Interpolation \＆Polynomial Approximation

Divided Differences：A Brief Introduction

Numerical Analysis（9th Edition）
R L Burden \＆J D Faires

Beamer Presentation Slides
prepared by
John Carroll
Dublin City University
（C） 2011 Brooks／Cole，Cengage Learning

Outline

(1) Introduction to Divided Differences

Outline

(1) Introduction to Divided Differences

2) The Divided Difference Notation

Outline

(1) Introduction to Divided Differences
(2) The Divided Difference Notation
(3) Newton's Divided Difference Interpolating Polynomial

Outline

(2) The Divided Difference Notation

(3) Newton's Divided Difference Interpolating Polynomial

Introduction to Divided Differences

A new algebraic representation for $P_{n}(x)$

Introduction to Divided Differences

A new algebraic representation for $P_{n}(x)$

- Suppose that $P_{n}(x)$ is the nth Lagrange polynomial that agrees with the function f at the distinct numbers $x_{0}, x_{1}, \ldots, x_{n}$.

Introduction to Divided Differences

A new algebraic representation for $P_{n}(x)$

- Suppose that $P_{n}(x)$ is the nth Lagrange polynomial that agrees with the function f at the distinct numbers $x_{0}, x_{1}, \ldots, x_{n}$.
- Although this polynomial is unique, there are alternate algebraic representations that are useful in certain situations.

Introduction to Divided Differences

A new algebraic representation for $P_{n}(x)$

- Suppose that $P_{n}(x)$ is the nth Lagrange polynomial that agrees with the function f at the distinct numbers $x_{0}, x_{1}, \ldots, x_{n}$.
- Although this polynomial is unique, there are alternate algebraic representations that are useful in certain situations.
- The divided differences of f with respect to $x_{0}, x_{1}, \ldots, x_{n}$ are used to express $P_{n}(x)$ in the form
$P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)$
for appropriate constants $a_{0}, a_{1}, \ldots, a_{n}$.

Introduction to Divided Differences

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

- To determine the first of these constants, a_{0}, note that if $P_{n}(x)$ is written in the form of the above equation, then evaluating $P_{n}(x)$ at x_{0} leaves only the constant term a_{0}; that is,

$$
a_{0}=P_{n}\left(x_{0}\right)=f\left(x_{0}\right)
$$

Introduction to Divided Differences

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

- To determine the first of these constants, a_{0}, note that if $P_{n}(x)$ is written in the form of the above equation, then evaluating $P_{n}(x)$ at x_{0} leaves only the constant term a_{0}; that is,

$$
a_{0}=P_{n}\left(x_{0}\right)=f\left(x_{0}\right)
$$

- Similarly, when $P(x)$ is evaluated at x_{1}, the only nonzero terms in the evaluation of $P_{n}\left(x_{1}\right)$ are the constant and linear terms,

$$
f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right)=P_{n}\left(x_{1}\right)=f\left(x_{1}\right)
$$

Introduction to Divided Differences

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

- To determine the first of these constants, a_{0}, note that if $P_{n}(x)$ is written in the form of the above equation, then evaluating $P_{n}(x)$ at x_{0} leaves only the constant term a_{0}; that is,

$$
a_{0}=P_{n}\left(x_{0}\right)=f\left(x_{0}\right)
$$

- Similarly, when $P(x)$ is evaluated at x_{1}, the only nonzero terms in the evaluation of $P_{n}\left(x_{1}\right)$ are the constant and linear terms,

$$
\begin{aligned}
f\left(x_{0}\right)+a_{1}\left(x_{1}-x_{0}\right) & =P_{n}\left(x_{1}\right)=f\left(x_{1}\right) \\
\Rightarrow a_{1} & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
\end{aligned}
$$

Outline

(1) Introduction to Divided Differences

2 The Divided Difference Notation

(3) Newton's Divided Difference Interpolating Polynomial

The Divided Difference Notation

- We now introduce the divided-difference notation, which is related to Aitken's Δ^{2} notation $\triangle \Delta$ Deinition

The Divided Difference Notation

- We now introduce the divided-difference notation, which is related to Aitken's Δ^{2} notation $\triangle \Delta$ Deinition
- The zeroth divided difference of the function f with respect to x_{i}, denoted $f\left[x_{i}\right]$, is simply the value of f at x_{i} :

$$
f\left[x_{i}\right]=f\left(x_{i}\right)
$$

The Divided Difference Notation

- We now introduce the divided-difference notation, which is related to Aitken's Δ^{2} notation $\triangle \Delta$ Deinition
- The zeroth divided difference of the function f with respect to x_{i}, denoted $f\left[x_{i}\right]$, is simply the value of f at x_{i} :

$$
f\left[x_{i}\right]=f\left(x_{i}\right)
$$

- The remaining divided differences are defined recursively.

