# Direct Methods for Solving Linear Systems

# **Matrix Factorization**

Numerical Analysis (9th Edition) R L Burden & J D Faires

> Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

<ロ> (四) (四) (三) (三) (三)

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Outline   |                 |         |           |                      |

## Computation Cost Rationale & Basic Solution Strategy

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

## Computation Cost Rationale & Basic Solution Strategy

## 2 Constructing the Matrix Factorization

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- 3 Example: LU Factorization of a  $4 \times 4$  Matrix

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- 3 Example: LU Factorization of a  $4 \times 4$  Matrix
- 4 The LU Factorization Algorithm

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- Example: LU Factorization of a  $4 \times 4$  Matrix
- 4 The LU Factorization Algorithm
- 5 Permutation Matrices for Row Interchanges

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- 3 Example: LU Factorization of a 4 × 4 Matrix
- 4 The LU Factorization Algorithm
- 5 Permutation Matrices for Row Interchanges

3 →

Algorithm

Permutation Matrices

# **Matrix Factorization**

#### Background

Numerical Analysis (Chapter 6)

2

< ロ > < 回 > < 回 > < 回 > < 回</p>

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## Background

 Gaussian elimination is the principal tool in the direct solution of linear systems of equations.

< 17 ▶

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## Background

- Gaussian elimination is the principal tool in the direct solution of linear systems of equations.
- We will now see that the steps used to solve a system of the form
  Ax = b can be used to factor a matrix.

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## Background

- Gaussian elimination is the principal tool in the direct solution of linear systems of equations.
- We will now see that the steps used to solve a system of the form
  Ax = b can be used to factor a matrix.
- The factorization is particularly useful when it has the form A = LU, where L is lower triangular and U is upper triangular.

→ B → < B</p>

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## Background

- Gaussian elimination is the principal tool in the direct solution of linear systems of equations.
- We will now see that the steps used to solve a system of the form
  Ax = b can be used to factor a matrix.
- The factorization is particularly useful when it has the form A = LU, where L is lower triangular and U is upper triangular.
- Although not all matrices have this type of representation, many do that occur frequently in the application of numerical techniques.

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## **Computational Cost Considerations**

• Gaussian elimination applied to an arbitrary linear system  $A\mathbf{x} = \mathbf{b}$  requires  $O(n^3/3)$  arithmetic operations to determine **x**.

< 回 ト < 三 ト < 三

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## **Computational Cost Considerations**

- Gaussian elimination applied to an arbitrary linear system  $A\mathbf{x} = \mathbf{b}$  requires  $O(n^3/3)$  arithmetic operations to determine **x**.
- However, to solve a linear system that involves an upper-triangular system requires only backward substitution, which takes  $O(n^2)$  operations.

→ B → < B</p>

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## **Computational Cost Considerations**

- Gaussian elimination applied to an arbitrary linear system  $A\mathbf{x} = \mathbf{b}$  requires  $O(n^3/3)$  arithmetic operations to determine **x**.
- However, to solve a linear system that involves an upper-triangular system requires only backward substitution, which takes  $O(n^2)$  operations.
- The number of operations required to solve a lower-triangular systems is similar.

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix Fa | ctorization     |         |           |                      |

#### Solution Strategy

Suppose that A has been factored into the triangular form A = LU, where L is lower triangular and U is upper triangular.

(4) E > (4) E >

## Solution Strategy

Suppose that *A* has been factored into the triangular form A = LU, where *L* is lower triangular and *U* is upper triangular. Then we can solve for **x** more easily by using a two-step process:

< ロ > < 同 > < 回 > < 回 >

## Solution Strategy

Suppose that A has been factored into the triangular form A = LU, where L is lower triangular and U is upper triangular. Then we can solve for **x** more easily by using a two-step process:

• First we let  $\mathbf{y} = U\mathbf{x}$  and solve the lower triangular system  $L\mathbf{y} = \mathbf{b}$ for y. Since L is triangular, determining y from this equation requires only  $O(n^2)$  operations.

< ロ > < 同 > < 三 > < 三 >

Algorithm

# **Matrix Factorization**

## Solution Strategy

Suppose that *A* has been factored into the triangular form A = LU, where *L* is lower triangular and *U* is upper triangular. Then we can solve for **x** more easily by using a two-step process:

- First we let  $\mathbf{y} = U\mathbf{x}$  and solve the lower triangular system  $L\mathbf{y} = \mathbf{b}$  for  $\mathbf{y}$ . Since *L* is triangular, determining  $\mathbf{y}$  from this equation requires only  $O(n^2)$  operations.
- Once y is known, the upper triangular system Ux = y requires only an additional O(n<sup>2</sup>) operations to determine the solution x.

Algorithm

# **Matrix Factorization**

## Solution Strategy

Suppose that *A* has been factored into the triangular form A = LU, where *L* is lower triangular and *U* is upper triangular. Then we can solve for **x** more easily by using a two-step process:

- First we let  $\mathbf{y} = U\mathbf{x}$  and solve the lower triangular system  $L\mathbf{y} = \mathbf{b}$  for  $\mathbf{y}$ . Since *L* is triangular, determining  $\mathbf{y}$  from this equation requires only  $O(n^2)$  operations.
- Once y is known, the upper triangular system Ux = y requires only an additional O(n<sup>2</sup>) operations to determine the solution x.

Solving a linear system  $A\mathbf{x} = \mathbf{b}$  in factored form means that the number of operations needed to solve the system  $A\mathbf{x} = \mathbf{b}$  is reduced from  $O(n^3/3)$  to  $O(2n^2)$ .

