Introduction to Numerical Integration
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
3. Simpson’s Rule
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
3. Simpson’s Rule
4. Comparing the Trapezoidal Rule with Simpson’s Rule
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
3. Simpson’s Rule
4. Comparing the Trapezoidal Rule with Simpson’s Rule
5. Measuring Precision
Introduction to Numerical Integration

The Trapezoidal Rule

Simpson’s Rule

Comparing the Trapezoidal Rule with Simpson’s Rule

Measuring Precision
Introduction to Numerical Integration

Numerical Quadrature
Numerical Quadrature

- The need often arises for evaluating the definite integral of a function that has no explicit antiderivative or whose antiderivative is not easy to obtain.
Numerical Quadrature

- The need often arises for evaluating the definite integral of a function that has no explicit antiderivative or whose antiderivative is not easy to obtain.

- The basic method involved in approximating \(\int_{a}^{b} f(x) \, dx \) is called **numerical quadrature**. It uses a sum \(\sum_{i=0}^{n} a_i f(x_i) \) to approximate \(\int_{a}^{b} f(x) \, dx \).
Quadrature based on interpolation polynomials

- The methods of quadrature in this section are based on the interpolation polynomials.
Introduction to Numerical Integration

Quadrature based on interpolation polynomials

- The methods of quadrature in this section are based on the interpolation polynomials.
- The basic idea is to select a set of distinct nodes \(\{x_0, \ldots, x_n\} \) from the interval \([a, b]\).
Quadrature based on interpolation polynomials

- The methods of quadrature in this section are based on the interpolation polynomials.
- The basic idea is to select a set of distinct nodes \(\{x_0, \ldots, x_n\} \) from the interval \([a, b]\).
- Then integrate the Lagrange interpolating polynomial

\[
P_n(x) = \sum_{i=0}^{n} f(x_i)L_i(x)
\]

and its truncation error term over \([a, b]\) to obtain:
Introduction to Numerical Integration

Quadrature based on interpolation polynomials (Cont’d)

\[
\int_a^b f(x) \, dx = \int_a^b \sum_{i=0}^{n} f(x_i)L_i(x) \, dx + \int_a^b \prod_{i=0}^{n} (x - x_i) \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \, dx
\]

\[
= \sum_{i=0}^{n} a_if(x_i) + \frac{1}{(n+1)!} \int_a^b \prod_{i=0}^{n} (x - x_i) f^{(n+1)}(\xi(x)) \, dx
\]

where \(\xi(x) \) is in \([a, b]\) for each \(x \) and

\[
a_i = \int_a^b L_i(x) \, dx, \quad \text{for each } i = 0, 1, \ldots, n
\]
The quadrature formula is, therefore,

\[\int_{a}^{b} f(x) \, dx \approx \sum_{i=0}^{n} a_i f(x_i) \]
Introduction to Numerical Integration

Quadrature based on interpolation polynomials (Cont’d)

The quadrature formula is, therefore,

\[
\int_{a}^{b} f(x) \, dx \approx \sum_{i=0}^{n} a_i f(x_i)
\]

where

\[
a_i = \int_{a}^{b} L_i(x) \, dx, \quad \text{for each } i = 0, 1, \ldots, n
\]
Quadrature based on interpolation polynomials (Cont’d)

The quadrature formula is, therefore,

\[\int_{a}^{b} f(x) \, dx \approx \sum_{i=0}^{n} a_i f(x_i) \]

where

\[a_i = \int_{a}^{b} L_i(x) \, dx, \quad \text{for each } i = 0, 1, \ldots, n \]

and with error given by

\[E(f) = \frac{1}{(n+1)!} \int_{a}^{b} \prod_{i=0}^{n} (x - x_i) f^{(n+1)}(\xi(x)) \, dx \]
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
3. Simpson’s Rule
4. Comparing the Trapezoidal Rule with Simpson’s Rule
5. Measuring Precision
Numerical Integration: Trapezoidal Rule

Derivation (1/3)

To derive the Trapezoidal rule for approximating $\int_{a}^{b} f(x) \, dx$, let $x_0 = a$, $x_1 = b$, $h = b - a$
To derive the Trapezoidal rule for approximating $\int_{a}^{b} f(x) \, dx$, let $x_0 = a$, $x_1 = b$, $h = b - a$ and use the linear Lagrange polynomial:

$$P_1(x) = \frac{(x - x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x - x_0)}{(x_1 - x_0)} f(x_1)$$
Numerical Integration: Trapezoidal Rule

