Interpolation \＆Polynomial Approximation

Lagrange Interpolating Polynomials II

Numerical Analysis（9th Edition）
R L Burden \＆J D Faires

Beamer Presentation Slides
prepared by
John Carroll
Dublin City University

（C） 2011 Brooks／Cole，Cengage Learning

Outline

(1) Interpolating Polynomial Error Bound

Outline

(1) Interpolating Polynomial Error Bound
(2) Example: 2nd Lagrange Interpolating Polynomial Error Bound

Outline

(1) Interpolating Polynomial Error Bound
(2) Example: 2nd Lagrange Interpolating Polynomial Error Bound
(3) Example: Interpolating Polynomial Error for Tabulated Data

Outline

(1) Interpolating Polynomial Error Bound
(2) Example: 2nd Lagrange Interpolating Polynomial Error Bound
(3) Example: Interpolating Polynomial Error for Tabulated Data

The Lagrange Polynomial: Theoretical Error Bound

Theorem

The Lagrange Polynomial: Theoretical Error Bound

Theorem

Suppose $x_{0}, x_{1}, \ldots, x_{n}$ are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$.

The Lagrange Polynomial: Theoretical Error Bound

Theorem

Suppose $x_{0}, x_{1}, \ldots, x_{n}$ are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then, for each x in $[a, b]$, a number $\xi(x)$ (generally unknown) between $x_{0}, x_{1}, \ldots, x_{n}$, and hence in (a, b), exists with

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

The Lagrange Polynomial: Theoretical Error Bound

Theorem

Suppose $x_{0}, x_{1}, \ldots, x_{n}$ are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then, for each x in $[a, b]$, a number $\xi(x)$ (generally unknown) between $x_{0}, x_{1}, \ldots, x_{n}$, and hence in (a, b), exists with

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

where $P(x)$ is the interpolating polynomial given by

$$
P(x)=f\left(x_{0}\right) L_{n, 0}(x)+\cdots+f\left(x_{n}\right) L_{n, n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x)
$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (1/6)

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (1/6)

Note first that if $x=x_{k}$, for any $k=0,1, \ldots, n$, then $f\left(x_{k}\right)=P\left(x_{k}\right)$, and choosing $\xi\left(x_{k}\right)$ arbitrarily in (a, b) yields the result:

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (1/6)

Note first that if $x=x_{k}$, for any $k=0,1, \ldots, n$, then $f\left(x_{k}\right)=P\left(x_{k}\right)$, and choosing $\xi\left(x_{k}\right)$ arbitrarily in (a, b) yields the result:

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

If $x \neq x_{k}$, for all $k=0,1, \ldots, n$, define the function g for t in $[a, b]$ by

$$
\begin{aligned}
g(t) & =f(t)-P(t)-[f(x)-P(x)] \frac{\left(t-x_{0}\right)\left(t-x_{1}\right) \cdots\left(t-x_{n}\right)}{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)} \\
& =f(t)-P(t)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}
\end{aligned}
$$

The Lagrange Polynomial: Theoretical Error Bound

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}
$$

Error Bound: Proof (2/6)

The Lagrange Polynomial: Theoretical Error Bound

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}
$$

Error Bound: Proof (2/6)

Since $f \in C^{n+1}[a, b]$, and $P \in C^{\infty}[a, b]$, it follows that $g \in C^{n+1}[a, b]$. For $t=x_{k}$, we have

$$
g\left(x_{k}\right)=f\left(x_{k}\right)-P\left(x_{k}\right)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(x_{k}-x_{i}\right)}{\left(x-x_{i}\right)}=0-[f(x)-P(x)] \cdot 0=0
$$

The Lagrange Polynomial: Theoretical Error Bound

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}
$$

Error Bound: Proof (3/6)

The Lagrange Polynomial: Theoretical Error Bound

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}
$$

Error Bound: Proof (3/6)

We have seen that $g\left(x_{k}\right)=0$. Furthermore,

$$
\begin{aligned}
g(x) & =f(x)-P(x)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(x-x_{i}\right)}{\left(x-x_{i}\right)} \\
& =f(x)-P(x)-[f(x)-P(x)]=0
\end{aligned}
$$

The Lagrange Polynomial: Theoretical Error Bound

$$
g(t)=f(t)-P(t)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}
$$

Error Bound: Proof (3/6)

We have seen that $g\left(x_{k}\right)=0$. Furthermore,

$$
\begin{aligned}
g(x) & =f(x)-P(x)-[f(x)-P(x)] \prod_{i=0}^{n} \frac{\left(x-x_{i}\right)}{\left(x-x_{i}\right)} \\
& =f(x)-P(x)-[f(x)-P(x)]=0
\end{aligned}
$$

Thus $g \in C^{n+1}[a, b]$, and g is zero at the $n+2$ distinct numbers $x, x_{0}, x_{1}, \ldots, x_{n}$.