э

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- 3 Example: *LU* Factorization of a 4 × 4 Matrix
- 4 The LU Factorization Algorithm
- 5 Permutation Matrices for Row Interchanges

(3)

4 A N

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Matrix    | Factorization   |         |           |                      |

## Constructing L & U

First, suppose that Gaussian elimination can be performed on the system Ax = b without row interchanges.

## Constructing L & U

- First, suppose that Gaussian elimination can be performed on the system Ax = b without row interchanges.
- With the notation used earlier, this is equivalent to having nonzero pivot elements a<sup>(i)</sup><sub>ii</sub>, for each i = 1, 2, ..., n.

イロン イボン イヨン イヨン

# \_\_\_\_\_

## Constructing L & U

- First, suppose that Gaussian elimination can be performed on the system Ax = b without row interchanges.
- With the notation used earlier, this is equivalent to having nonzero pivot elements a<sup>(i)</sup><sub>ii</sub>, for each i = 1, 2, ..., n.
- The first step in the Gaussian elimination process consists of performing, for each *j* = 2, 3, ..., *n*, the operations

$$(E_j - m_{j,1}E_1) o (E_j), \quad ext{where} \quad m_{j,1} = rac{a_{j1}^{(1)}}{a_{11}^{(1)}}$$

イロン イボン イヨン イヨン

## Constructing L & U

- First, suppose that Gaussian elimination can be performed on the system Ax = b without row interchanges.
- With the notation used earlier, this is equivalent to having nonzero pivot elements a<sup>(i)</sup><sub>ii</sub>, for each i = 1, 2, ..., n.
- The first step in the Gaussian elimination process consists of performing, for each *j* = 2, 3, ..., *n*, the operations

$$(E_j - m_{j,1}E_1) o (E_j), \quad ext{where} \quad m_{j,1} = rac{a_{j1}^{(1)}}{a_{11}^{(1)}}$$

• These operations transform the system into one in which all the entries in the first column below the diagonal are zero.

< ロ > < 同 > < 回 > < 回 > < 回 >

| Rationale Constructing LU Example Algorithm Permutation I |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

# Matrix Factorization: Constructing L & U (Cont'd)

The system of operations in

$$(E_j - m_{j,1}E_1) o (E_j),$$
 where  $m_{j,1} = rac{a_{j1}^{(1)}}{a_{11}^{(1)}}$ 

can be viewed in another way.

rices

| Rationale Constructing LU Example Algorithm Permutation Matr |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

# Matrix Factorization: Constructing L & U (Cont'd)

The system of operations in

$$(E_j - m_{j,1}E_1) \to (E_j), \text{ where } m_{j,1} = \frac{a_{j1}^{(1)}}{a_{11}^{(1)}}$$

can be viewed in another way. It is simultaneously accomplished by multiplying the original matrix *A* on the left by the matrix

$$M^{(1)} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -m_{21} & 1 & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -m_{n1} & 0 & \cdots & 0 & 1 \end{bmatrix}$$

| Rationale Constructing LU Example Algorithm Permutation Matr |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

# Matrix Factorization: Constructing L & U (Cont'd)

The system of operations in

$$(E_j - m_{j,1}E_1) \to (E_j), \text{ where } m_{j,1} = rac{a_{j1}^{(1)}}{a_{11}^{(1)}}$$

can be viewed in another way. It is simultaneously accomplished by multiplying the original matrix *A* on the left by the matrix

$$M^{(1)} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -m_{21} & 1 & \ddots & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -m_{n1} & 0 & \cdots & 0 & 1 \end{bmatrix}$$

This is called the first Gaussian transformation matrix.

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Matrix    | Factorization   |         |           |                      |

We denote the product of this matrix with A<sup>(1)</sup> = A by A<sup>(2)</sup> and with b by b<sup>(2)</sup>,

→ ∃ →

- T

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix I  | actorization    |         |           |                      |

We denote the product of this matrix with A<sup>(1)</sup> = A by A<sup>(2)</sup> and with b by b<sup>(2)</sup>, so

$$\mathcal{A}^{(2)}\mathbf{x} = \mathcal{M}^{(1)}\mathcal{A}\mathbf{x} = \mathcal{M}^{(1)}\mathbf{b} = \mathbf{b}^{(2)}$$

- T

★ ∃ ► ★

We denote the product of this matrix with A<sup>(1)</sup> = A by A<sup>(2)</sup> and with b by b<sup>(2)</sup>, so

$$A^{(2)}\mathbf{x} = M^{(1)}A\mathbf{x} = M^{(1)}\mathbf{b} = \mathbf{b}^{(2)}$$

• In a similar manner we construct  $M^{(2)}$ , the identity matrix with the entries below the diagonal in the second column replaced by the negatives of the multipliers

$$m_{j,2} = rac{a_{j2}^{(2)}}{a_{22}^{(2)}}.$$

( ) < ) < )</p>

## Matrix Factorization

## Constructing L & U (Cont'd)

 The product of M<sup>(2)</sup> with A<sup>(2)</sup> has zeros below the diagonal in the first two columns,

(1)

4 A N

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

## Constructing *L* & *U* (Cont'd)

• The product of  $M^{(2)}$  with  $A^{(2)}$  has zeros below the diagonal in the first two columns, and we let

$$A^{(3)}\mathbf{x} = M^{(2)}A^{(2)}\mathbf{x} = M^{(2)}M^{(1)}A\mathbf{x} = M^{(2)}M^{(1)}\mathbf{b} = \mathbf{b}^{(3)}$$

Numerical Analysis (Chapter 6)

A (1) > A (1) > A

| Rationale            | Constructing LU | Example | Algorithm | Permutation Matrices |
|----------------------|-----------------|---------|-----------|----------------------|
|                      |                 |         |           |                      |
|                      |                 |         |           |                      |
| Matrix Eactorization |                 |         |           |                      |
| main                 |                 |         |           |                      |