Derivation (1/3)

To derive the Trapezoidal rule for approximating \(\int_{a}^{b} f(x) \, dx \), let \(x_0 = a \), \(x_1 = b \), \(h = b - a \) and use the linear Lagrange polynomial:

\[
P_1(x) = \frac{(x - x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x - x_0)}{(x_1 - x_0)} f(x_1)
\]

Then

\[
\int_{a}^{b} f(x) \, dx = \int_{x_0}^{x_1} \left[\frac{(x - x_1)}{(x_0 - x_1)} f(x_0) + \frac{(x - x_0)}{(x_1 - x_0)} f(x_1) \right] \, dx + \frac{1}{2} \int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) \, dx.
\]
Numerical Integration: Trapezoidal Rule

Derivation (2/3)

The product \((x - x_0)(x - x_1)\) does not change sign on \([x_0, x_1]\), so the Weighted Mean Value Theorem for Integrals can be applied to the error term.
Numerical Integration: Trapezoidal Rule

Derivation (2/3)

The product \((x - x_0)(x - x_1)\) does not change sign on \([x_0, x_1]\), so the Weighted Mean Value Theorem for Integrals can be applied to the error term to give, for some \(\xi\) in \((x_0, x_1)\),

\[
\int_{x_0}^{x_1} f''(\xi(x)) (x - x_0)(x - x_1) \, dx
\]

\[
= f''(\xi) \int_{x_0}^{x_1} (x - x_0)(x - x_1) \, dx
\]
Numerical Integration: Trapezoidal Rule

Derivation (2/3)

The product \((x - x_0)(x - x_1)\) does not change sign on \([x_0, x_1]\), so the Weighted Mean Value Theorem for Integrals can be applied to the error term to give, for some \(\xi\) in \((x_0, x_1)\),

\[
\int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) \, dx
\]

\[
= f''(\xi) \int_{x_0}^{x_1} (x - x_0)(x - x_1) \, dx
\]

\[
= f''(\xi) \left[\frac{x^3}{3} - \frac{(x_1 + x_0)}{2} x^2 + x_0 x_1 x \right]_{x_0}^{x_1}
\]
The product \((x - x_0)(x - x_1)\) does not change sign on \([x_0, x_1]\), so the Weighted Mean Value Theorem for Integrals can be applied to the error term to give, for some \(\xi\) in \((x_0, x_1)\),

\[
\int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) \, dx
\]

\[
= f''(\xi) \int_{x_0}^{x_1} (x - x_0)(x - x_1) \, dx
\]

\[
= f''(\xi) \left[\frac{x^3}{3} - \frac{(x_1 + x_0)}{2} x^2 + x_0 x_1 x \right]_{x_0}^{x_1}
\]

\[
= -\frac{h^3}{6} f''(\xi)
\]
Numerical Integration: Trapezoidal Rule

Derivation (3/3)

Consequently, the last equation, namely

\[\int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) \, dx = \frac{-h^3}{6} f''(\xi) \]
Numerical Integration: Trapezoidal Rule

Derivation (3/3)

Consequently, the last equation, namely

$$\int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) \, dx = -\frac{h^3}{6} f''(\xi)$$

implies that

$$\int_{a}^{b} f(x) \, dx = \left[\frac{(x - x_1)^2}{2(x_0 - x_1)} f(x_0) + \frac{(x - x_0)^2}{2(x_1 - x_0)} f(x_1) \right]_{x_0}^{x_1} - \frac{h^3}{12} f''(\xi)$$
Numerical Integration: Trapezoidal Rule

Derivation (3/3)

Consequently, the last equation, namely

\[
\int_{x_0}^{x_1} f''(\xi(x))(x - x_0)(x - x_1) \, dx = -\frac{h^3}{6} f''(\xi)
\]

implies that

\[
\int_a^b f(x) \, dx = \left[\frac{(x - x_1)^2}{2(x_0 - x_1)} f(x_0) + \frac{(x - x_0)^2}{2(x_1 - x_0)} f(x_1) \right]_{x_0}^{x_1} - \frac{h^3}{12} f''(\xi)
\]

\[
= \frac{(x_1 - x_0)}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f''(\xi)
\]
Numerical Integration: Trapezoidal Rule

Using the notation $h = x_1 - x_0$ gives the following rule:

The Trapezoidal Rule

$$\int_a^b f(x) \, dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f''(\xi)$$
Numerical Integration: Trapezoidal Rule

Using the notation $h = x_1 - x_0$ gives the following rule:

The Trapezoidal Rule

$$\int_a^b f(x) \, dx = \frac{h}{2}[f(x_0) + f(x_1)] - \frac{h^3}{12} f''(\xi)$$

Note:

- The error term for the Trapezoidal rule involves f'', so the rule gives the exact result when applied to any function whose second derivative is identically zero, that is, any polynomial of degree one or less.
Numerical Integration: Trapezoidal Rule

Using the notation $h = x_1 - x_0$ gives the following rule:

The Trapezoidal Rule

\[
\int_{a}^{b} f(x) \, dx = \frac{h}{2} [f(x_0) + f(x_1)] - \frac{h^3}{12} f''(\xi)
\]

Note:

- The error term for the Trapezoidal rule involves f'', so the rule gives the exact result when applied to any function whose second derivative is identically zero, that is, any polynomial of degree one or less.
- The method is called the Trapezoidal rule because, when f is a function with positive values, $\int_{a}^{b} f(x) \, dx$ is approximated by the area in a trapezoid, as shown in the following diagram.
Trapezoidal Rule: The Area in a Trapezoid

\[y = f(x) \]

\[y = P_1(x) \]

\[a = x_0 \]

\[x_1 = b \]
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
3. Simpson’s Rule
4. Comparing the Trapezoidal Rule with Simpson’s Rule
5. Measuring Precision
Simpson’s rule results from integrating over \([a, b]\) the second Lagrange polynomial with equally-spaced nodes \(x_0 = a, x_2 = b,\) and \(x_1 = a + h,\) where \(h = (b - a)/2:\)
Numerical Integration: Simpson’s Rule

Naive Derivation
Numerical Integration: Simpson’s Rule

Naive Derivation

Therefore

\[
\int_{a}^{b} f(x) \, dx = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) \right. \\
+ \left. \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] \, dx \\
+ \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)(x - x_2)}{6} f^{(3)}(\xi(x)) \, dx.
\]
Numerical Integration: Simpson’s Rule

Naive Derivation

Therefore

\[
\int_a^b f(x) \, dx = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) \\
+ \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] \, dx \\
+ \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)(x - x_2)}{6} f^{(3)}(\xi(x)) \, dx.
\]

Deriving Simpson’s rule in this manner, however, provides only an \(O(h^4)\) error term involving \(f^{(3)}\).
Numerical Integration: Simpson’s Rule

Naive Derivation

Therefore

\[
\int_a^b f(x) \, dx = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) \right. \\
\left. + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] \, dx \\
+ \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_1)(x - x_2)}{6} f^{(3)}(\xi(x)) \, dx.
\]

Deriving Simpson’s rule in this manner, however, provides only an \(O(h^4)\) error term involving \(f^{(3)}\). By approaching the problem in another way, a higher-order term involving \(f^{(4)}\) can be derived.
Numerical Integration: Simpson’s Rule

Alternative Derivation (1/5)
Numerical Integration: Simpson’s Rule

Alternative Derivation (1/5)

Suppose that f is expanded in the third Taylor polynomial about x_1.
Suppose that f is expanded in the third Taylor polynomial about x_1. Then for each x in $[x_0, x_2]$, a number $\xi(x)$ in (x_0, x_2) exists with

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(\xi(x))}{24}(x - x_1)^4$$
Suppose that f is expanded in the third Taylor polynomial about x_1. Then for each x in $[x_0, x_2]$, a number $\xi(x)$ in (x_0, x_2) exists with

$$
f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(\xi(x))}{24}(x - x_1)^4
$$

and

$$
\int_{x_0}^{x_2} f(x) \, dx = \left[f(x_1)(x - x_1) + \frac{f'(x_1)}{2}(x - x_1)^2 + \frac{f''(x_1)}{6}(x - x_1)^3 \right]_{x_0}^{x_2} + \frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx
$$
Numerical Integration: Simpson’s Rule

Alternative Derivation (2/5)

Because $(x - x_1)^4$ is never negative on $[x_0, x_2]$, the Weighted Mean Value Theorem for Integrals

See Theorem
Numerical Integration: Simpson’s Rule

Alternative Derivation (2/5)

