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Abstract. We prove that the pair correlation of the sequence of rational numbers

in the unit interval with prime denominators is Poissonian. The result is also true

for rational numbers with denominators having exactly two distinct prime factors.

1. Introduction

After the appearance of the classical result of Dirichlet on rational approximation

of real numbers, there has been interest in approximating irrationals by rationals

satisfying various constraints. One such problem that has attracted a lot of attention

is concerned with finding numbers τ > 0 such that there are infinitely many primes

p satisfying the diophantine inequality

‖αp‖ < p−τ+ε,(1)

where ‖t‖ denotes the distance from a real number t to the nearest integer. Vino-

gradov initially obtained τ = 1
5
, and his result has been improved through the years

by various authors such as Vaughan ([13]), Balog ([2]), Harman ([4],[6]), Jia ([8]-

[11]) and Heath-Brown and Jia ([7]). The current record τ = 1
3

has been recently

announced by Mikawa (see [11] for a detailed account of the history and recent

progress).
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Since the inequality (1) is equivalent to the existence of a rational number a
p

with

prime denominator p such that |α− a
p
| < p−1−τ+ε, all the above results on τ can be

reinterpreted as quantitative statements on the gaps between rational numbers with

prime denominators. Motivated by this connection, in this paper we would like to

investigate some aspects of the statistical behavior of these gaps. More precisely,

for each large integer Q, let

M
Q

=

{
a

p
: 1 ≤ a < p ≤ Q, p is a prime

}
be the set of rational numbers with prime denominators bounded by Q in the unit

interval. As a first step in trying to understand the gaps between the elements of

M
Q

, in the present paper we study the pair correlation of the sequence M
Q

as Q

goes to infinity. We remark that in the case of all fractions, that is, in case one

drops the requirement on the denominators to be prime, the existence and explicit

computation of the limiting pair correlation function were established in [3]. In that

case one has a strong repulsion between elements of the sequence, stronger even than

the repulsion between the zeros of the Riemann zeta function [12]. There is no such

repulsion when the fractions are required to have prime denominators, in fact in

this case the pair correlation becomes Poissonian, i.e., the limiting pair correlation

function exists and is constant, equal to 1.

Theorem 1. The limiting pair correlation function of the sequence (M
Q

)
Q∈N as

Q→∞ exists and is constant equal to 1.

There has also been interest in diophantine approximation problems with numbers

having exactly two prime factors (see for example [5], pp. 23-37 and [1], Theorem

1). With this in mind, we also consider the pair correlation of the sequence

N
Q

=

{
a

q
: 1 ≤ a ≤ q ≤ Q, gcd(a, q) = 1, q = p1p2, p1 and p2 distinct primes

}



PAIR CORRELATION 3

as Q tends to infinity. We prove that, as in the case above, the pair correlation

becomes Poissonian as Q→∞.

Theorem 2. The limiting pair correlation function of the sequence (N
Q

)
Q∈N as

Q→∞ exists and is constant equal to 1.

2. Preliminaries

First let us review the definition of pair correlation. Let F be a finite set of

cardinality N in [0, 1]. The pair correlation measure RF(I) of an interval I ⊂ R is

defined as
1

N
#

{
(x, y) ∈ F2 : x 6= y, x− y ∈ 1

N
I + Z

}
.

Suppose that (Fn)n is an increasing sequence of finite subsets of [0, 1] and that

R(I) = lim
n
RFn(I)

exists for every interval I ⊂ R. ThenR is called the limiting pair correlation measure

of (Fn)n. If the measure R is absolutely continuous with respect to the Lebesgue

measure, say

R(I) =

∫
I

g(x)dx ,

then g is called the limiting pair correlation function of (Fn)n. We denote

RF (λ) = 2−1RF([−λ, λ]) .

Next, we collect several simple results which will be used later. Throughout the

paper, p, q, p′, q′ stand for prime numbers.

Lemma 1. For any integer n ≥ 0 one has∑
p≤Q

pn =
Qn+1

(n+ 1) logQ

(
1 +O

(
(logQ)−1

))
,

as Q→∞.
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Proof. This follows by partial summation from the prime number theorem.