In general, with  $A^{(k)}\mathbf{x} = \mathbf{b}^{(k)}$  already formed,

э

イロン イロン イヨン イヨン

| Rationale            | Constructing LU | Example | Algorithm | Permutation Matrices |
|----------------------|-----------------|---------|-----------|----------------------|
|                      |                 |         |           |                      |
| Matrix Factorization |                 |         |           |                      |

In general, with  $A^{(k)}\mathbf{x} = \mathbf{b}^{(k)}$  already formed, multiply by the *k*th Gaussian transformation matrix



Numerical Analysis (Chapter 6)

э

イロト イヨト イヨト イヨト

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix F  | actorization    |         |           |                      |

to obtain

$$A^{(k+1)}\mathbf{x} = M^{(k)}A^{(k)}\mathbf{x}$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト
| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix F  | actorization    |         |           |                      |

to obtain

$$A^{(k+1)}\mathbf{x} = M^{(k)}A^{(k)}\mathbf{x}$$

 $= M^{(k)} \cdots M^{(1)} A \mathbf{x}$ 

Э.

イロン イロン イヨン イヨン

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix F  | Factorization   |         |           |                      |

to obtain

$$A^{(k+1)}\mathbf{x} = M^{(k)}A^{(k)}\mathbf{x}$$

$$= M^{(k)} \cdots M^{(1)} A \mathbf{x}$$

$$= M^{(k)}\mathbf{b}^{(k)}$$

Numerical Analysis (Chapter 6)

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix I  | Factorization   |         |           |                      |

to obtain

$$A^{(k+1)}\mathbf{x} = M^{(k)}A^{(k)}\mathbf{x}$$

$$= M^{(k)} \cdots M^{(1)} A \mathbf{x}$$

$$= M^{(k)}\mathbf{b}^{(k)}$$

$$= \mathbf{b}^{(k+1)}$$

Numerical Analysis (Chapter 6)

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix F  | actorization    |         |           |                      |

to obtain

$$\mathbf{A}^{(k+1)}\mathbf{x} = \mathbf{M}^{(k)}\mathbf{A}^{(k)}\mathbf{x}$$

$$= M^{(k)} \cdots M^{(1)} A \mathbf{x}$$

$$= M^{(k)}\mathbf{b}^{(k)}$$

 $= \mathbf{b}^{(k+1)}$ 

$$= M^{(k)} \cdots M^{(1)} \mathbf{b}$$

Numerical Analysis (Chapter 6)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Matrix    | Factorization   |         |           |                      |

The process ends with the formation of  $A^{(n)}\mathbf{x} = \mathbf{b}^{(n)}$ , where  $A^{(n)}$  is the upper triangular matrix

$${\sf A}^{(n)} = egin{bmatrix} {\sf a}_{11}^{(1)} & {\sf a}_{12}^{(1)} & \cdots & \cdots & {\sf a}_{1n}^{(1)} \\ 0 & {\sf a}_{22}^{(2)} & \ddots & \ddots & \vdots \\ dots & \ddots & \ddots & \ddots & dots \\ dots & \ddots & \ddots & \ddots & dots \\ dots & & \ddots & \ddots & {\sf a}_{n-1,n}^{(n-1)} \\ 0 & \cdots & \cdots & 0 & {\sf a}_{n,n}^{(n)} \end{pmatrix}$$

э

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix I  | Factorization   |         |           |                      |

The process ends with the formation of  $A^{(n)}\mathbf{x} = \mathbf{b}^{(n)}$ , where  $A^{(n)}$  is the upper triangular matrix

$$\mathcal{A}^{(n)} = egin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \cdots & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & a_{n-1,n}^{(n-1)} \\ 0 & \cdots & \cdots & 0 & a_{n,n}^{(n)} \end{pmatrix}$$

given by

$$A^{(n)} = M^{(n-1)}M^{(n-2)}\cdots M^{(1)}A$$

э

イロト イヨト イヨト イヨト

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Matrix F  | actorization    |         |           |                      |

• This process forms the  $U = A^{(n)}$  portion of the matrix factorization A = LU.

→ Ξ →

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix    | Factorization   |         |           |                      |

- This process forms the  $U = A^{(n)}$  portion of the matrix factorization A = LU.
- To determine the complementary lower triangular matrix L,

- ₹ ⊒ →

- This process forms the  $U = A^{(n)}$  portion of the matrix factorization A = LU.
- To determine the complementary lower triangular matrix *L*, first recall the multiplication of  $A^{(k)}\mathbf{x} = \mathbf{b}^{(k)}$  by the Gaussian transformation of  $M^{(k)}$  used to obtain:

$$A^{(k+1)}\mathbf{x} = M^{(k)}A^{(k)}\mathbf{x} = M^{(k)}\mathbf{b}^{(k)} = \mathbf{b}^{(k+1)}$$

- This process forms the  $U = A^{(n)}$  portion of the matrix factorization A = LU.
- To determine the complementary lower triangular matrix *L*, first recall the multiplication of  $A^{(k)}\mathbf{x} = \mathbf{b}^{(k)}$  by the Gaussian transformation of  $M^{(k)}$  used to obtain:

$$\mathcal{A}^{(k+1)}\mathbf{x} = \mathcal{M}^{(k)}\mathcal{A}^{(k)}\mathbf{x} = \mathcal{M}^{(k)}\mathbf{b}^{(k)} = \mathbf{b}^{(k+1)},$$

where  $M^{(k)}$  generates the row operations

$$(E_j - m_{j,k}E_k) \rightarrow (E_j), \text{ for } j = k + 1, \dots, n.$$

< ロ > < 同 > < 三 > < 三 >

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Matrix I  | actorization    |         |           |                      |

To reverse the effects of this transformation and return to  $A^{(k)}$  requires that the operations  $(E_j + m_{j,k}E_k) \rightarrow (E_j)$  be performed for each i = k + 1, ..., n.