Because \((x - x_1)^4\) is never negative on \([x_0, x_2]\), the Weighted Mean Value Theorem for Integrals implies that

\[
\frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx = \frac{f^{(4)}(\xi_1)}{24} \int_{x_0}^{x_2} (x - x_1)^4 \, dx
\]
Because \((x - x_1)^4\) is never negative on \([x_0, x_2]\), the Weighted Mean Value Theorem for Integrals implies that

\[
\frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx = \frac{f^{(4)}(\xi_1)}{24} \int_{x_0}^{x_2} (x - x_1)^4 \, dx = \frac{f^{(4)}(\xi_1)}{120} (x - x_1)^5 \bigg|_{x_0}^{x_2}
\]

for some number \(\xi_1\) in \((x_0, x_2)\).
Numerical Integration: Simpson’s Rule

\[\frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx = \frac{f^{(4)}(\xi_1)}{120} (x - x_1)^5 \bigg|_{x_0}^{x_2} \]

Alternative Derivation (3/5)
Numerical Integration: Simpson’s Rule

\[\frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx = \frac{f^{(4)}(\xi_1)}{120}(x - x_1)^5 \bigg|_{x_0}^{x_2} \]

Alternative Derivation (3/5)

However, \(h = x_2 - x_1 = x_1 - x_0 \), so

\[(x_2 - x_1)^2 - (x_0 - x_1)^2 = (x_2 - x_1)^4 - (x_0 - x_1)^4 = 0\]
Numerical Integration: Simpson’s Rule

\[
\frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx = \frac{f^{(4)}(\xi_1)}{120}(x - x_1)^5 \bigg|_{x_0}^{x_2}
\]

Alternative Derivation (3/5)

However, \(h = x_2 - x_1 = x_1 - x_0 \), so

\[
(x_2 - x_1)^2 - (x_0 - x_1)^2 = (x_2 - x_1)^4 - (x_0 - x_1)^4 = 0
\]

whereas

\[
(x_2 - x_1)^3 - (x_0 - x_1)^3 = 2h^3 \text{ and } (x_2 - x_1)^5 - (x_0 - x_1)^5 = 2h^5
\]
Numerical Integration: Simpson’s Rule

Alternative Derivation (4/5)
Numerical Integration: Simpson’s Rule

Alternative Derivation (4/5)

Consequently,

\[
\int_{x_0}^{x_2} f(x) \, dx = \left[f(x_1)(x - x_1) + \frac{f'(x_1)}{2}(x - x_1)^2 + \frac{f''(x_1)}{6}(x - x_1)^3
\right.
\]
\[
\left. + \frac{f'''(x_1)}{24}(x - x_1)^4 \right]_{x_0}^{x_2} + \frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx
\]
Consequently,\
\[
\int_{x_0}^{x_2} f(x) \, dx = \left[f(x_1)(x - x_1) + \frac{f'(x_1)}{2}(x - x_1)^2 + \frac{f''(x_1)}{6}(x - x_1)^3 \\
+ \frac{f'''}(x_1)}{24}(x - x_1)^4 \right]_{x_0}^{x_2} + \frac{1}{24} \int_{x_0}^{x_2} f^{(4)}(\xi(x))(x - x_1)^4 \, dx
\]
can be re-written as
\[
\int_{x_0}^{x_2} f(x) \, dx = 2hf(x_1) + \frac{h^3}{3}f''(x_1) + \frac{f^{(4)}(\xi_1)}{60}h^5
\]
Numerical Integration: Simpson’s Rule

Alternative Derivation (5/5)

If we now replace $f''(x_1)$ by the approximation given by the Second Derivative Midpoint Formula ▶ See Formula
Numerical Integration: Simpson’s Rule

Alternative Derivation (5/5)

If we now replace \(f''(x_1) \) by the approximation given by the Second Derivative Midpoint Formula, we obtain

\[
\int_{x_0}^{x_2} f(x) \, dx = 2hf(x_1) + \frac{h^3}{3} \left\{ \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\xi_2) \right\} + \frac{f^{(4)}(\xi_1)}{60} h^5
\]
Numerical Integration: Simpson’s Rule

Alternative Derivation (5/5)

