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When is Pivoting Required?
In deriving the Gaussin Elimination with Backward Subsitition
algorithm, we found that a row interchange was needed when one
of the pivot elements a(k)

kk is 0.

This row interchange has the form (Ek ) ↔ (Ep), where p is the

smallest integer greater than k with a(k)
pk 6= 0.

To reduce round-off error, it is often necessary to perform row
interchanges even when the pivot elements are not zero.
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Pivoting Strategies: Motivation

When is Pivoting Required? (Cont’d)

If a(k)
kk is small in magnitude compared to a(k)

jk , then the magnitude
of the multiplier

mjk =
a(k)

jk

a(k)
kk

will be much larger than 1.
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When is Pivoting Required? (Cont’d)

If a(k)
kk is small in magnitude compared to a(k)

jk , then the magnitude
of the multiplier

mjk =
a(k)

jk

a(k)
kk

will be much larger than 1.

Round-off error introduced in the computation of one of the terms
a(k)

kl is multiplied by mjk when computing a(k+1)
jl , which compounds

the original error.
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Pivoting Strategies: Motivation

When is Pivoting Required? (Cont’d)
Also, when performing the backward substitution for

xk =
a(k)

k ,n+1 −
∑n

j=k+1 a(k)
kj

a(k)
kk

with a small value of a(k)
kk , any error in the numerator can be

dramatically increased because of the division by a(k)
kk .
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Pivoting Strategies: Motivation

When is Pivoting Required? (Cont’d)
Also, when performing the backward substitution for

xk =
a(k)

k ,n+1 −
∑n

j=k+1 a(k)
kj

a(k)
kk

with a small value of a(k)
kk , any error in the numerator can be

dramatically increased because of the division by a(k)
kk .

The following example will show that even for small systems,
round-off error can dominate the calculations.
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Pivoting Strategies: Motivation

Example
Apply Gaussian elimination to the system

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

using four-digit arithmetic with rounding, and compare the results to
the exact solution x1 = 10.00 and x2 = 1.000.
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Pivoting Strategies: Motivating Example

Solution (1/4)

The first pivot element, a(1)
11 = 0.003000, is small, and its

associated multiplier,

m21 =
5.291

0.003000
= 1763.66

rounds to the large number 1764.
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Pivoting Strategies: Motivating Example

Solution (1/4)

The first pivot element, a(1)
11 = 0.003000, is small, and its

associated multiplier,

m21 =
5.291

0.003000
= 1763.66

rounds to the large number 1764.

Performing (E2 − m21E1) → (E2) and the appropriate rounding
gives the system

0.003000x1 + 59.14x2 ≈ 59.17

−104300x2 ≈ −104400
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Solution (2/4)
We obtained
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We obtained

0.003000x1 + 59.14x2 ≈ 59.17

−104300x2 ≈ −104400

instead of the exact system, which is

0.003000x1 + 59.14x2 = 59.17
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Pivoting Strategies: Motivating Example

Solution (2/4)
We obtained

0.003000x1 + 59.14x2 ≈ 59.17

−104300x2 ≈ −104400

instead of the exact system, which is

0.003000x1 + 59.14x2 = 59.17

−104309.376x2 = −104309.376

The disparity in the magnitudes of m21a13 and a23 has introduced
round-off error, but the round-off error has not yet been propagated.
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Pivoting Strategies: Motivating Example

Solution (3/4)
Backward substitution yields

x2 ≈ 1.001

which is a close approximation to the actual value, x2 = 1.000.
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Pivoting Strategies: Motivating Example

Solution (3/4)
Backward substitution yields

x2 ≈ 1.001

which is a close approximation to the actual value, x2 = 1.000.
However, because of the small pivot a11 = 0.003000,

x1 ≈
59.17 − (59.14)(1.001)

0.003000
= −10.00

contains the small error of 0.001 multiplied by

59.14
0.003000

≈ 20000
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Pivoting Strategies: Motivating Example

Solution (3/4)
Backward substitution yields

x2 ≈ 1.001

which is a close approximation to the actual value, x2 = 1.000.
However, because of the small pivot a11 = 0.003000,

x1 ≈
59.17 − (59.14)(1.001)

0.003000
= −10.00

contains the small error of 0.001 multiplied by

59.14
0.003000

≈ 20000

This ruins the approximation to the actual value x1 = 10.00.