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Matrix    | Factorization   |         |           |                      |

To reverse the effects of this transformation and return to  $A^{(k)}$  requires that the operations  $(E_i + m_{i,k}E_k) \rightarrow (E_i)$  be performed for each j = k + 1, ..., n. This is equivalent to multiplying by  $[M^{(k)}]^{-1}$ .



Numerical Analysis (Chapter 6)

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix    | Factorization   |         |           |                      |

The lower-triangular matrix *L* in the factorization of *A*, then, is the product of the matrices  $L^{(k)}$ :

$$L = L^{(1)}L^{(2)}\cdots L^{(n-1)} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_{21} & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ m_{n1} & \cdots & \cdots & m_{n,n-1} & 1 \end{bmatrix}$$

4 A N

The lower-triangular matrix *L* in the factorization of *A*, then, is the product of the matrices  $L^{(k)}$ :

$$L = L^{(1)}L^{(2)}\cdots L^{(n-1)} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_{21} & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ m_{n1} & \cdots & \cdots & m_{n,n-1} & 1 \end{bmatrix}$$

since the product of *L* with the upper-triangular matrix  $U = M^{(n-1)} \cdots M^{(2)} M^{(1)} A$  gives

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix    | Factorization   |         |           |                      |

$$LU = L^{(1)}L^{(2)}\cdots L^{(n-3)}L^{(n-2)}L^{(n-1)} \cdot M^{(n-1)}M^{(n-2)}M^{(n-3)}\cdots M^{(2)}M^{(1)}A$$

2

・ロト ・ 同ト ・ ヨト ・ ヨト

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix I  | actorization    |         |           |                      |

$$LU = L^{(1)}L^{(2)}\cdots L^{(n-3)}L^{(n-2)}L^{(n-1)} \\ \cdot M^{(n-1)}M^{(n-2)}M^{(n-3)}\cdots M^{(2)}M^{(1)}A$$

$$= [M^{(1)}]^{-1}[M^{(2)}]^{-1}\cdots [M^{(n-2)}]^{-1}[M^{(n-1)}]^{-1} \\ \cdot M^{(n-1)}M^{(n-2)}\cdots M^{(2)}M^{(1)}A$$

2

イロト イポト イヨト イヨト

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix F  | actorization    |         |           |                      |

$$LU = L^{(1)}L^{(2)}\cdots L^{(n-3)}L^{(n-2)}L^{(n-1)} \\ \cdot M^{(n-1)}M^{(n-2)}M^{(n-3)}\cdots M^{(2)}M^{(1)}A$$

$$= [M^{(1)}]^{-1}[M^{(2)}]^{-1}\cdots [M^{(n-2)}]^{-1}[M^{(n-1)}]^{-1} \\ \cdot M^{(n-1)}M^{(n-2)}\cdots M^{(2)}M^{(1)}A$$

= A

2

イロン イロン イヨン イヨン

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Matrix    | Factorization   |         |           |                      |

$$LU = L^{(1)}L^{(2)}\cdots L^{(n-3)}L^{(n-2)}L^{(n-1)} \\ \cdot M^{(n-1)}M^{(n-2)}M^{(n-3)}\cdots M^{(2)}M^{(1)}A$$

$$= [M^{(1)}]^{-1}[M^{(2)}]^{-1}\cdots [M^{(n-2)}]^{-1}[M^{(n-1)}]^{-1} \\ \cdot M^{(n-1)}M^{(n-2)}\cdots M^{(2)}M^{(1)}A$$

= A

#### We now state a theorem which follows from these observations.

э

・ロト ・ 同ト ・ ヨト ・ ヨト

| Rationale   | Constructing LU | Example | Algorithm | Permutation Matrices |
|-------------|-----------------|---------|-----------|----------------------|
|             |                 |         |           |                      |
|             |                 |         |           |                      |
| Matrix Fac  | ctorization     |         |           |                      |
| matrix i ut |                 |         |           |                      |

#### Theorem

If Gaussian elimination can be performed on the linear system  $A\mathbf{x} = \mathbf{b}$  without row interchanges,

< A

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
|           |                 |         |           |                      |
| Matrix    | Factorization   |         |           |                      |

#### Theorem

If Gaussian elimination can be performed on the linear system  $A\mathbf{x} = \mathbf{b}$  without row interchanges, then the matrix A can be factored into the product of a lower-triangular matrix L and an upper-triangular matrix U,

4 A N

#### Theorem

If Gaussian elimination can be performed on the linear system  $A\mathbf{x} = \mathbf{b}$  without row interchanges, then the matrix A can be factored into the product of a lower-triangular matrix L and an upper-triangular matrix U, that is, A = LU, where  $m_{ji} = a_{ji}^{(i)}/a_{ii}^{(i)}$ ,



イロン イロン イヨン イヨン

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- 3 Example: LU Factorization of a  $4 \times 4$  Matrix
- 4 The LU Factorization Algorithm
- 5 Permutation Matrices for Row Interchanges