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (4/6)

Since $g \in C^{n+1}[a, b]$, and g is zero at the $n+2$ distinct numbers $x, x_{0}, x_{1}, \ldots, x_{n}$, by Generalized Rolle's Theorem © Theorem there exists a number ξ in (a, b) for which $g^{(n+1)}(\xi)=0$.

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (4/6)

Since $g \in C^{n+1}[a, b]$, and g is zero at the $n+2$ distinct numbers $x, x_{0}, x_{1}, \ldots, x_{n}$, by Generalized Rolle's Theorem © Theorem there exists a number ξ in (a, b) for which $g^{(n+1)}(\xi)=0$. So

$$
\begin{aligned}
0 & =g^{(n+1)}(\xi) \\
& =f^{(n+1)}(\xi)-P^{(n+1)}(\xi)-[f(x)-P(x)] \frac{d^{n+1}}{d t^{n+1}}\left[\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}\right]_{t=\xi}
\end{aligned}
$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (4/6)

Since $g \in C^{n+1}[a, b]$, and g is zero at the $n+2$ distinct numbers $x, x_{0}, x_{1}, \ldots, x_{n}$, by Generalized Rolle's Theorem © Theorem there exists a number ξ in (a, b) for which $g^{(n+1)}(\xi)=0$. So

$$
\begin{aligned}
0 & =g^{(n+1)}(\xi) \\
& =f^{(n+1)}(\xi)-P^{(n+1)}(\xi)-[f(x)-P(x)] \frac{d^{n+1}}{d t^{n+1}}\left[\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}\right]_{t=\xi}
\end{aligned}
$$

However, $P(x)$ is a polynomial of degree at most n, so the $(n+1)$ st derivative, $P^{(n+1)}(x)$, is identically zero.

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (5/6)

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (5/6)

Also, $\prod_{i=0}^{n} \frac{t-x_{i}}{x-x_{i}}$ is a polynomial of degree $(n+1)$, so

$$
\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}=\left[\frac{1}{\prod_{i=0}^{n}\left(x-x_{i}\right)}\right] t^{n+1}+(\text { lower-degree terms in } t)
$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (5/6)

Also, $\prod_{i=0}^{n} \frac{t-x_{i}}{x-x_{i}}$ is a polynomial of degree $(n+1)$, so

$$
\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}=\left[\frac{1}{\prod_{i=0}^{n}\left(x-x_{i}\right)}\right] t^{n+1}+(\text { lower-degree terms in } t)
$$

and

$$
\frac{d^{n+1}}{d t^{n+1}} \prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}=\frac{(n+1)!}{\prod_{i=0}^{n}\left(x-x_{i}\right)}
$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (6/6)

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (6/6)

We therefore have:

$$
\begin{aligned}
0 & =f^{(n+1)}(\xi)-P^{(n+1)}(\xi)-[f(x)-P(x)] \frac{d^{n+1}}{d t^{n+1}}\left[\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}\right]_{t=\xi} \\
& =f^{(n+1)}(\xi)-0-[f(x)-P(x)] \frac{(n+1)!}{\prod_{i=0}^{n}\left(x-x_{i}\right)}
\end{aligned}
$$

The Lagrange Polynomial: Theoretical Error Bound

Error Bound: Proof (6/6)

We therefore have:

$$
\begin{aligned}
0 & =f^{(n+1)}(\xi)-P^{(n+1)}(\xi)-[f(x)-P(x)] \frac{d^{n+1}}{d t^{n+1}}\left[\prod_{i=0}^{n} \frac{\left(t-x_{i}\right)}{\left(x-x_{i}\right)}\right]_{t=\xi} \\
& =f^{(n+1)}(\xi)-0-[f(x)-P(x)] \frac{(n+1)!}{\prod_{i=0}^{n}\left(x-x_{i}\right)}
\end{aligned}
$$

and, upon solving for $f(x)$, we get the desired result:

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

Outline

(1) Interpolating Polynomial Error Bound

(2) Example: 2nd Lagrange Interpolating Polynomial Error Bound

(3) Example: Interpolating Polynomial Error for Tabulated Data

Lagrange Interpolating Polynomial Error Bound

Example: Second Lagrange Polynomial for $f(x)=\frac{1}{x}$
In an earlier example, Corenal Erampe we found the second Lagrange polynomial for $f(x)=\frac{1}{x}$ on [2, 4] using the nodes $x_{0}=2, x_{1}=2.75$, and $x_{2}=4$.

