Numerical Differentiation \& Integration

Numerical Differentiation II

Numerical Analysis (9th Edition)
R L Burden \& J D Faires
Beamer Presentation Slides
prepared by
John Carroll
Dublin City University

(C) 2011 Brooks/Cole, Cengage Learning

Outline

(1) Application of the 3-Point and 5-Point Formulae

Outline

(1) Application of the 3-Point and 5-Point Formulae
(2) Numerical Approximations to Higher Derivatives

Outline

(1) Application of the 3-Point and 5-Point Formulae

(2) Numerical Approximations to Higher Derivatives

Numerical Differentiation: Application of the Formulae

Example

Values for $f(x)=x e^{x}$ are given in the following table:

x	1.8	1.9	2.0	2.1	2.2
$f(x)$	10.889365	12.703199	14.778112	17.148957	19.855030

Use all the applicable three-point and five-point formulas to approximate $f^{\prime}(2.0)$.

Numerical Differentiation: Application of the Formulae

Solution (1/4)

- The data in the table permit us to find four different three-point approximations. See 3-Point Endpoint \& Midpoint Formulae

Numerical Differentiation: Application of the Formulae

Solution (1/4)

- The data in the table permit us to find four different three-point approximations. See 3-Point Endpoint \& Midpoint Formulae
- We can use the endpoint formula with $h=0.1$ or with $h=-0.1$, and

Numerical Differentiation: Application of the Formulae

Solution (1/4)

- The data in the table permit us to find four different three-point approximations. See 3-Point Endpoint \& Midpoint Formulae
- We can use the endpoint formula with $h=0.1$ or with $h=-0.1$, and
- we can use the midpoint formula with $h=0.1$ or with $h=0.2$.

Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with $h=0.1$ gives

$$
\frac{1}{0.2}[-3 f(2.0)+4 f(2.1)-f(2.2]
$$

Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.2}[-3 f(2.0)+4 f(2.1)-f(2.2] \\
= & 5[-3(14.778112)+4(17.148957)-19.855030)]
\end{aligned}
$$

Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.2}[-3 f(2.0)+4 f(2.1)-f(2.2] \\
= & 5[-3(14.778112)+4(17.148957)-19.855030)]=22.032310
\end{aligned}
$$

and with $h=-0.1$ gives 22.054525 .

Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.2}[-3 f(2.0)+4 f(2.1)-f(2.2] \\
= & 5[-3(14.778112)+4(17.148957)-19.855030)]=22.032310
\end{aligned}
$$

and with $h=-0.1$ gives 22.054525 .

Using the 3-point midpoint formula with $h=0.1$ gives

$$
\frac{1}{0.2}[f(2.1)-f(1.9]
$$

Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.2}[-3 f(2.0)+4 f(2.1)-f(2.2] \\
= & 5[-3(14.778112)+4(17.148957)-19.855030)]=22.032310
\end{aligned}
$$

and with $h=-0.1$ gives 22.054525 .

Using the 3-point midpoint formula with $h=0.1$ gives

$$
\frac{1}{0.2}[f(2.1)-f(1.9]=5(17.148957-12.7703199)
$$

Numerical Differentiation: Application of the Formulae

Solution (2/4)

Using the 3-point endpoint formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.2}[-3 f(2.0)+4 f(2.1)-f(2.2] \\
= & 5[-3(14.778112)+4(17.148957)-19.855030)]=22.032310
\end{aligned}
$$

and with $h=-0.1$ gives 22.054525 .

Using the 3-point midpoint formula with $h=0.1$ gives

$$
\frac{1}{0.2}[f(2.1)-f(1.9]=5(17.148957-12.7703199)=22.228790
$$

and with $h=0.2$ gives 22.414163 .

Numerical Differentiation: Application of the Formulae

Solution (3/4)

The only five-point formula for which the table gives sufficient data is the midpoint formula see Formula with $h=0.1$.

Numerical Differentiation: Application of the Formulae

Solution (3/4)

The only five-point formula for which the table gives sufficient data is the midpoint formula see Formula with $h=0.1$. This gives

$$
\begin{aligned}
& \frac{1}{1.2}[f(1.8)-8 f(1.9)+8 f(2.1)-f(2.2)] \\
= & \frac{1}{1.2}[10.889365-8(12.703199)+8(17.148957)-19.855030] \\
= & 22.166999
\end{aligned}
$$

Numerical Differentiation: Application of the Formulae

Solution (3/4)

The only five-point formula for which the table gives sufficient data is the midpoint formula see Formula with $h=0.1$. This gives

$$
\begin{aligned}
& \frac{1}{1.2}[f(1.8)-8 f(1.9)+8 f(2.1)-f(2.2)] \\
= & \frac{1}{1.2}[10.889365-8(12.703199)+8(17.148957)-19.855030] \\
= & 22.166999
\end{aligned}
$$

If we had no other information, we would accept the five-point midpoint approximation using $h=0.1$ as the most accurate, and expect the true value to be between that approximation and the three-point mid-point approximation, that is in the interval [22.166, 22.229].