・ 同 ト ・ ヨ ト ・ ヨ

|                                                                                                                       |                                                                                      | Example                   | Algonann                                                          | 1 emiliation matrices |  |  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------|-----------------------|--|--|
| Matrix Factorization                                                                                                  |                                                                                      |                           |                                                                   |                       |  |  |
| Example                                                                                                               |                                                                                      |                           |                                                                   |                       |  |  |
| (a) Determine the <i>LU</i> factorization for matrix <i>A</i> in the linear system $A\mathbf{x} = \mathbf{b}$ , where |                                                                                      |                           |                                                                   |                       |  |  |
| A =                                                                                                                   | $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix}$ | ) 3<br>  1<br>  2<br>3 –1 | $d  \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ -3 \\ 4 \end{bmatrix}$ |                       |  |  |

| Rationale                                                                                                             | Constructing LO | Example                                                 | Aigontainn | r ennutation matrices |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------|------------|-----------------------|--|
| Matrix Fa                                                                                                             | actorization    | า                                                       |            |                       |  |
| Example                                                                                                               |                 |                                                         |            |                       |  |
| (a) Determine the <i>LU</i> factorization for matrix <i>A</i> in the linear system $A\mathbf{x} = \mathbf{b}$ , where |                 |                                                         |            |                       |  |
|                                                                                                                       |                 | $\begin{bmatrix} 1 & 0 & 3 \\ 1 & -1 & 1 \end{bmatrix}$ | [          | 1]                    |  |

 $A = \begin{vmatrix} 2 & 1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{vmatrix} \quad \text{and} \quad \mathbf{b} = \begin{vmatrix} 1 \\ -3 \\ 4 \end{vmatrix}$ 

(b) Then use the factorization to solve the system

$$x_1 + x_2 + 3x_4 = 8$$
  

$$2x_1 + x_2 - x_3 + x_4 = 7$$
  

$$3x_1 - x_2 - x_3 + 2x_4 = 14$$
  

$$-x_1 + 2x_2 + 3x_3 - x_4 = -7$$

## Matrix Factorization: $4 \times 4$ Example

## Part (a) Solution (1/2)

The original system was considered under Gaussian Elimination

Algorithm

## Matrix Factorization: $4 \times 4$ Example

## Part (a) Solution (1/2)

The original system was considered under Gaussian Elimination where we saw that the sequence of operations

$$\begin{array}{ll} (E_2 - 2E_1) \to (E_2) & (E_3 - 3E_1) \to (E_3) \\ (E_4 - (-1)E_1) \to (E_4) & (E_3 - 4E_2) \to (E_3) \\ (E_4 - (-3)E_2) \to (E_4) & \end{array}$$

Algorithm

Permutation Matrices

## Matrix Factorization: $4 \times 4$ Example

## Part (a) Solution (1/2)

The original system was considered under Gaussian Elimination where we saw that the sequence of operations

converts the system to the triangular system

$$x_1 + x_2 + 3x_4 = 4$$
  
 $-x_2 - x_3 - 5x_4 = -7$   
 $3x_3 + 13x_4 = 13$   
 $-13x_4 = -13$ 

Algorithm

**Permutation Matrices** 

## Matrix Factorization: $4 \times 4$ Example

#### Part (a) Solution (2/2)

The multipliers  $m_{ij}$  and the upper triangular matrix produce the factorization

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix}$$

э

イロン イロン イヨン イヨン

Algorithm

**Permutation Matrices** 

## Matrix Factorization: $4 \times 4$ Example

## Part (a) Solution (2/2)

The multipliers  $m_{ij}$  and the upper triangular matrix produce the factorization

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

23/46

э

Algorithm

## Matrix Factorization: $4 \times 4$ Example

## Part (a) Solution (2/2)

The multipliers  $m_{ij}$  and the upper triangular matrix produce the factorization

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix}$$
$$= LU$$

Numerical Analysis (Chapter 6)

< < >>

23/46

Algorithm

**Permutation Matrices** 

## Matrix Factorization: $4 \times 4$ Example

#### Part (b) Solution (1/3)

To solve

$$A\mathbf{x} = LU\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
$$= \begin{bmatrix} 8 \\ 7 \\ 14 \\ -7 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

< 同 > < 三 > < 三 >

Algorithm

**Permutation Matrices** 

### Matrix Factorization: $4 \times 4$ Example

#### Part (b) Solution (1/3)

To solve

$$A\mathbf{x} = LU\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
$$= \begin{bmatrix} 8 \\ 7 \\ 14 \\ -7 \end{bmatrix}$$

we first introduce the substitution  $\mathbf{y} = U\mathbf{x}$ .

Numerical Analysis (Chapter 6)

Algorithm

**Permutation Matrices** 

## Matrix Factorization: $4 \times 4$ Example

#### Part (b) Solution (1/3)

To solve

$$A\mathbf{x} = LU\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
$$= \begin{bmatrix} 8 \\ 7 \\ 14 \\ -7 \end{bmatrix}$$

we first introduce the substitution  $\mathbf{y} = U\mathbf{x}$ . Then  $\mathbf{b} = L(U\mathbf{x}) = L\mathbf{y}$ .

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 三 > < 三 >

Algorithm

**Permutation Matrices** 

### Matrix Factorization: $4 \times 4$ Example

### Part (b) Solution (2/3)

First, solve  $L\mathbf{y} = \mathbf{b}$  (where  $\mathbf{y} = U\mathbf{x}$ :

$$L\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \\ 14 \\ -7 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

.

## Matrix Factorization: $4 \times 4$ Example

## Part (b) Solution (2/3)

First, solve  $L\mathbf{y} = \mathbf{b}$  (where  $\mathbf{y} = U\mathbf{x}$ :

$$L\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 8 \\ 7 \\ 14 \\ -7 \end{bmatrix}$$

This system is solved for  $\mathbf{y}$  by a simple forward-substitution process:

$$y_1 = 8$$
  

$$2y_1 + y_2 = 7 \quad \Rightarrow \ y_2 = 7 - 2y_1 = -9$$
  

$$3y_1 + 4y_2 + y_3 = 14 \quad \Rightarrow \ y_3 = 14 - 3y_1 - 4y_2 = 26$$
  

$$-y_1 - 3y_2 + y_4 = -7 \quad \Rightarrow \ y_4 = -7 + y_1 + 3y_2 = -26$$

.