Numerical Analysis (Chapter 6) Pivoting Strategies R L Burden & J D Faires 10 / 34



Motivation Partial Pivoting Scaled Partial Pivoting

Pivoting Strategies: Motivating Example

Solution (4/4)
This is clearly a contrived example and the graph shows why the error
can so easily occur.

x1

E1

E2

10210

Approximation

(210, 1.001) Exact solution

(10, 1)

x2

For larger systems it is much more difficult to predict in advance when
devastating round-off error might occur.
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Gaussian Elimination with Partial Pivoting

Meeting a small pivot element
The last example shows how difficulties can arise when the pivot
element a(k)

kk is small relative to the entries a(k)
ij , for k ≤ i ≤ n and

k ≤ j ≤ n.
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Meeting a small pivot element
The last example shows how difficulties can arise when the pivot
element a(k)

kk is small relative to the entries a(k)
ij , for k ≤ i ≤ n and

k ≤ j ≤ n.

To avoid this problem, pivoting is performed by selecting an
element a(k)

pq with a larger magnitude as the pivot, and
interchanging the k th and pth rows.
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Gaussian Elimination with Partial Pivoting

Meeting a small pivot element
The last example shows how difficulties can arise when the pivot
element a(k)

kk is small relative to the entries a(k)
ij , for k ≤ i ≤ n and

k ≤ j ≤ n.

To avoid this problem, pivoting is performed by selecting an
element a(k)

pq with a larger magnitude as the pivot, and
interchanging the k th and pth rows.

This can be followed by the interchange of the k th and qth
columns, if necessary.
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The Partial Pivoting Strategy
The simplest strategy is to select an element in the same column
that is below the diagonal and has the largest absolute value;
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The Partial Pivoting Strategy
The simplest strategy is to select an element in the same column
that is below the diagonal and has the largest absolute value;

specifically, we determine the smallest p ≥ k such that
∣

∣

∣
a(k)

pk

∣

∣

∣
= max

k≤i≤n
|a(k)

ik |

and perform (Ek ) ↔ (Ep).
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Gaussian Elimination with Partial Pivoting

The Partial Pivoting Strategy
The simplest strategy is to select an element in the same column
that is below the diagonal and has the largest absolute value;

specifically, we determine the smallest p ≥ k such that
∣

∣

∣
a(k)

pk

∣

∣

∣
= max

k≤i≤n
|a(k)

ik |

and perform (Ek ) ↔ (Ep).

In this case no interchange of columns is used.
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Gaussian Elimination with Partial Pivoting

Example
Apply Gaussian elimination to the system

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

using partial pivoting and 4-digit arithmetic with rounding, and compare
the results to the exact solution x1 = 10.00 and x2 = 1.000.
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E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

Solution (1/3)
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Gaussian Elimination with Partial Pivoting

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

Solution (1/3)
The partial-pivoting procedure first requires finding

max
{

|a(1)
11 |, |a

(1)
21 |

}

= max {|0.003000|, |5.291|} = |5.291| = |a(1)
21 |
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Gaussian Elimination with Partial Pivoting

E1 : 0.003000x1 + 59.14x2 = 59.17

E2 : 5.291x1 − 6.130x2 = 46.78

Solution (1/3)
The partial-pivoting procedure first requires finding

max
{

|a(1)
11 |, |a

(1)
21 |

}

= max {|0.003000|, |5.291|} = |5.291| = |a(1)
21 |

This requires that the operation (E2) ↔ (E1) be performed to produce
the equivalent system

E1 : 5.291x1 − 6.130x2 = 46.78,

E2 : 0.003000x1 + 59.14x2 = 59.17
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Gaussian Elimination with Partial Pivoting

E1 : 5.291x1 − 6.130x2 = 46.78,

E2 : 0.003000x1 + 59.14x2 = 59.17

Solution (2/3)

Numerical Analysis (Chapter 6) Pivoting Strategies R L Burden & J D Faires 17 / 34



Motivation Partial Pivoting Scaled Partial Pivoting

Gaussian Elimination with Partial Pivoting

E1 : 5.291x1 − 6.130x2 = 46.78,

E2 : 0.003000x1 + 59.14x2 = 59.17

Solution (2/3)
The multiplier for this system is

m21 =
a(1)

21

a(1)
11

= 0.0005670
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Gaussian Elimination with Partial Pivoting

E1 : 5.291x1 − 6.130x2 = 46.78,

E2 : 0.003000x1 + 59.14x2 = 59.17

Solution (2/3)
The multiplier for this system is

m21 =
a(1)