Numerical Differentiation: Application of the Formulae

Solution (4/4)

The true value in this case is $f^{\prime}(2.0)=(2+1) e^{2}=22.167168$, so the approximation errors are actually:

Method $\quad h$	Approximation Error

Three-point endpoint	0.1	1.35×10^{-1}
Three-point endpoint	-0.1	1.13×10^{-1}
Three-point midpoint	0.2	-2.47×10^{-1}
Three-point midpoint	0.1	-6.16×10^{-2}
Five-point midpoint	0.1	1.69×10^{-4}

Outline

(1) Application of the 3-Point and 5-Point Formulae

(2) Numerical Approximations to Higher Derivatives

Numerical Approximations to Higher Derivatives

Illustrative Method of Construction

Numerical Approximations to Higher Derivatives

Illustrative Method of Construction

Expand a function f in a third Taylor polynomial about a point x_{0} and evaluate at $x_{0}+h$ and $x_{0}-h$.

Numerical Approximations to Higher Derivatives

Illustrative Method of Construction

Expand a function f in a third Taylor polynomial about a point x_{0} and evaluate at $x_{0}+h$ and $x_{0}-h$. Then

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{1}\right) h^{4}
$$

Numerical Approximations to Higher Derivatives

Illustrative Method of Construction

Expand a function f in a third Taylor polynomial about a point x_{0} and evaluate at $x_{0}+h$ and $x_{0}-h$. Then

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{1}\right) h^{4}
$$

and

$$
f\left(x_{0}-h\right)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{-1}\right) h^{4}
$$

where $x_{0}-h<\xi_{-1}<x_{0}<\xi_{1}<x_{0}+h$.

Numerical Approximations to Higher Derivatives

$f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{1}\right) h^{4}$
$f\left(x_{0}-h\right)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{-1}\right) h^{4}$

Illustrative Method of Construction (Cont'd)

If we add these equations, the terms involving $f^{\prime}\left(x_{0}\right)$ and $-f^{\prime}\left(x_{0}\right)$ cancel,

Numerical Approximations to Higher Derivatives

$f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{1}\right) h^{4}$
$f\left(x_{0}-h\right)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{-1}\right) h^{4}$

Illustrative Method of Construction (Cont'd)

If we add these equations, the terms involving $f^{\prime}\left(x_{0}\right)$ and $-f^{\prime}\left(x_{0}\right)$ cancel, so

$$
f\left(x_{0}+h\right)+f\left(x_{0}-h\right)=2 f\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{24}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right] h^{4}
$$

Numerical Approximations to Higher Derivatives

$$
\begin{aligned}
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{1}\right) h^{4} \\
& f\left(x_{0}-h\right)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(x_{0}\right) h^{3}+\frac{1}{24} f^{(4)}\left(\xi_{-1}\right) h^{4}
\end{aligned}
$$

Illustrative Method of Construction (Cont'd)

If we add these equations, the terms involving $f^{\prime}\left(x_{0}\right)$ and $-f^{\prime}\left(x_{0}\right)$ cancel, so

$$
f\left(x_{0}+h\right)+f\left(x_{0}-h\right)=2 f\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right) h^{2}+\frac{1}{24}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right] h^{4}
$$

Solving this equation for $f^{\prime \prime}\left(x_{0}\right)$ gives

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{24}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]
$$

Numerical Approximations to Higher Derivatives

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{24}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]
$$

Illustrative Method of Construction (Cont'd)

Suppose $f^{(4)}$ is continuous on [$\left.x_{0}-h, x_{0}+h\right]$. Since $\frac{1}{2}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]$ is between $f^{(4)}\left(\xi_{1}\right)$ and $f^{(4)}\left(\xi_{-1}\right)$, the Intermediate Value Theorem - Theorem implies that a number ξ exists between ξ_{1} and ξ_{-1}, and hence in $\left(x_{0}-h, x_{0}+h\right)$, with

$$
f^{(4)}(\xi)=\frac{1}{2}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]
$$

Numerical Approximations to Higher Derivatives

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{24}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]
$$

Illustrative Method of Construction (Cont'd)

Suppose $f^{(4)}$ is continuous on $\left[x_{0}-h, x_{0}+h\right]$. Since $\frac{1}{2}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]$ is between $f^{(4)}\left(\xi_{1}\right)$ and $f^{(4)}\left(\xi_{-1}\right)$, the Intermediate Value Theorem - Theorem implies that a number ξ exists between ξ_{1} and ξ_{-1}, and hence in $\left(x_{0}-h, x_{0}+h\right)$, with

$$
f^{(4)}(\xi)=\frac{1}{2}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]
$$

This permits us to rewrite the formula in its final form:

Numerical Approximations to Higher Derivatives

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{24}{ }^{\left.\left[f^{(4)}\right)\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]}
$$

Second Derivative Midpoint Formula

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{12} f^{(4)}(\xi)
$$

for some ξ, where $x_{0}-h<\xi<x_{0}+h$.