Algorithm

**Permutation Matrices** 

## Matrix Factorization: $4 \times 4$ Example

#### Part (b) Solution (3/3)

#### We then solve $U\mathbf{x} = \mathbf{y}$ for $\mathbf{x}$ , the solution of the original system;

Numerical Analysis (Chapter 6)
Algorithm

**Permutation Matrices** 

## Matrix Factorization: $4 \times 4$ Example

#### Part (b) Solution (3/3)

We then solve  $U\mathbf{x} = \mathbf{y}$  for  $\mathbf{x}$ , the solution of the original system; that is,

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 8 \\ -9 \\ 26 \\ -26 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

R L Burden & J D Faires 26 / 46

**Permutation Matrices** 

## Matrix Factorization: $4 \times 4$ Example

#### Part (b) Solution (3/3)

We then solve  $U\mathbf{x} = \mathbf{y}$  for  $\mathbf{x}$ , the solution of the original system; that is,

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 8 \\ -9 \\ 26 \\ -26 \end{bmatrix}$$

Using backward substitution we obtain  $x_4 = 2$ ,  $x_3 = 0$ ,  $x_2 = -1$ ,  $x_1 = 3$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- 3 Example: *LU* Factorization of a 4 × 4 Matrix
- 4 The LU Factorization Algorithm
- 5 Permutation Matrices for Row Interchanges

→ ∃ → < ∃</p>

< 🗇 🕨

# LU Factorization Algorithm (1/3)

To factor the  $n \times n$  matrix  $A = [a_{ij}]$  into the product of the lower-triangular matrix  $L = [l_{ij}]$  and the upper-triangular matrix  $U = [u_{ij}]$ ; that is, A = LU, where the main diagonal of either *L* or *U* consists of all ones:

A (10) > A (10) > A (10)

# LU Factorization Algorithm (1/3)

To factor the  $n \times n$  matrix  $A = [a_{ij}]$  into the product of the lower-triangular matrix  $L = [I_{ij}]$  and the upper-triangular matrix  $U = [u_{ij}]$ ; that is, A = LU, where the main diagonal of either *L* or *U* consists of all ones:

INPUT dimension *n*; the entries  $a_{ij}$ ,  $1 \le i, j \le n$  of *A*; the diagonal  $l_{11} = \cdots = l_{nn} = 1$  of *L* or the diagonal  $u_{11} = \cdots = u_{nn} = 1$  of *U*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# LU Factorization Algorithm (1/3)

To factor the  $n \times n$  matrix  $A = [a_{ij}]$  into the product of the lower-triangular matrix  $L = [I_{ij}]$  and the upper-triangular matrix  $U = [u_{ij}]$ ; that is, A = LU, where the main diagonal of either *L* or *U* consists of all ones:

INPUT dimension *n*; the entries  $a_{ij}$ ,  $1 \le i, j \le n$  of *A*; the diagonal  $l_{11} = \cdots = l_{nn} = 1$  of *L* or the diagonal  $u_{11} = \cdots = u_{nn} = 1$  of *U*.

OUTPUT the entries  $I_{ij}$ ,  $1 \le j \le i$ ,  $1 \le i \le n$  of *L* and the entries,  $u_{ij}$ ,  $i \le j \le n$ ,  $1 \le i \le n$  of *U*.

3

< ロ > < 同 > < 三 > < 三 > -

# LU Factorization Algorithm (2/3)

Step 1 Select  $l_{11}$  and  $u_{11}$  satisfying  $l_{11}u_{11} = a_{11}$ If  $l_{11}u_{11} = 0$  then OUTPUT ('Factorization impossible') STOP

Step 2 For j = 2, ..., n set  $u_{1j} = a_{1j}/l_{11}$  (First row of U)  $l_{j1} = a_{j1}/u_{11}$  (First column of L)

## LU Factorization Algorithm (2/3)

Step 1 Select  $l_{11}$  and  $u_{11}$  satisfying  $l_{11}u_{11} = a_{11}$ If  $l_{11}u_{11} = 0$  then OUTPUT ('Factorization impossible') STOP

Step 2 For j = 2, ..., n set  $u_{1j} = a_{1j}/l_{11}$  (First row of U)  $l_{j1} = a_{j1}/u_{11}$  (First column of L)

Step 3 For  $i = 2, \ldots, n-1$  do Steps 4 and 5:

# LU Factorization Algorithm (2/3)

Step 1 Select  $l_{11}$  and  $u_{11}$  satisfying  $l_{11}u_{11} = a_{11}$ If  $l_{11}u_{11} = 0$  then OUTPUT ('Factorization impossible') STOP

Step 2 For j = 2, ..., n set  $u_{1j} = a_{1j}/l_{11}$  (First row of U)  $l_{j1} = a_{j1}/u_{11}$  (First column of L)

Step 3 For i = 2, ..., n - 1 do Steps 4 and 5:

Step 4 Select  $I_{ii}$  and  $u_{ii}$  satisfying  $I_{ii}u_{ii} = a_{ii} - \sum_{k=1}^{i-1} I_{ik}u_{ki}$ If  $I_{ii}u_{ii} = 0$  then OUTPUT ('Factorization impossible') STOP

Algorithm

## LU Factorization Algorithm (2/3)

Step 1 Select  $l_{11}$  and  $u_{11}$  satisfying  $l_{11}u_{11} = a_{11}$ If  $l_{11}u_{11} = 0$  then OUTPUT ('Factorization impossible') STOP