Lagrange Interpolating Polynomial Error Bound

Example: Second Lagrange Polynomial for $f(x)=\frac{1}{x}$

In an earlier example, Orignal Example we found the second Lagrange polynomial for $f(x)=\frac{1}{x}$ on $[2,4]$ using the nodes $x_{0}=2, x_{1}=2.75$, and $x_{2}=4$. Determine the error form for this polynomial, and the maximum error when the polynomial is used to approximate $f(x)$ for $x \in[2,4]$.

Lagrange Interpolating Polynomial Error Bound

Example: Second Lagrange Polynomial for $f(x)=\frac{1}{x}$

In an earlier example, corenal Erampe we found the second Lagrange polynomial for $f(x)=\frac{1}{x}$ on $[2,4]$ using the nodes $x_{0}=2, x_{1}=2.75$, and $x_{2}=4$. Determine the error form for this polynomial, and the maximum error when the polynomial is used to approximate $f(x)$ for $x \in[2,4]$.

Note

We will make use of the theoretical result e theorem written in the form

$$
|f(x)-P(x)| \leq \max _{[2,4]}\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\right| \cdot \max _{[2,4]}\left|\prod_{i=0}^{n}\left(x-x_{i}\right)\right|
$$

with $n=2$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (1/3)

Because $f(x)=x^{-1}$, we have

$$
f^{\prime}(x)=-\frac{1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}, \quad \text { and } \quad f^{\prime \prime \prime}(x)=-\frac{6}{x^{4}}
$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (1/3)

Because $f(x)=x^{-1}$, we have

$$
f^{\prime}(x)=-\frac{1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}, \quad \text { and } \quad f^{\prime \prime \prime}(x)=-\frac{6}{x^{4}}
$$

As a consequence, the second Lagrange polynomial has the error form

$$
\frac{f^{\prime \prime \prime}(\xi(x))}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)=-\frac{1}{\xi(x)^{4}}(x-2)(x-2.75)(x-4)
$$

for $\xi(x)$ in $(2,4)$.

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (1/3)

Because $f(x)=x^{-1}$, we have

$$
f^{\prime}(x)=-\frac{1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}, \quad \text { and } \quad f^{\prime \prime \prime}(x)=-\frac{6}{x^{4}}
$$

As a consequence, the second Lagrange polynomial has the error form

$$
\frac{f^{\prime \prime \prime}(\xi(x))}{3!}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)=-\frac{1}{\xi(x)^{4}}(x-2)(x-2.75)(x-4)
$$

for $\xi(x)$ in $(2,4)$. The maximum value of $\frac{1}{\xi(x)^{4}}$ on the interval is $\frac{1}{2^{4}}=1 / 16$.

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (2/3)

We now need to determine the maximum value on $[2,4]$ of the absolute value of the polynomial

$$
g(x)=(x-2)(x-2.75)(x-4)=x^{3}-\frac{35}{4} x^{2}+\frac{49}{2} x-22
$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (2/3)

We now need to determine the maximum value on $[2,4]$ of the absolute value of the polynomial

$$
g(x)=(x-2)(x-2.75)(x-4)=x^{3}-\frac{35}{4} x^{2}+\frac{49}{2} x-22
$$

Because

$$
g^{\prime}(x)=3 x^{2}-\frac{35}{2} x+\frac{49}{2}=\frac{1}{2}(3 x-7)(2 x-7),
$$

the critical points occur at

$$
x=\frac{7}{3} \text { with } g\left(\frac{7}{3}\right)=\frac{25}{108} \quad \text { and } \quad x=\frac{7}{2} \text { with } g\left(\frac{7}{2}\right)=-\frac{9}{16}
$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (3/3)

Hence, the maximum error is

$$
\max _{[2,4]}\left|\frac{f^{\prime \prime \prime}(\xi(x))}{3!}\right| \cdot \max _{[2,4]}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right|
$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (3/3)

Hence, the maximum error is

$$
\begin{aligned}
& \max _{[2,4]}\left|\frac{f^{\prime \prime \prime}(\xi(x))}{3!}\right| \cdot \max _{[2,4]}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right| \\
\leq & \frac{1}{3!} \cdot \frac{1}{16} \cdot \frac{9}{16}
\end{aligned}
$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (3/3)