Numerical Approximations to Higher Derivatives

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{24}\left[f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{-1}\right)\right]
$$

Second Derivative Midpoint Formula

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{12} f^{(4)}(\xi)
$$

for some ξ, where $x_{0}-h<\xi<x_{0}+h$.
Note: If $f{ }^{(4)}$ is continuous on $\left[x_{0}-h, x_{0}+h\right]$, then it is also bounded, and the approximation is $O\left(h^{2}\right)$.

Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula)

Values for $f(x)=x e^{x}$ are given in the following table:

x	1.8	1.9	2.0	2.1	2.2
$f(x)$	10.889365	12.703199	14.778112	17.148957	19.855030

Use the second derivative midpoint formula Formula approximate $f^{\prime}(2.0)$.

Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for $f^{\prime \prime}(2.0)$.

Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for $f^{\prime \prime}(2.0)$. Using the formula with $h=0.1$ gives

$$
\frac{1}{0.01}[f(1.9)-2 f(2.0)+f(2.1)]
$$

Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for $f^{\prime \prime}(2.0)$. Using the formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.01}[f(1.9)-2 f(2.0)+f(2.1)] \\
= & 100[12.703199-2(14.778112)+17.148957]=29.593200
\end{aligned}
$$

Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for $f^{\prime \prime}(2.0)$. Using the formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.01}[f(1.9)-2 f(2.0)+f(2.1)] \\
= & 100[12.703199-2(14.778112)+17.148957]=29.593200
\end{aligned}
$$

and using the formula with $h=0.2$ gives

$$
\frac{1}{0.04}[f(1.8)-2 f(2.0)+f(2.2)]
$$

Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for $f^{\prime \prime}(2.0)$. Using the formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.01}[f(1.9)-2 f(2.0)+f(2.1)] \\
= & 100[12.703199-2(14.778112)+17.148957]=29.593200
\end{aligned}
$$

and using the formula with $h=0.2$ gives

$$
\begin{aligned}
& \frac{1}{0.04}[f(1.8)-2 f(2.0)+f(2.2)] \\
= & 25[10.889365-2(14.778112)+19.855030]=29.704275
\end{aligned}
$$

Numerical Approximations to Higher Derivatives

Example (Second Derivative Midpoint Formula): Cont'd

The data permits us to determine two approximations for $f^{\prime \prime}(2.0)$. Using the formula with $h=0.1$ gives

$$
\begin{aligned}
& \frac{1}{0.01}[f(1.9)-2 f(2.0)+f(2.1)] \\
= & 100[12.703199-2(14.778112)+17.148957]=29.593200
\end{aligned}
$$

and using the formula with $h=0.2$ gives

$$
\begin{aligned}
& \frac{1}{0.04}[f(1.8)-2 f(2.0)+f(2.2)] \\
= & 25[10.889365-2(14.778112)+19.855030]=29.704275
\end{aligned}
$$

The exact value is $f^{\prime \prime}(2.0)=29.556224$. Hence the actual errors are -3.70×10^{-2} and -1.48×10^{-1}, respectively.

Questions?

Reference Material

Intermediate Value Theorem

If $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there exists a number $c \in(a, b)$ for which $f(c)=K$.

(The diagram shows one of 3 possibilities for this function and interval.)

Numerical Differentiation Formulae

Three-Point Endpoint Formula

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[-3 f\left(x_{0}\right)+4 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right]+\frac{h^{2}}{3} f^{(3)}\left(\xi_{0}\right)
$$

where ξ_{0} lies between x_{0} and $x_{0}+2 h$.
Three-Point Midpoint Formula

$$
f^{\prime}\left(x_{0}\right)=\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]-\frac{h^{2}}{6} f^{(3)}\left(\xi_{1}\right)
$$

where ξ_{1} lies between $x_{0}-h$ and $x_{0}+h$.

Numerical Differentiation Formulae

Five-Point Midpoint Formula

$$
\begin{array}{r}
f^{\prime}\left(x_{0}\right)=\frac{1}{12 h}\left[f\left(x_{0}-2 h\right)-8 f\left(x_{0}-h\right)+8 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right] \\
+\frac{h^{4}}{30} f^{(5)}(\xi)
\end{array}
$$

where ξ lies between $x_{0}-2 h$ and $x_{0}+2 h$.

Five-Point Endpoint Formula

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right)= & \frac{1}{12 h}\left[-25 f\left(x_{0}\right)+48 f\left(x_{0}+h\right)-36 f\left(x_{0}+2 h\right)\right. \\
& \left.+16 f\left(x_{0}+3 h\right)-3 f\left(x_{0}+4 h\right)\right]+\frac{h^{4}}{5} f^{(5)}(\xi)
\end{aligned}
$$

where ξ lies between x_{0} and $x_{0}+4 h$.

Numerical Differentiation Formulae

Second Derivative Midpoint Formula

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{1}{h^{2}}\left[f\left(x_{0}-h\right)-2 f\left(x_{0}\right)+f\left(x_{0}+h\right)\right]-\frac{h^{2}}{12} f^{(4)}(\xi)
$$

for some ξ, where $x_{0}-h<\xi<x_{0}+h$.