The Divided Difference Notation

- The first divided difference of f with respect to x_{i} and x_{i+1} is denoted $f\left[x_{i}, x_{i+1}\right]$ and defined as

$$
f\left[x_{i}, x_{i+1}\right]=\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}}
$$

The Divided Difference Notation

- The first divided difference of f with respect to x_{i} and x_{i+1} is denoted $f\left[x_{i}, x_{i+1}\right]$ and defined as

$$
f\left[x_{i}, x_{i+1}\right]=\frac{f\left[x_{i+1}\right]-f\left[x_{i}\right]}{x_{i+1}-x_{i}}
$$

- The second divided difference, $f\left[x_{i}, x_{i+1}, x_{i+2}\right]$, is defined as

$$
f\left[x_{i}, x_{i+1}, x_{i+2}\right]=\frac{f\left[x_{i+1}, x_{i+2}\right]-f\left[x_{i}, x_{i+1}\right]}{x_{i+2}-x_{i}}
$$

The Divided Difference Notation

- Similarly, after the ($k-1$)st divided differences,

$$
f\left[x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}\right] \quad \text { and } f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}, x_{i+k}\right]
$$

have been determined,

The Divided Difference Notation

- Similarly, after the ($k-1$)st divided differences,

$$
f\left[x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}\right] \quad \text { and } f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}, x_{i+k}\right]
$$

have been determined, the \boldsymbol{k} th divided difference relative to
$x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k}$ is

$$
\begin{aligned}
& f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}, x_{i+k}\right] \\
& \quad=\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}}
\end{aligned}
$$

The Divided Difference Notation

- Similarly, after the ($k-1$)st divided differences,

$$
f\left[x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}\right] \quad \text { and } f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k-1}, x_{i+k}\right]
$$

have been determined, the \boldsymbol{k} th divided difference relative to
$x_{i}, x_{i+1}, x_{i+2}, \ldots, x_{i+k}$ is

$$
\begin{aligned}
& f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}, x_{i+k}\right] \\
& \quad=\frac{f\left[x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right]-f\left[x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]}{x_{i+k}-x_{i}}
\end{aligned}
$$

- The process ends with the single nth divided difference,

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, x_{2}, \ldots, x_{n}\right]-f\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

Generating the Divided Difference Table

		First x	$f(x)$
x_{0}	$f\left[x_{0}\right]$		Second divided differences

Outline

(1) Introduction to Divided Differences

(2) The Divided Difference Notation

(3) Newton's Divided Difference Interpolating Polynomial

Newton's Divided Difference Interpolating Polynomial

$P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)$

Using the Divided Difference Notation

Newton's Divided Difference Interpolating Polynomial

$P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)$

Using the Divided Difference Notation

- Returning to the interpolating polynomial, we can now use the divided difference notation to write:

$$
a_{0}=f\left(x_{0}\right)=f\left[x_{0}\right]
$$

Newton's Divided Difference Interpolating Polynomial

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

Using the Divided Difference Notation

- Returning to the interpolating polynomial, we can now use the divided difference notation to write:

$$
\begin{aligned}
a_{0}=f\left(x_{0}\right) & =f\left[x_{0}\right] \\
a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} & =f\left[x_{0}, x_{1}\right]
\end{aligned}
$$

Newton's Divided Difference Interpolating Polynomial

$$
P_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n-1}\right)
$$

Using the Divided Difference Notation

- Returning to the interpolating polynomial, we can now use the divided difference notation to write:

$$
\begin{aligned}
a_{0}=f\left(x_{0}\right) & =f\left[x_{0}\right] \\
a_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} & =f\left[x_{0}, x_{1}\right]
\end{aligned}
$$

- Hence, the interpolating polynomial is

$$
\begin{aligned}
P_{n}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

Newton's Divided Difference Interpolating Polynomial

$$
\begin{aligned}
P_{n}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

- As might be expected from the evaluation of a_{0} and a_{1}, the required constants are

$$
a_{k}=f\left[x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right]
$$

for each $k=0,1, \ldots, n$.

Newton's Divided Difference Interpolating Polynomial

$$
\begin{aligned}
P_{n}(x) & =f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
& +\cdots+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
\end{aligned}
$$

- As might be expected from the evaluation of a_{0} and a_{1}, the required constants are

$$
a_{k}=f\left[x_{0}, x_{1}, x_{2}, \ldots, x_{k}\right]
$$

for each $k=0,1, \ldots, n$.

- So $P_{n}(x)$ can be rewritten in a form called Newton's Divided-Difference:

$$
P_{n}(x)=f\left[x_{0}\right]+\sum_{k=1}^{n} f\left[x_{0}, x_{1}, \ldots, x_{k}\right]\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)
$$

Questions?

Reference Material

Forward Difference Operator Δ

For a given sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$, the forward difference Δp_{n} (read "delta $p_{n}{ }^{\prime \prime}$) is defined by

$$
\Delta p_{n}=p_{n+1}-p_{n}, \quad \text { for } n \geq 0 .
$$

Higher powers of the operator Δ are defined recursively by

$$
\Delta^{k} p_{n}=\Delta\left(\Delta^{k-1} p_{n}\right), \quad \text { for } k \geq 2
$$