Hence, the maximum error is

$$
\begin{aligned}
& \max _{[2,4]}\left|\frac{f^{\prime \prime \prime}(\xi(x))}{3!}\right| \cdot \max _{[2,4]}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right| \\
\leq & \frac{1}{3!} \cdot \frac{1}{16} \cdot \frac{9}{16} \\
= & \frac{3}{512}
\end{aligned}
$$

The Lagrange Polynomial: 2nd Degree Error Bound

Solution (3/3)

Hence, the maximum error is

$$
\begin{aligned}
& \max _{[2,4]}\left|\frac{f^{\prime \prime \prime}(\xi(x))}{3!}\right| \cdot \max _{[2,4]}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\right| \\
\leq & \frac{1}{3!} \cdot \frac{1}{16} \cdot \frac{9}{16} \\
= & \frac{3}{512} \\
\approx & 0.00586
\end{aligned}
$$

Outline

(1) Interpolating Polynomial Error Bound

(2) Example: 2nd Lagrange Interpolating Polynomial Error Bound
(3) Example: Interpolating Polynomial Error for Tabulated Data

Use of the Interpolating Polynomial Error Bound

Example: Tabulated Data

Use of the Interpolating Polynomial Error Bound

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x)=e^{x}$, for x in $[0,1]$.

Use of the Interpolating Polynomial Error Bound

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x)=e^{x}$, for x in $[0,1]$.
- Assume that the number of decimal places to be given per entry is $d \geq 8$ and that the difference between adjacent x-values, the step size, is h.

Use of the Interpolating Polynomial Error Bound

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x)=e^{x}$, for x in $[0,1]$.
- Assume that the number of decimal places to be given per entry is $d \geq 8$ and that the difference between adjacent x-values, the step size, is h.
- What step size h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in $[0,1]$?

Use of the Interpolating Polynomial Error Bound

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x)=e^{x}$, for x in $[0,1]$.
- Assume that the number of decimal places to be given per entry is $d \geq 8$ and that the difference between adjacent x-values, the step size, is h.
- What step size h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in $[0,1]$?

Let x_{0}, x_{1}, \ldots be the numbers at which f is evaluated, x be in $[0,1]$, and suppose j satisfies $x_{j} \leq x \leq x_{j+1}$.

Use of the Interpolating Polynomial Error Bound

Example: Tabulated Data

- Suppose that a table is to be prepared for the function $f(x)=e^{x}$, for x in $[0,1]$.
- Assume that the number of decimal places to be given per entry is $d \geq 8$ and that the difference between adjacent x-values, the step size, is h.
- What step size h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in $[0,1]$?

Let x_{0}, x_{1}, \ldots be the numbers at which f is evaluated, x be in $[0,1]$, and suppose j satisfies $x_{j} \leq x \leq x_{j+1}$. The error bound theorem Theorem implies that the error in linear interpolation is

$$
|f(x)-P(x)|=\left|\frac{f^{(2)}(\xi)}{2!}\left(x-x_{j}\right)\left(x-x_{j+1}\right)\right|=\frac{\left|f^{(2)}(\xi)\right|}{2}\left|\left(x-x_{j}\right)\right|\left|\left(x-x_{j+1}\right)\right|
$$

Use of the Interpolating Polynomial Error Bound

Solution (1/3)

The step size is h, so $x_{j}=j h, x_{j+1}=(j+1) h$, and

$$
|f(x)-P(x)| \leq \frac{\left|f^{(2)}(\xi)\right|}{2!}|(x-j h)(x-(j+1) h)|
$$

Use of the Interpolating Polynomial Error Bound

Solution (1/3)

The step size is h, so $x_{j}=j h, x_{j+1}=(j+1) h$, and

$$
|f(x)-P(x)| \leq \frac{\left|f^{(2)}(\xi)\right|}{2!}|(x-j h)(x-(j+1) h)|
$$

Hence

$$
\begin{aligned}
|f(x)-P(x)| & \leq \frac{\max _{\xi \in[0,1]} e^{\xi}}{2} \max _{x_{j} \leq x \leq x_{j+1}}|(x-j h)(x-(j+1) h)| \\
& \leq \frac{e}{2} \max _{x_{j} \leq x \leq x_{j+1}}|(x-j h)(x-(j+1) h)| .
\end{aligned}
$$

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function $g(x)=(x-j h)(x-(j+1) h)$, for $j h \leq x \leq(j+1) h$.