Lemma 2. For any integer n ≥ 0 one has∑
pq≤Q

pnqn =
2Qn+1 log logQ

(n+ 1) logQ

(
1 +O

(
(log logQ)−1

))
,

as Q→∞.

Proof. This can be proved by combining Dirichlet’s hyperbola method, Lemma 1

and Mertens’ estimates.

The following result can be proved by simple Riemann integration.

Lemma 3. Let H : R→ R be a continuously differentiable function with

supp H ⊂ (a, b) for some real numbers a, b. Then for any L > 0 one has∑
l∈Z

H

(
l

L

)
= L

∫
R
H(x)dx+O

(
‖DH‖∞

(
b− a+

2

L

))
,

where

‖DH‖∞ = sup
x∈R
|H ′(x)| .

3. Proof of Theorem 1

Our objective is to estimate, for any positive real number ∧, the quantity

MQ(∧) := #

{
(x, y) ∈M

Q

2 : x 6= y, x− y ∈ (0,∧)

N
+ Z

}
,

as Q→∞. Let M(Q) = #(M
Q

). By Lemma 1 one has

M(Q) =
∑
p≤Q

(p− 1) =
∑
p≤Q

p−
∑
p≤Q

1

=
Q2

2 logQ

(
1 +O

(
(logQ)−1

))
.

In the process of proving Theorem 1, we present a more general result.
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Lemma 4. For any function H ∈ C1
0(R) (continuously differentiable with compact

support), define

h(y) =
∑
n∈Z

H(M(Q)(y + n))

and

MQ,H =
∑

x,y∈M
Q

h(x− y).

Then

MQ,H =
Q2

2 logQ

∫
R
H(x) dx+OH

(
Q2

(logQ)2

)
.

Note that assuming Lemma 4 and using the fact that the error term is� Q2/(logQ)2,

one has

lim
Q→∞

MQ,H

M(Q)
=

∫
R
H(x) dx.

Letting the smooth function H approach the characteristic function of the interval

(0,∧), by a standard approximation argument, we see that the pair correlation

function of the sequence M
Q

as Q → ∞ is constant equal to 1. Thus in order to

complete the proof of Theorem 1, it remains to prove Lemma 4.

Proof of Lemma 4. Let e(y) = exp(2πiy) for any y ∈ R. First notice that for

any integer r one has

∑
x∈M

Q

e(rx) =
∑
p≤Q

p−1∑
a=1

e(ra/p) =
∑

p≤Q,p|r

p− π(Q),

where π(Q) is the number of primes in the interval [1, Q]. Next, the coefficients in

the Fourier series

h(y) =
∑
m∈Z

cme(my)
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of h are given by

cm =

∫ 1

0

h(y)e(−my)dy =
∑
n∈Z

∫ 1

0

H(M(Q)(y + n))e(−my)dy

=
∑
n∈Z

∫ n+1

n

e(−mu)H(M(Q)u)du

=

∫
R
e(−mu)H(M(Q)u)du =

1

M(Q)
Ĥ

(
m

M(Q)

)
,

where Ĥ is the Fourier transform of H defined by

Ĥ(x) =

∫
R
H(y)e(−xy)dy, x ∈ R.

One has

MQ,H =
∑

x,y∈M
Q

∑
m∈Z

cme(m(x− y)) =
∑
m

cm

∣∣∣∣∣∣
∑
x∈M

Q

e(mx)

∣∣∣∣∣∣
2

=
∑
m

cm

 ∑
p,q≤Q,p|m,q|m

pq + π(Q)2 − 2π(Q)
∑

p≤Q,p|m

p


= A+ π(Q)2 ·B − 2π(Q) · C,

where

A =
∑
m∈Z

cm
∑

p,q≤Q,p|m,q|m

pq =
∑
p,q≤Q

pq
∑
m∈Z

C[p,q]m,

B =
∑
m∈Z

Cm, C =
∑
m∈Z

cm
∑

p≤Q,p|m

p =
∑
p≤Q

p
∑
m∈Z

Cpm .

