0, such that if m > M , then 1/c ≤
m/Q ≤ 1/c+ ε, and H (1/c+ ε) ⊂H (m/Q) ⊂H (1/c). The set H (1/c)

is a convex polygon, and fj1,...,jr is piecewise smooth. By Lemma 1,∑
i,

( qiQ ,
qi+1
Q )∈H (1/c)

µ

(
r⋂
s=0

J(γi+js)

)
=

∑
i,

( qiQ ,
qi+1
Q )∈H (1/c)

fj1,...,jr(qi, qi+1)

=
∑

(u,v)∈QH (1/c)
⋂

Z2
pr

fj1,...,jr(u, v)

=
6

π2

∫∫
QH (1/c)

fj1,...,jr(x, y)dxdy + E1

=
6Q2

π2

∫∫
H (1/c)

fj1,...,jr(Qx,Qy)dxdy + E1

=
6

π2

∫∫
H (1/c)

fj1,...,jr(x, y) dxdy + E1,

where

E1 � ||fj1,...,jr ||∞,QH (1/c)Q logQ+ ||Dfj1,...,jr ||∞,QH (1/c)Area (QH (1/c)) logQ

�α,c
Q logQ

Q2
+
Q2 logQ

Q3
�α,c

logQ

Q
,

here we use

Area(QH (1/c)) = Q2Area(H (1/c))� Q2.

Similarly,∑
i,

( qiQ ,
qi+1
Q )∈H (1/c+ε)

µ

(
r⋂
s=0

J(γi+js)

)
=

6

π2

∫∫
H (1/c+ε)

fj1,...,jr(x, y)dxdy + E2,

where we also have

E2 �α,c
logQ

Q
.
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Clearly,∫∫
H (1/c+ε)

fj1,...,jr(x, y)dxdy =

∫∫
H (1/c)

fj1,...,jr(x, y)dxdy + o(1),

as ε→ 0. Letting m→∞ and ε→ 0, we conclude that

(9) lim
m→∞

µ
k1,k2,...,kjr
j1,j2,...,jr

=
6

π2

∫∫
H

j1,j2,...,jr
k1,k2,...,kjr

(1/c)

fj1,j2,...,jr(x, y)dxdy,

for any 1 ≤ j1 < j2 < . . . < jr ≤ K and 1 ≤ k1, k2, . . . , kjr ≤ T . By (6),

lim
m→∞

µj1,j2,...,jr =
6

π2

∑
1≤k1,k2,...,kjr≤T

∫∫
H

j1,j2,...,jr
k1,k2,...,kjr

(1/c)

fj1,j2,...,jr(x, y)dxdy

=
6

π2

∫∫
H j1,j2,...,jr (1/c)

fj1,j2,...,jr(x, y)dxdy,

where

H j1,j2,...,jr(t) =
⋃

1≤k1,k2,...,kjr≤T

H j1,j2,...,jr
k1,k2,...,kjr

(t)

= {(x, y) ∈ T : Ljv(x, y) ≥ t, 0 ≤ v ≤ r} .

Lastly, from (5) it follows that the limit limm→∞ µ(S(m,α, c)) exists for any

α > 0, c ≥ 1. Therefore we have proved:

Theorem 2. The limit (2) exists for any α > 0, c ≥ 1. Denoting the limit

by ρ(α, c), we have

(10) ρ(α, c) =
6

π2

K∑
r=0

(−1)r
∑

1≤j1<···<jr≤K

∫∫
H j1,...,jr (1/c)

fj1,...,jr(x, y)dxdy.

We end this section with some comments on how to derive explicit for-

mulas such as (1),(3) and (4) from the equation (10) above. Let us take

the case α ≤ c/(1 + c2) first. As Erdös, Szüsz and Turán remarked in [7],

J(γi)
⋂
J(γj) = Φ for any i 6= j. Hence K = 0, and only the first term

survives in (10). More precisely,

ρ(α, c) =
6

π2

∫∫
H (1/c)

f(x, y) dxdy,

where H (1/c) = {(x, y) ∈ T : L0(x, y) = x ≥ 1/c} and f(x, y) = 2α
x2 , so

ρ(α, c) =
6

π2

∫∫
H (1/c)

f(x, y) dxdy =
12α

π2
log c.