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function $g(x)=(x-j h)(x-(j+1) h)$, for $j h \leq x \leq(j+1) h$. Because

$$
g^{\prime}(x)=(x-(j+1) h)+(x-j h)=2\left(x-j h-\frac{h}{2}\right),
$$

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function $g(x)=(x-j h)(x-(j+1) h)$, for $j h \leq x \leq(j+1) h$. Because

$$
g^{\prime}(x)=(x-(j+1) h)+(x-j h)=2\left(x-j h-\frac{h}{2}\right),
$$

the only critical point for g is at $x=j h+\frac{h}{2}$, with

$$
g\left(j h+\frac{h}{2}\right)=\left(\frac{h}{2}\right)^{2}=\frac{h^{2}}{4}
$$

Use of the Interpolating Polynomial Error Bound

Solution (2/3)

Consider the function $g(x)=(x-j h)(x-(j+1) h)$, for $j h \leq x \leq(j+1) h$. Because

$$
g^{\prime}(x)=(x-(j+1) h)+(x-j h)=2\left(x-j h-\frac{h}{2}\right),
$$

the only critical point for g is at $x=j h+\frac{h}{2}$, with

$$
g\left(j h+\frac{h}{2}\right)=\left(\frac{h}{2}\right)^{2}=\frac{h^{2}}{4}
$$

Since $g(j h)=0$ and $g((j+1) h)=0$, the maximum value of $\left|g^{\prime}(x)\right|$ in $[j h,(j+1) h]$ must occur at the critical point.

Use of the Interpolating Polynomial Error Bound

Solution (3/3)

This implies that

$$
|f(x)-P(x)| \leq \frac{e}{2} \max _{x_{j} \leq x \leq x_{j+1}}|g(x)| \leq \frac{e}{2} \cdot \frac{h^{2}}{4}=\frac{e h^{2}}{8}
$$

Use of the Interpolating Polynomial Error Bound

Solution (3/3)

This implies that

$$
|f(x)-P(x)| \leq \frac{e}{2} \max _{x_{j} \leq x \leq x_{j+1}}|g(x)| \leq \frac{e}{2} \cdot \frac{h^{2}}{4}=\frac{e h^{2}}{8}
$$

Consequently, to ensure that the the error in linear interpolation is bounded by 10^{-6}, it is sufficient for h to be chosen so that

$$
\frac{e h^{2}}{8} \leq 10^{-6} . \text { This implies that } h<1.72 \times 10^{-3}
$$

Use of the Interpolating Polynomial Error Bound

Solution (3/3)

This implies that

$$
|f(x)-P(x)| \leq \frac{e}{2} \max _{x_{j} \leq x \leq x_{j+1}}|g(x)| \leq \frac{e}{2} \cdot \frac{h^{2}}{4}=\frac{e h^{2}}{8}
$$

Consequently, to ensure that the the error in linear interpolation is bounded by 10^{-6}, it is sufficient for h to be chosen so that

$$
\frac{e h^{2}}{8} \leq 10^{-6} . \text { This implies that } h<1.72 \times 10^{-3}
$$

Because $n=\frac{(1-0)}{h}$ must be an integer, a reasonable choice for the step size is $h=0.001$.

Questions?

Reference Material

Generalized Rolle's Theorem

Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If

$$
f(x)=0
$$

at the $n+1$ distinct numbers $a \leq x_{0}<x_{1}<\ldots<x_{n} \leq b$, then a number c in $\left(x_{0}, x_{n}\right)$, and hence in (a, b), exists with

$$
f^{(n)}(c)=0
$$

The Lagrange Polynomial: Theoretical Error Bound

Suppose $x_{0}, x_{1}, \ldots, x_{n}$ are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then, for each x in $[a, b]$, a number $\xi(x)$ (generally unknown) between $x_{0}, x_{1}, \ldots, x_{n}$, and hence in (a, b), exists with

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

where $P(x)$ is the interpolating polynomial given by

$$
P(x)=f\left(x_{0}\right) L_{n, 0}(x)+\cdots+f\left(x_{n}\right) L_{n, n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{n, k}(x)
$$

The Lagrange Polynomial: 2nd Degree Polynomial

Example: $f(x)=\frac{1}{x}$

Use the numbers (called nodes) $x_{0}=2, x_{1}=2.75$ and $x_{2}=4$ to find the second Lagrange interpolating polynomial for $f(x)=\frac{1}{x}$.

Solution (Summary)

$$
\begin{aligned}
P(x) & =\sum_{k=0}^{2} f\left(x_{k}\right) L_{k}(x) \\
& =\frac{1}{3}(x-2.75)(x-4)-\frac{64}{165}(x-2)(x-4)+\frac{1}{10}(x-2)(x-2.75) \\
& =\frac{1}{22} x^{2}-\frac{35}{88} x+\frac{49}{44}
\end{aligned}
$$