21

a(1)
11

= 0.0005670

and the operation (E2 − m21E1) → (E2) reduces the system to

5.291x1 − 6.130x2 ≈ 46.78

59.14x2 ≈ 59.14
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Gaussian Elimination with Partial Pivoting

5.291x1 − 6.130x2 ≈ 46.78

59.14x2 ≈ 59.14

Solution (3/3)
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Gaussian Elimination with Partial Pivoting

5.291x1 − 6.130x2 ≈ 46.78

59.14x2 ≈ 59.14

Solution (3/3)
The 4-digit answers resulting from the backward substitution are the
correct values

x1 = 10.00 and x2 = 1.000
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Gaussian Elimination/Partial Pivoting Algorithm (1/4)

To solve the n × n linear system

E1 : a11x1 + a12x2 + · · · + a1nxn = a1,n+1

E2 : a21x1 + a22x2 + · · · + a2nxn = a2,n+1
...

...

En : an1x1 + an2x2 + · · · + annxn = an,n+1
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E1 : a11x1 + a12x2 + · · · + a1nxn = a1,n+1

E2 : a21x1 + a22x2 + · · · + a2nxn = a2,n+1
...

...

En : an1x1 + an2x2 + · · · + annxn = an,n+1

INPUT number of unknowns and equations n; augmented
matrix A = [aij ] where 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1.
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Gaussian Elimination/Partial Pivoting Algorithm (1/4)

To solve the n × n linear system

E1 : a11x1 + a12x2 + · · · + a1nxn = a1,n+1

E2 : a21x1 + a22x2 + · · · + a2nxn = a2,n+1
...

...

En : an1x1 + an2x2 + · · · + annxn = an,n+1

INPUT number of unknowns and equations n; augmented
matrix A = [aij ] where 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1.

OUTPUT solution x1, . . . , xn or message that the linear
system has no unique solution.
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Gaussian Elimination/Partial Pivoting Algorithm (2/4)

Step 1 For i = 1, . . . , n set NROW(i) = i (Initialize row pointer )
Step 2 For i = 1, . . . , n − 1 do Steps 3–6 (Elimination process)
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Step 1 For i = 1, . . . , n set NROW(i) = i (Initialize row pointer )
Step 2 For i = 1, . . . , n − 1 do Steps 3–6 (Elimination process)

Step 3 Let p be the smallest integer with i ≤ p ≤ n and
|a(NROW(p), i)| = maxi≤j≤n |a(NROW(j), i)|
(Notation: a(NROW(i), j) ≡ aNROW i ,j )
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Step 2 For i = 1, . . . , n − 1 do Steps 3–6 (Elimination process)

Step 3 Let p be the smallest integer with i ≤ p ≤ n and
|a(NROW(p), i)| = maxi≤j≤n |a(NROW(j), i)|
(Notation: a(NROW(i), j) ≡ aNROW i ,j )

Step 4 If a(NROW(p), i) = 0 then
OUTPUT(‘no unique solution exists’)
STOP
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Gaussian Elimination/Partial Pivoting Algorithm (2/4)

Step 1 For i = 1, . . . , n set NROW(i) = i (Initialize row pointer )
Step 2 For i = 1, . . . , n − 1 do Steps 3–6 (Elimination process)

Step 3 Let p be the smallest integer with i ≤ p ≤ n and
|a(NROW(p), i)| = maxi≤j≤n |a(NROW(j), i)|
(Notation: a(NROW(i), j) ≡ aNROW i ,j )

Step 4 If a(NROW(p), i) = 0 then
OUTPUT(‘no unique solution exists’)
STOP

Step 5 If NROW(i) 6= NROW(p) then set NCOPY = NROW(i)
NROW(i) = NROW(p)
NROW(p) = NCOPY

(Simulated row interchange)
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Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step 6 For j = i + 1, . . . , n do Steps 7 & 8
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Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step 6 For j = i + 1, . . . , n do Steps 7 & 8

Step 7 Set
m(NROW(j), i) = a(NROW(j), i)/a(NROW(i), i)
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Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step 6 For j = i + 1, . . . , n do Steps 7 & 8

Step 7 Set
m(NROW(j), i) = a(NROW(j), i)/a(NROW(i), i)

Step 8 Perform
(ENROW (j) −m(NROW(j), i) · ENROW (i)) → (ENROW (j))
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Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step 6 For j = i + 1, . . . , n do Steps 7 & 8

Step 7 Set
m(NROW(j), i) = a(NROW(j), i)/a(NROW(i), i)

Step 8 Perform
(ENROW (j) −m(NROW(j), i) · ENROW (i)) → (ENROW (j))