Consider for each d > 0 the function

Hd(x) =
1

d
H

(
M(Q)x

d

)
, x ∈ R.
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Using the Fourier transform and an appropriate change of variable we obtain that,

for any m ∈ Z,

Ĥd(m) =

∫
R
Hd(t)e(−mt) dt =

∫
R

1

d
H

(
M(Q)t

d

)
e(−mt) dt

=

∫
R
H(M(Q)t′)e(−mdt′) dt′ = cdm.

Employing Poisson’s summation formula we find that∑
m∈Z

c[p,q]m =
∑
m∈Z

Ĥ[p,q](m) =
∑
m∈Z

H[p,q](m) =
∑
m∈Z

1

[p, q]
H

(
mM(Q)

[p, q]

)
,

and similarly∑
m∈Z

cpm =
∑
m∈Z

1

p
H

(
mM(Q)

p

)
,
∑
m∈Z

cm =
∑
m∈Z

H (mM(Q)) .

We may suppose that supp H ⊂ (0,∧) for some ∧ > 0. Since p, q ≤ Q and

M(Q) � Q2

logQ
, if m 6= 0, then |mM(Q)| � Q and∣∣∣∣mM(Q)

p

∣∣∣∣� Q

logQ
,

for sufficiently large Q one has

H

(
mM(Q)

p

)
= H (mM(Q)) = 0,

thus
∑

m∈Z cpm =
∑

m∈Z cm = 0 and B = C = 0. Therefore

MQ,H = A =
∑
p,q≤Q

pq

[p, q]

∑
m∈Z

H

(
mM(Q)

[p, q]

)
.
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In the above expression, for primes p, q ≤ Q to have non-trivial contribution, one

must have [p, q] > M(Q)/∧ � Q2/ logQ, hence p 6= q and

MQ,H =
∑
p,q≤Q,
p 6=q,

pq>M(Q)/∧

∑
m∈Z

H

(
mM(Q)

pq

)
.

For such p and q, by applying Lemma 3 we see that∑
m∈Z

H

(
mM(Q)

pq

)
=

pq

M(Q)

∫
R
H(x)dx+OH(1).

Therefore

MQ,H =

∫
RH(x)dx

M(Q)

∑
p,q≤Q,
p6=q,

pq>M(Q)/∧

pq +O

(∑
p,q≤Q

1

)
.

By the prime number theorem,∑
p,q≤Q,
p 6=q,

pq≤M(Q)/∧

pq ≤ M(Q)

∧
∑
p,q≤Q

1�H M(Q)
Q2

(logQ)2
,

hence

MQ,H =

∫
RH(x)dx

M(Q)

∑
p,q≤Q,
p 6=q,

pq +OH

(
Q2

(logQ)2

)
.

Using Lemma 1,

∑
p,q≤Q,
p 6=q,

pq =

(∑
p≤Q

p

)2

−
∑
p≤Q

p2 =

(
Q2

2 logQ

(
1 +O

(
(logQ)−1

)))2

−O
(

Q3

logQ

)

=
Q4

4(logQ)2

(
1 +O

(
(logQ)−1

))
.

Lastly, taking into account that

M(Q) =
Q2

2 logQ

(
1 +O

(
(logQ)−1

))
,
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one concludes that

MQ,H =
Q2

2 logQ

∫
R
H(x)dx+OH

(
Q2

(logQ)2

)
.

This completes the proof of Lemma 4.

4. Proof of Theorem 2

Our objective is to estimate, for any positive real number ∧, the quantity

NQ(∧) := #

{
(x, y) ∈ N

Q

2 : x 6= y, x− y ∈ (0,∧)

N
+ Z

}
,

as Q→∞. Letting N(Q) = #(N
Q

), one has

2N(Q) =
∑

pq≤Q,p 6=q

(p− 1)(q − 1) =
∑
pq≤Q

pq +O

∑
pq≤Q

p+
∑
p≤
√
Q

p2

 .