If we now replace $f''(x_1)$ by the approximation given by the Second Derivative Midpoint Formula we obtain

$$\int_{x_0}^{x_2} f(x) \, dx = 2hf(x_1) + \frac{h^3}{3} \left\{ \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\xi_2) \right\}$$

$$+ \frac{f^{(4)}(\xi_1)}{60} h^5$$

$$= \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{12} \left[\frac{1}{3} f^{(4)}(\xi_2) - \frac{1}{5} f^{(4)}(\xi_1) \right]$$
Numerical Integration: Simpson’s Rule

Alternative Derivation (5/5)

If we now replace $f''(x_1)$ by the approximation given by the Second Derivative Midpoint Formula, we obtain

$$\int_{x_0}^{x_2} f(x) \, dx = 2hf(x_1) + \frac{h^3}{3} \left\{ \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\xi_2) \right\} + \frac{f^{(4)}(\xi_1)}{60} h^5$$

$$= \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{12} \left[\frac{1}{3} f^{(4)}(\xi_2) - \frac{1}{5} f^{(4)}(\xi_1) \right]$$

It can be shown by alternative methods that the values ξ_1 and ξ_2 in this expression can be replaced by a common value ξ in (x_0, x_2). This gives Simpson’s rule.
Numerical Integration: Simpson’s Rule

Simpson’s Rule

\[\int_{x_0}^{x_2} f(x) \, dx = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{h^5}{90} f^{(4)}(\xi) \]

The error term in Simpson’s rule involves the fourth derivative of \(f \), so it gives exact results when applied to any polynomial of degree three or less.
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
3. Simpson’s Rule
4. Comparing the Trapezoidal Rule with Simpson’s Rule
5. Measuring Precision
Example

Compare the Trapezoidal rule and Simpson’s rule approximations to \(\int_{0}^{2} f(x) \, dx \) when \(f(x) \) is

(a) \(x^2 \)
(b) \(x^4 \)
(c) \((x + 1)^{-1} \)

(d) \(\sqrt{1 + x^2} \)
(e) \(\sin x \)
(f) \(e^x \)
Trapezoidal Rule .v. Simpson’s Rule

Solution (1/3)

On $[0, 2]$, the Trapezoidal and Simpson’s rule have the forms

Trapezoidal: $\int_0^2 f(x) \, dx \approx f(0) + f(2)$

Simpson’s: $\int_0^2 f(x) \, dx \approx \frac{1}{3}[f(0) + 4f(1) + f(2)]$
Trapezoidal Rule .v. Simpson’s Rule

Solution (1/3)

On $[0, 2]$, the Trapezoidal and Simpson’s rule have the forms

Trapezoidal: $\int_{0}^{2} f(x) \, dx \approx f(0) + f(2)$

Simpson’s: $\int_{0}^{2} f(x) \, dx \approx \frac{1}{3} [f(0) + 4f(1) + f(2)]$

When $f(x) = x^2$ they give

Trapezoidal: $\int_{0}^{2} f(x) \, dx \approx 0^2 + 2^2 = 4$

Simpson’s: $\int_{0}^{2} f(x) \, dx \approx \frac{1}{3} [(0^2) + 4 \cdot 1^2 + 2^2] = \frac{8}{3}$
Solution (2/3)
The approximation from Simpson’s rule is exact because its truncation error involves $f^{(4)}$, which is identically 0 when $f(x) = x^2$.
The approximation from Simpson’s rule is exact because its truncation error involves $f^{(4)}$, which is identically 0 when $f(x) = x^2$.

The results to three places for the functions are summarized in the following table.
Solution (3/3): Summary Results

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>(a) x^2</th>
<th>(b) x^4</th>
<th>(c) $(x + 1)^{-1}$</th>
<th>(d) $\sqrt{1 + x^2}$</th>
<th>(e) $\sin x$</th>
<th>(f) e^x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact value</td>
<td>2.667</td>
<td>6.400</td>
<td>1.099</td>
<td>2.958</td>
<td>1.416</td>
<td>6.389</td>
</tr>
<tr>
<td>Trapezoidal</td>
<td>4.000</td>
<td>16.000</td>
<td>1.333</td>
<td>3.326</td>
<td>0.909</td>
<td>8.389</td>
</tr>
<tr>
<td>Simpson’s</td>
<td>2.667</td>
<td>6.667</td>
<td>1.111</td>
<td>2.964</td>
<td>1.425</td>
<td>6.421</td>
</tr>
</tbody>
</table>

Notice that, in each instance, Simpson’s Rule is significantly superior.
Outline

1. Introduction to Numerical Integration
2. The Trapezoidal Rule
3. Simpson’s Rule
4. Comparing the Trapezoidal Rule with Simpson’s Rule
5. Measuring Precision
Rationale
Rationale

The standard derivation of quadrature error formulas is based on determining the class of polynomials for which these formulas produce exact results.
Rationale

- The standard derivation of quadrature error formulas is based on determining the class of polynomials for which these formulas produce exact results.