This is (1). In the case c2/(1 + c2) ≤ αc ≤ 1, Kesten observed in [20] that

J(γi)
⋂
J(γi+2) = Φ for any i. Therefore K = 1, and only the first two

terms are left. Then

(11) ρ(α, c) =
6

π2

∫∫
H (1/c)

f(x, y) dxdy − 6

π2

∫∫
H 1(1/c)

f1(x, y) dxdy.
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The first term is already computed and equals 12α
π2 log c. As for the second

one, H 1(1/c) = {(x, y) ∈ T : x ≥ 1/c, y ≥ 1/c} and

f(x, y) = max

{
0,
α

x2
+
α

y2
− 1

xy

}
.

Note that if 1/2 ≤ α ≤ 1/c, we always have f(x, y) = α
x2 + α

y2
− 1

xy
≥ 0, and

one finds that

(12)

∫∫
H 1(1/c)

f1(x, y) dxdy = 2

(
αc− 2α +

α

c
− 1

2
(log c)2

)
.

In the case c/(1 + c2) ≤ α ≤ min(1/2, 1/c), Kesten pointed out that

f(x, y) ≥ 0 if any only if 1/β ≤ x/y ≤ β, where

β =
1 + (1− 4α2)1/2

2α
.

A straightforward computation shows that β ≤ c ≤ β + 1, which further

gives∫∫
H 1(1/c)

f1(x, y) dxdy = 2

(
αc+

α

c
− αβ − α

β
+ α

(
1

β
− β

)
log

c

β
− 1

2

(
log

c

β

)2
)
.

Plugging this and (12) into (11) will yield the formulas (4) and (3) imme-

diately.

5. Proof of Theorem 1

Let I = (a, b) ⊂ [0, 1]. We use the same notation as in the previous

section. Denote F
Q

(I) = F
Q

⋂
I and consider the set

S ′I(m,α, c) =
⋃

γi∈F
Q

(I); qi≥m

J(γi),

where as before, Q = [mc]. For any ε > 0, there exists an M > 0 such that

if m > M , then

(13) S ′Iε(m,α, c) ⊂ SI(m,α, c) ⊂ S ′I(m,α, c),

where Iε := (a+ ε, b− ε). Let us first consider the measure of the right hand

side of (13). As in the proof of Theorem 2, one finds that

(14) µ(S ′I(m,α, c)) =
K∑
r=0

(−1)r
∑

1≤j1<···<jr≤K

µj1,...,jr ,
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where

µj1,...,jr =
∑
i,

qi+js≥m,0≤s≤r,
γjs∈I,0≤s≤r

fj1,...,jr(qi, qi+1)

=
∑
i,

qi+js≥m,0≤s≤r,
γi∈I

fj1,...,jr(qi, qi+1)−
∑
i,

qi+js≥m,0≤s≤r,
γi∈I,γjr /∈I

fj1,...,jr(qi, qi+1)

= µ′j1,...,jr − ej1,...,jr .

It is clear that

ej1,...,jr ≤ jr
2α

m2
≤ 2Kα

m2
�α,c

1

Q2
.

We further write

µ′j1,j2,...,jr =
∑

1≤k1,k2,...,kjr≤T

µ′
k1,k2,...,kjr
j1,j2,...,jr

,(15)

where

(16) µ′
k1,k2,...,kjr
j1,j2,...,jr

=
∑
i,

v
Q

(γi+j)=kj ,1≤j≤jr,
qi+js≥m,0≤s≤r,

γi∈I

fj1,j2,...,jr(qi, qi+1).