Applying Lemma 1 and Lemma 2 one sees that the big-O term above is

�
∑
p≤Q

p
Q

p
+
Q3/2

logQ
� Q2

logQ
,

and the main term is
∑

pq≤Q pq = Q2 log logQ
logQ

(1 +O((log logQ)−1)) . Therefore

N(Q) =
Q2 log logQ

2 logQ

(
1 +O((log logQ)−1)

)
.

Again, in the process of establishing Theorem 2, we present a more general result.

Lemma 5. For any function H ∈ C1
0(R), define

h(y) =
∑
n∈Z

H(N(Q)(y + n))

and

NQ,H =
∑

x,y∈N
Q

h(x− y).
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Then

NQ,H =
Q2 log logQ

2 logQ

∫
R
H(x) dx+OH

(
Q2

logQ

)
.

If we assume Lemma 5 and use the fact that the error term is � Q2/ logQ, we

obtain

lim
Q→∞

NQ,H

N(Q)
=

∫
R
H(x) dx.

Then, letting the smooth function H approach the characteristic function of the

interval (0,∧), an approximation argument will show that the pair correlation func-

tion of the sets N
Q

as Q → ∞ is constant equal to 1. It remains to prove Lemma

5.

Proof of Lemma 5. Notice that for any integer r one has

∑
x∈N

Q

e(rx) =
∑
pq≤Q,
p<q

pq∑
a=1

gcd(a,pq)=1

e(ra/(pq)) =
∑
pq≤Q,
p<q

pq∑
a=1

e(ra/(pq))
∑

d|a,d|pq

µ(d),

where µ is the Möbius function. Since p, q are distinct primes, the sum can be

rewritten as∑
x∈N

Q

e(rx) =
∑
pq≤Q,
p<q

(
pq∑
a=1

e (ra/(pq))−
p∑
a=1

e (ra/p)−
q∑

a=1

e (ra/q) + 1

)

=
∑

pq≤Q,p<q
pq|r

pq −
∑

pq≤Q,p<q
p|r

p−
∑

pq≤Q,p<q
q|r

q +
∑

pq≤Q,p<q

1

=
∑

pq≤Q,p<q
pq|r

pq −
∑

pq≤Q,p6=q
p|r

p+
∑

pq≤Q,p<q

1 .
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Suppose the Fourier series expansion of h is h(y) =
∑

m∈Z cme(my). Then one has

NQ,H =
∑

x,y∈N
Q

∑
m∈Z

cme(m(x− y)) =
∑
m

cm

∣∣∣∣∣∣
∑
x∈N

Q

e(mx)

∣∣∣∣∣∣
2

=
∑
m

cm

 ∑
pq≤Q,p<q

pq|r

pq −
∑

pq≤Q,p 6=q
p|r

p+
∑

pq≤Q,p<q

1


2

= I + E,

where

I =
∑
m

cm

 ∑
pq≤Q,p<q

pq|r

pq


2

=
∑

pq,p′q′≤Q,
p<q,p′<q′

pqp′q′
∑
m∈Z

c[pq,p′q′]m,

and

E =
∑
m

cm

2
∑

pq≤Q,p<q
pq|r

pq

− ∑
pq≤Q,p 6=q

p|r

p+
∑

pq≤Q,p<q

1

+

− ∑
pq≤Q,p6=q

p|r

p+
∑

pq≤Q,p<q

1


2 .

We will see below that E � Q2/ logQ. Let us analyze I first. As in the proof of

Lemma 4, ∑
m∈Z

c[pq,p′q′]m =
1

[pq, p′q′]
H

(
N(Q)m

[pq, p′q′]

)
,

hence

I =
∑

pq,p′q′≤Q
p<q,p′<q′

gcd(pq, p′q′)
∑
m∈Z

H

(
N(Q)m

[pq, p′q′]

)

=
∑

pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)=1

∑
m∈Z

H

(
N(Q)m

pqp′q′

)
+

∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)>1

gcd(pq, p′q′)
∑
m∈Z

H

(
N(Q)m

[pq, p′q′]

)
.
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Suppose supp H ⊂ (0,∧), then

0 <
N(Q)m

[pq, p′q′]
< ∧ =⇒ 0 < m <

∧[pq, p′q′]

N(Q)
.