- The following definition is used to facilitate the discussion of this derivation.
Rationale

- The standard derivation of quadrature error formulas is based on determining the class of polynomials for which these formulas produce exact results.
- The following definition is used to facilitate the discussion of this derivation.

Definition

The degree of accuracy or precision, of a quadrature formula is the largest positive integer n such that the formula is exact for x^k, for each $k = 0, 1, \ldots, n$.
Rationale

- The standard derivation of quadrature error formulas is based on determining the class of polynomials for which these formulas produce exact results.
- The following definition is used to facilitate the discussion of this derivation.

Definition

The **degree of accuracy** or **precision**, of a quadrature formula is the largest positive integer n such that the formula is exact for x^k, for each $k = 0, 1, \ldots, n$.

This implies that the Trapezoidal and Simpson’s rules have degrees of precision one and three, respectively.
Establishing the Degree of Precision
Integration and summation are linear operations; that is,

\[
\int_a^b (\alpha f(x) + \beta g(x)) \, dx = \alpha \int_a^b f(x) \, dx + \beta \int_a^b g(x) \, dx
\]

and

\[
\sum_{i=0}^{n} (\alpha f(x_i) + \beta g(x_i)) = \alpha \sum_{i=0}^{n} f(x_i) + \beta \sum_{i=0}^{n} g(x_i),
\]

for each pair of integrable functions \(f \) and \(g \) and each pair of real constants \(\alpha \) and \(\beta \).
Numerical Integration: Measuring Precision

Establishing the Degree of Precision

Integration and summation are linear operations; that is,

\[\int_{a}^{b} (\alpha f(x) + \beta g(x)) \, dx = \alpha \int_{a}^{b} f(x) \, dx + \beta \int_{a}^{b} g(x) \, dx \]

and

\[\sum_{i=0}^{n} (\alpha f(x_i) + \beta g(x_i)) = \alpha \sum_{i=0}^{n} f(x_i) + \beta \sum_{i=0}^{n} g(x_i), \]

for each pair of integrable functions \(f \) and \(g \) and each pair of real constants \(\alpha \) and \(\beta \). This implies the following:
Degree of Precision

The degree of precision of a quadrature formula is \(n \) if and only if the error is zero for all polynomials of degree \(k = 0, 1, \ldots, n \), but is not zero for some polynomial of degree \(n + 1 \).
Degree of Precision

The degree of precision of a quadrature formula is n if and only if the error is zero for all polynomials of degree $k = 0, 1, \ldots, n$, but is not zero for some polynomial of degree $n + 1$.

Footnote

The Trapezoidal and Simpson’s rules are examples of a class of methods known as Newton-Cotes formulas.
Numerical Integration: Measuring Precision

Degree of Precision

The degree of precision of a quadrature formula is n if and only if the error is zero for all polynomials of degree $k = 0, 1, \ldots, n$, but is not zero for some polynomial of degree $n + 1$.

Footnote

- The Trapezoidal and Simpson’s rules are examples of a class of methods known as Newton-Cotes formulas.
- There are two types of Newton-Cotes formulas, open and closed.
Questions?
Reference Material
Suppose \(f \in C[a, b] \), the Riemann integral of \(g \) exists on \([a, b]\), and \(g(x) \) does not change sign on \([a, b]\). Then there exists a number \(c \) in \((a, b)\) with

\[
\int_a^b f(x)g(x) \, dx = f(c) \int_a^b g(x) \, dx.
\]

When \(g(x) \equiv 1 \), this result is the usual Mean Value Theorem for Integrals. It gives the average value of the function \(f \) over the interval \([a, b]\) as

\[
f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx.
\]
The Mean Value Theorem for Integrals

\[f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx. \]
Second Derivative Midpoint Formula

\[f''(x_0) = \frac{1}{h^2} [f(x_0 - h) - 2f(x_0) + f(x_0 + h)] - \frac{h^2}{12} f^{(4)}(\xi) \]

for some \(\xi \), where \(x_0 - h < \xi < x_0 + h \).