For any two consecutive Farey fractions γi = ai/qi < γi+1 = ai+1/qi+1,

ai+1qi − aiqi+1 = 1, we have ai ≡ −q̄i+1 (mod qi), where q̄i+1 is uniquely

defined by the relations 1 ≤ q̄i+1 ≤ qi and qi+1q̄i+1 ≡ 1 (mod qi). Since

1 ≤ ai ≤ qi, we have ai = qi − q̄i+1 and

γi =
ai
qi

= 1− q̄i+1

qi
∈ I,

so q̄i+1 ∈ Iqi , where Iqi = ((1− b)qi, (1− a)qi). Therefore (16) becomes

µ′
k1,k2,...,kjr
j1,j2,...,jr

=
∑
i,

( qiQ ,
qi+1
Q )∈H

j1,j2,...,jr
k1,k2,...,kjr

(mQ ),
q̄i+1∈Iqi

fj1,j2,...,jr(qi, qi+1).(17)

Fix now j1, . . . , jr, k1, . . . , kjr and write H for H j1,j2,...,jr
k1,k2,...,kjr

. By Lemma 2,∑
i,

( qiQ ,
qi+1
Q )∈H (1/c),

γi∈I

fj1,...,jr(qi, qi+1) =
∑

(u,v)∈QH (1/c)
⋂

Z2
pr,

v̄∈Iu

fj1,...,jr(a, b)

=
6|I|
π2

∫∫
QH (1/c)

fj1,...,jr(x, y)dxdy + E ′1

=
6|I|
π2

∫∫
H (1/c)

fj1,...,jr(x, y) dxdy + E ′1,
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where

E ′1 �δ mf ||fj1,...,jr ||∞,QH (1/c)Q
3
2

+δ + ||fj1,...,jr ||∞,QH (1/c)Q logQ

+||Dfj1,...,jr ||∞,QH (1/c)Area(QH (1/c)) logQ,

for any δ > 0. Here mf is an upper bound for the number of intervals of

monotonicity of each of the functions y 7→ fj1,...,jr(x, y), which are piecewise

smooth for any 1 ≤ j1 < · · · < jr ≤ K. Hence mf �α,c 1. We have seen in

the previous section that

||fj1,...,jr ||∞,QH (1/c) �α,c
1

Q2
, ||Dfj1,...,jr ||∞,QH (1/c) �α,c

1

Q3
,

and

Area(QH (1/c)� Q2.

Putting together all the above estimates, we derive for 0 < δ < 1/2,

E ′1 �α,c,δ
mfQ

3
2

+δ

Q2
+
Q logQ

Q2
+
Q2 logQ

Q3
�α,c,δ

1

Q1/2−δ .

Choose δ = 1/3 and let m→∞. Since limm→∞
m
Q

= 1
c
, we obtain as in the

proof of Theorem 2 that

lim
m→∞

µ′
k1,k2,...,kjr
j1,j2,...,jr

= lim
m→∞

∑
i,

( qiQ ,
qi+1
Q )∈H

j1,j2,...,jr
k1,k2,...,kjr

(mQ ),
q̄i+1∈Iqi

fj1,j2,...,jr(qi, qi+1)

= lim
m→∞

∑
i,

( qiQ ,
qi+1
Q )∈H

j1,j2,...,jr
k1,k2,...,kjr

(1/c),

q̄i+1∈Iqi

fj1,j2,...,jr(qi, qi+1)

=
6|I|
π2

∫∫
H

j1,j2,...,jr
k1,k2,...,kjr

(1/c)

fj1,j2,...,jr(x, y)dxdy.

By combining (14), (15) and (10) we deduce that

lim
m→∞

µ(S ′I(m,α, c)) =
6|I|
π2

∑
1≤j1<···<jr≤K

(−1)r
∫∫

H j1,...,jr (1/c)

fj1,...,jr(x, y)dxdy

= |I| · ρ(α, c),

where

ρ(α, c) = lim
m→∞

µ(S(m,α, c)),

and for any t > 0,

H j1,...,jr(t) =
⋃

1≤k1,...,kjr≤T

H j1,...,jr
k1,...,kjr

(t).

Similarly,

lim
m→∞

µ(S ′Iε(m,α, c)) = |Iε| · ρ(α, c).
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Lastly, by letting ε→ 0, we conclude from (13) that the limit limm→∞ µ(SI(m,α, c))

exists for any α > 0, c ≥ 1 and moreover,

lim
m→∞

µ(SI(m,α, c)) = |I| · ρ(α, c),

which completes the proof of Theorem 1.
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