It follows that the second term in the above expression of I is

�H

∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)>1

gcd(pq, p′q′)
∧[pq, p′q′]

N(Q)
�H

1

N(Q)

∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)>1

pqp′q′

� 1

N(Q)

∑
pq,pq′≤Q

p2qq′ =
1

N(Q)

∑
p≤
√
Q

p2

 ∑
q≤Q/p

q

2

+
∑

√
Q<p≤Q

p2

 ∑
q≤Q/p

q

2
� logQ

Q2 log logQ

∑
p≤
√
Q

p2

(
(Q/p)2

log(Q/p)

)2

+
∑

√
Q<p≤Q

p2
(
(Q/p)2

)2
� logQ

Q2 log logQ

 Q4

(logQ)2

∑
p

p−2 +Q4
∑
p>
√
Q

p−2

� Q2

logQ
.

The first term in the expression of I is, by using Lemma 3,

I ′ =
∑

pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)=1
pqp′q′>N(Q)/∧

∑
m∈Z

H

(
N(Q)m

pqp′q′

)
=

∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)=1
pqp′q′>N(Q)/∧

(
pqp′q′

N(Q)

∫
R
H(x)dx+OH(1)

)
.

By using Lemma 2, one has

∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)=1
pqp′q′>N(Q)/∧

1 ≤

(∑
pq≤Q

1

)2

�
(
Q log logQ

logQ

)2

� Q2

logQ
,
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and ∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)=1
pqp′q′≤N(Q)/∧

pqp′q′

N(Q)
�H

∑
pq,p′q′≤Q
p<q,p′<q′

1� Q2

logQ
.

Hence

I ′ =

∫
R
H(x)dx

∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)=1

pqp′q′

N(Q)
+OH

(
Q2

logQ

)
.

On the other hand, by the previous arguments one has∑
pq,p′q′≤Q
p<q,p′<q′

gcd(pq,p′q′)>1

pqp′q′

N(Q)
� 1

N(Q)

∑
pq,pq′≤Q
p<q,p′<q′

gcd(pq,p′q′)>1

pqp′q′ � Q2

logQ
,

and ∑
pq,p′q′≤Q

p=q

pqp′q′

N(Q)
=

1

N(Q)

∑
p≤
√
Q

p2
∑
p′q′≤Q

p′q′ � Q2

logQ
.

Therefore one concludes that

I =

∫
R
H(x)dx

 ∑
pq,p′q′≤Q
p<q,p′<q′

pqp′q′

N(Q)
+O

(
Q2

logQ

)+OH

(
Q2

logQ

)

=

∫
R
H(x)dx

(
1

4

∑
pq,p′q′≤Q

pqp′q′

N(Q)
+O

(
Q2

logQ

))
+OH

(
Q2

logQ

)

=
Q2 log logQ

2 logQ

∫
R
H(x)dx+OH

(
Q2

logQ

)
.
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Next, we need to show that E � Q2/ logQ. One of the terms in E is

E ′ =
∑
m

cm
∑

pq≤Q,p<q
pq|r

pq
∑

pq≤Q,p 6=q
p|r

p =
∑

pq,p′q′≤Q,
p<q,p′ 6=q′

pqp′
∑
m∈Z

c[pq,p′]m

=
∑

pq,p′q′≤Q,
p<q,p′ 6=q′

pqp′

[pq, p′]

∑
m∈Z

H

(
N(Q)m

[pq, p′]

)
�H

∑
pq,p′q′≤Q,
p<q,p′ 6=q′

pqp′

[pq, p′]
· ∧[pq, p′]

N(Q)

�H

∑
pq≤Q

pq

N(Q)
·
∑
p′≤Q

p′
∑

q′≤Q/p′
1�

∑
p′≤Q

p′
Q

p′
� Q2

logQ
.

The others terms in E can be treated in a similar way. This completes the proof of

Lemma 5 and also the proof of Theorem 2.
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