Step 2 For j = 2, ..., n set  $u_{1j} = a_{1j}/l_{11}$  (First row of U)  $l_{j1} = a_{j1}/u_{11}$  (First column of L)

Step 3 For i = 2, ..., n - 1 do Steps 4 and 5:

Step 4 Select  $I_{ii}$  and  $u_{ii}$  satisfying  $I_{ii}u_{ii} = a_{ii} - \sum_{k=1}^{l-1} I_{ik}u_{ki}$ If  $I_{ii}u_{ii} = 0$  then OUTPUT ('Factorization impossible') STOP

Step 5 For 
$$j = i + 1, ..., n$$
  
set  $u_{ij} = \frac{1}{l_{ii}} \left[ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \right]$  (ith row of U)  
 $l_{ji} = \frac{1}{u_{ii}} \left[ a_{ji} - \sum_{k=1}^{i-1} l_{jk} u_{ki} \right]$  (ith column of L)

Numerical Analysis (Chapter 6)

## LU Factorization Algorithm (3/3)

# Step 6 Select $I_{nn}$ and $u_{nn}$ satisfying $I_{nn}u_{nn} = a_{nn} - \sum_{k=1}^{n-1} I_{nk}u_{kn}$ (Note: If $I_{nn}u_{nn} = 0$ , then A = LU but A is singular)

Numerical Analysis (Chapter 6)

# LU Factorization Algorithm (3/3)

Step 6 Select  $I_{nn}$  and  $u_{nn}$  satisfying  $I_{nn}u_{nn} = a_{nn} - \sum_{k=1}^{n-1} I_{nk}u_{kn}$ (Note: If  $I_{nn}u_{nn} = 0$ , then A = LU but A is singular) Step 7 OUTPUT ( $I_{ij}$  for j = 1, ..., i and i = 1, ..., n) OUTPUT ( $u_{ij}$  for j = i, ..., n and i = 1, ..., n) STOP

< ロ > < 同 > < 三 > < 三 >

Algorithm

## **Matrix Factorization**

### Using the *LU* Factorization to solve $A\mathbf{x} = \mathbf{b}$

Once the matrix factorization is complete,

Algorithm

# **Matrix Factorization**

## Using the *LU* Factorization to solve $A\mathbf{x} = \mathbf{b}$

# Once the matrix factorization is complete, the solution to a linear system of the form

 $A\mathbf{x} = LU\mathbf{x} = \mathbf{b}$ 

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 三 > < 三 >

# **Matrix Factorization**

## Using the *LU* Factorization to solve $A\mathbf{x} = \mathbf{b}$

Once the matrix factorization is complete, the solution to a linear system of the form

$$A\mathbf{x} = LU\mathbf{x} = \mathbf{b}$$

is found by first letting

$$\mathbf{y} = U\mathbf{x}$$

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 回 > < 回 >

# **Matrix Factorization**

## Using the *LU* Factorization to solve $A\mathbf{x} = \mathbf{b}$

Once the matrix factorization is complete, the solution to a linear system of the form

$$A\mathbf{x} = LU\mathbf{x} = \mathbf{b}$$

is found by first letting

$$\mathbf{y} = U\mathbf{x}$$

and solving

$$L\mathbf{y} = \mathbf{b}$$

for y.

| Numerical Ana | ysis ( | Cha | pter 6 | ) |
|---------------|--------|-----|--------|---|
|---------------|--------|-----|--------|---|

< ロ > < 同 > < 回 > < 回 >

Algorithm

**Permutation Matrices** 

# **Matrix Factorization**

# Using the LU Factorization (Cont'd)

• Since *L* is lower triangular, we have  $y_1 = \frac{b_1}{l_{11}}$ 

Algorithm

# **Matrix Factorization**

# Using the LU Factorization (Cont'd)

• Since *L* is lower triangular, we have  $y_1 = \frac{b_1}{l_{11}}$  and, for each i = 2, 3, ..., n,  $y_i = \frac{1}{l_{ii}} \left[ b_i - \sum_{i=1}^{i-1} l_{ij} y_j \right]$ 

Algorithm

# **Matrix Factorization**

# Using the LU Factorization (Cont'd)

- Since *L* is lower triangular, we have  $y_1 = \frac{b_1}{l_{11}}$  and, for each i = 2, 3, ..., n,  $y_i = \frac{1}{l_{ij}} \left[ b_i - \sum_{i=1}^{i-1} l_{ij} y_j \right]$
- After y is found by this forward-substitution process, the upper-triangular system Ux = y is solved for x by backward substitution using the equations

$$x_n = \frac{y_n}{u_{nn}}$$
 and  $x_i = \frac{1}{u_{ii}} \left[ y_i - \sum_{j=i+1}^n u_{ij} x_j \right]$ 

| Rationale | Constructing LU | Example | Algorithm | Permutation Matrices |
|-----------|-----------------|---------|-----------|----------------------|
| Outline   |                 |         |           |                      |

- 1 Computation Cost Rationale & Basic Solution Strategy
- 2 Constructing the Matrix Factorization
- 3 Example: LU Factorization of a 4 × 4 Matrix
- 4 The LU Factorization Algorithm
- 6 Permutation Matrices for Row Interchanges

**Permutation Matrices** 

## Matrix Factorization: Permutation Matrices

#### Limitations of the LU Factorization Algorithm

• We assumed that  $A\mathbf{x} = \mathbf{b}$  can be solved using Gaussian elimination without row interchanges.

**Permutation Matrices** 

## Matrix Factorization: Permutation Matrices

#### Limitations of the LU Factorization Algorithm

- We assumed that  $A\mathbf{x} = \mathbf{b}$  can be solved using Gaussian elimination without row interchanges.
- From a practical standpoint, this factorization is useful only when row interchanges are not required to control round-off error.