Step 9 If a(NROW(n), n) = 0 then
OUTPUT(‘no unique solution exists’)
STOP
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Gaussian Elimination/Partial Pivoting Algorithm (4/4)

Step 10 Set xn = a(NROW(n), n + 1)/a(NROW(n), n)
(Start backward substitution)
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Gaussian Elimination/Partial Pivoting Algorithm (4/4)

Step 10 Set xn = a(NROW(n), n + 1)/a(NROW(n), n)
(Start backward substitution)

Step 11 For i = n − 1, . . . , 1

set xi =
a(NROW(i), n + 1) −

∑n
j=i+1 a(NROW(i), j) · xj

a(NROW(i), i)
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Motivation Partial Pivoting Scaled Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (4/4)

Step 10 Set xn = a(NROW(n), n + 1)/a(NROW(n), n)
(Start backward substitution)

Step 11 For i = n − 1, . . . , 1

set xi =
a(NROW(i), n + 1) −

∑n
j=i+1 a(NROW(i), j) · xj

a(NROW(i), i)

Step 12 OUTPUT (x1, . . . , xn) (Procedure completed successfully)
STOP
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Gaussian Elimination with Partial Pivoting

Can Partial Pivoting fail?
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Gaussian Elimination with Partial Pivoting

Can Partial Pivoting fail?
Each multiplier mji in the partial pivoting algorithm has magnitude
less than or equal to 1.
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Can Partial Pivoting fail?
Each multiplier mji in the partial pivoting algorithm has magnitude
less than or equal to 1.

Although this strategy is sufficient for many linear systems,
situations do arise when it is inadequate.
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Gaussian Elimination with Partial Pivoting

Can Partial Pivoting fail?
Each multiplier mji in the partial pivoting algorithm has magnitude
less than or equal to 1.

Although this strategy is sufficient for many linear systems,
situations do arise when it is inadequate.

The following (contrived) example illusrates the point.
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Gaussian Elimination with Partial Pivoting

Example: When Partial Pivoting Fails
The linear system

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

is the same as that in the two previous examples except that all the
entries in the first equation have been multiplied by 104.
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Gaussian Elimination with Partial Pivoting

Example: When Partial Pivoting Fails
The linear system

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

is the same as that in the two previous examples except that all the
entries in the first equation have been multiplied by 104.

The partial pivoting procedure described in the algorithm with 4-digit
arithmetic leads to the same incorrect results as obtained in the first
example (Gaussian elimination without pivoting).
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E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

Apply Partial Pivoting
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E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

Apply Partial Pivoting
The maximal value in the first column is 30.00, and the multiplier

m21 =
5.291
30.00

= 0.1764
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E2 : 5.291x1 − 6.130x2 = 46.78

Apply Partial Pivoting
The maximal value in the first column is 30.00, and the multiplier

m21 =
5.291
30.00

= 0.1764

leads to the system
30.00x1 + 591400x2 ≈ 591700

−104300x2 ≈ −104400
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Gaussian Elimination with Partial Pivoting

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

Apply Partial Pivoting
The maximal value in the first column is 30.00, and the multiplier

m21 =
5.291
30.00

= 0.1764

leads to the system
30.00x1 + 591400x2 ≈ 591700

−104300x2 ≈ −104400

which has the same inaccurate solutions as in the first example:
x2 ≈ 1.001 and x1 ≈ −10.00.
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1 Why Pivoting May be Necessary

2 Gaussian Elimination with Partial Pivoting

3 Gaussian Elimination with Scaled Partial (Scaled-Column) Pivoting
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Scaled Partial Pivoting
Scaled partial pivoting places the element in the pivot position that
is largest relative to the entries in its row.
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Gaussian Elimination with Scaled Partial Pivoting

Scaled Partial Pivoting
Scaled partial pivoting places the element in the pivot position that
is largest relative to the entries in its row.

The first step in this procedure is to define a scale factor si for
each row as

si = max
1≤j≤n

∣

∣aij
∣

∣
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Gaussian Elimination with Scaled Partial Pivoting

Scaled Partial Pivoting
Scaled partial pivoting places the element in the pivot position that
is largest relative to the entries in its row.

The first step in this procedure is to define a scale factor si for
each row as

si = max
1≤j≤n

∣

∣aij
∣

∣

If we have si = 0 for some i , then the system has no unique
solution since all entries in the i th row are 0.
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Scaled Partial Pivoting (Cont’d)
Assuming that this is not the case, the appropriate row
interchange to place zeros in the first column is determined by
choosing the least integer p with

|ap1|

sp
= max

1≤k≤n

|ak1|

sk

and performing (E1) ↔ (Ep).
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Scaled Partial Pivoting (Cont’d)
Assuming that this is not the case, the appropriate row
interchange to place zeros in the first column is determined by
choosing the least integer p with

|ap1|

sp
= max

1≤k≤n

|ak1|

sk

and performing (E1) ↔ (Ep).

The effect of scaling is to ensure that the largest element in each
row has a relative magnitude of 1 before the comparison for row
interchange is performed.
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Gaussian Elimination with Scaled Partial Pivoting

Scaled Partial Pivoting (Cont’d)
In a similar manner, before eliminating the variable xi using the
operations

Ek − mkiEi , for k = i + 1, . . . , n,

we select the smallest integer p ≥ i with

|api |

sp
= max

i≤k≤n

|aki |

sk

and perform the row interchange (Ei) ↔ (Ep) if i 6= p.
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In a similar manner, before eliminating the variable xi using the
operations

Ek − mkiEi , for k = i + 1, . . . , n,

we select the smallest integer p ≥ i with

|api |

sp
= max

i≤k≤n

|aki |

sk

and perform the row interchange (Ei) ↔ (Ep) if i 6= p.

The scale factors s1, . . . , sn are computed only once, at the start
of the procedure.
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Scaled Partial Pivoting (Cont’d)
In a similar manner, before eliminating the variable xi using the
operations

Ek − mkiEi , for k = i + 1, . . . , n,

we select the smallest integer p ≥ i with

|api |

sp
= max

i≤k≤n

|aki |

sk

and perform the row interchange (Ei) ↔ (Ep) if i 6= p.

The scale factors s1, . . . , sn are computed only once, at the start
of the procedure.

They are row dependent, so they must also be interchanged when
row interchanges are performed.
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Gaussian Elimination with Scaled Partial Pivoting

Example
Returning to the previous ewxample, we will appl scaled partial
pivoting for the linear system:

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78
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Gaussian Elimination with Scaled Partial Pivoting

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

Solution (1/2)
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E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

Solution (1/2)
We compute

s1 = max{|30.00|, |591400|} = 591400

and s2 = max{|5.291|, |−6.130|} = 6.130
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Gaussian Elimination with Scaled Partial Pivoting

E1 : 30.00x1 + 591400x2 = 591700

E2 : 5.291x1 − 6.130x2 = 46.78

Solution (1/2)
We compute

s1 = max{|30.00|, |591400|} = 591400

and s2 = max{|5.291|, |−6.130|} = 6.130

so that

|a11|

s1
=

30.00
591400

= 0.5073 × 10−4,
|a21|

s2
=

5.291
6.130

= 0.8631,

and the interchange (E1) ↔ (E2) is made.
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Gaussian Elimination with Scaled Partial Pivoting

Solution (2/2)
Applying Gaussian elimination to the new system

5.291x1 − 6.130x2 = 46.78

30.00x1 + 591400x2 = 591700

produces the correct results: x1 = 10.00 and x2 = 1.000.
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Gaussian Elimination/Scaled Partial Pivoting Algorithm

The only steps in this algorithm that differ from those of the Gaussian
Elimination with Scaled Partial Pivoting Algorithm are:
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Gaussian Elimination/Scaled Partial Pivoting Algorithm

The only steps in this algorithm that differ from those of the Gaussian
Elimination with Scaled Partial Pivoting Algorithm are:

Step 1 For i = 1, . . . , n set si = max1≤j≤n |aij |
if si = 0 then OUTPUT (‘no unique solution exists’)

STOP
else set NROW(i) = i
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if si = 0 then OUTPUT (‘no unique solution exists’)
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Step 2 For i = 1, . . . , n − 1 do Steps 3–6 (Elimination process)
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Gaussian Elimination/Scaled Partial Pivoting Algorithm

The only steps in this algorithm that differ from those of the Gaussian
Elimination with Scaled Partial Pivoting Algorithm are:

Step 1 For i = 1, . . . , n set si = max1≤j≤n |aij |
if si = 0 then OUTPUT (‘no unique solution exists’)

STOP
else set NROW(i) = i

Step 2 For i = 1, . . . , n − 1 do Steps 3–6 (Elimination process)

Step 3 Let p be the smallest integer with i ≤ p ≤ n and

|a(NROW(p), i)|
s(NROW(p))

= max
i≤j≤n

|a(NROW(j), i)|
s(NROW(j))
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