A 3 > 4 3

**Permutation Matrices** 

## Matrix Factorization: Permutation Matrices

#### Limitations of the LU Factorization Algorithm

- We assumed that  $A\mathbf{x} = \mathbf{b}$  can be solved using Gaussian elimination without row interchanges.
- From a practical standpoint, this factorization is useful only when row interchanges are not required to control round-off error.
- We will now consider the modifications that must be made when row interchanges are required.

→ ∃ → < ∃</p>

Permutation Matrices

## Matrix Factorization: Permutation Matrices

We begin with the introduction of a class of matrices that are used to rearrange, or permute, rows of a given matrix.

Permutation Matrices

## Matrix Factorization: Permutation Matrices

We begin with the introduction of a class of matrices that are used to rearrange, or permute, rows of a given matrix.

#### Permutation Matrix

An  $n \times n$  permutation matrix  $P = [p_{ij}]$  is a matrix obtained by rearranging the rows of  $I_n$ , the identity matrix. This gives a matrix with precisely one nonzero entry in each row and in each column, and each nonzero entry is a 1.

Permutation Matrices

# Matrix Factorization: Permutation Matrices

#### Example

#### The matrix

$$\mathbf{P} = \left[ \begin{array}{rrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

is a  $3 \times 3$  permutation matrix.

Numerical Analysis (Chapter 6)

э

イロン イロン イヨン イヨン

Permutation Matrices

# Matrix Factorization: Permutation Matrices

#### Example

#### The matrix

$$\mathbf{P} = \left[ \begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

is a  $3 \times 3$  permutation matrix. For any  $3 \times 3$  matrix *A*, multiplying on the left by *P* has the effect of interchanging the second and third rows of *A*:

$$PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Numerical Analysis (Chapter 6)

# Matrix Factorization: Permutation Matrices

#### Example

#### The matrix

$$\mathbf{P} = \left[ \begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

is a  $3 \times 3$  permutation matrix. For any  $3 \times 3$  matrix *A*, multiplying on the left by *P* has the effect of interchanging the second and third rows of *A*:

$$PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Numerical Analysis (Chapter 6)

э

36/46

# Matrix Factorization: Permutation Matrices

#### Example

#### The matrix

$$\mathbf{P} = \left[ \begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]$$

is a  $3 \times 3$  permutation matrix. For any  $3 \times 3$  matrix *A*, multiplying on the left by *P* has the effect of interchanging the second and third rows of *A*:

$$PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Similarly, multiplying *A* on the right by *P* interchanges the second and third columns of *A*.

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

36/46

**Permutation Matrices** 

## Matrix Factorization: Permutation Matrices

#### Two useful properties of permutation matrices (1/2)

#### Suppose $k_1, \ldots, k_n$ is a permutation of the integers $1, \ldots, n$

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 三 > < 三

**Permutation Matrices** 

## Matrix Factorization: Permutation Matrices

#### Two useful properties of permutation matrices (1/2)

Suppose  $k_1, \ldots, k_n$  is a permutation of the integers  $1, \ldots, n$  and the permutation matrix  $P = (p_{ij})$  is defined by

$$\mathcal{D}_{ij} = egin{cases} 1, & ext{if } j = k_i \ 0, & ext{otherwise} \end{cases}$$

Numerical Analysis (Chapter 6)

R L Burden & J D Faires 37 / 46

Algorithm

Permutation Matrices

## Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (2/2)

Then

• PA permutes the rows of A; that is,

$$PA = \begin{bmatrix} a_{k_11} & a_{k_12} & \cdots & a_{k_1n} \\ a_{k_21} & a_{k_22} & \cdots & a_{k_2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k_n1} & a_{k_n2} & \cdots & a_{k_nn} \end{bmatrix}$$

Permutation Matrices

# Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (2/2)

Then

• PA permutes the rows of A; that is,

$$PA = \begin{bmatrix} a_{k_11} & a_{k_12} & \cdots & a_{k_1n} \\ a_{k_21} & a_{k_22} & \cdots & a_{k_2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k_n1} & a_{k_n2} & \cdots & a_{k_nn} \end{bmatrix}$$

•  $P^{-1}$  exists and  $P^{-1} = P^t$ .

. . . . . . .

4 A N

Algorithm

**Permutation Matrices** 

## Matrix Factorization: Permutation Matrices

#### Permutation Matrices & Gaussian Elimination

Earlier, we saw that for any nonsingular matrix A, the linear system Ax = b can be solved by Gaussian elimination, with the possibility of row interchanges.

→ ∃ → < ∃</p>

# Matrix Factorization: Permutation Matrices

#### Permutation Matrices & Gaussian Elimination

- Earlier, we saw that for any nonsingular matrix A, the linear system Ax = b can be solved by Gaussian elimination, with the possibility of row interchanges.
- If we knew the row interchanges that were required to solve the system by Gaussian elimination, we could arrange the original equations in an order that would ensure that no row interchanges are needed.

< 同 ト < 三 ト < 三 ト

Permutation Matrices

## Matrix Factorization: Permutation Matrices

#### Permutation Matrices & Gaussian Elimination

- Earlier, we saw that for any nonsingular matrix A, the linear system Ax = b can be solved by Gaussian elimination, with the possibility of row interchanges.
- If we knew the row interchanges that were required to solve the system by Gaussian elimination, we could arrange the original equations in an order that would ensure that no row interchanges are needed.
- Hence there is a rearrangement of the equations in the system that permits Gaussian elimination to proceed *without* row interchanges.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Algorithm

Permutation Matrices

#### Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont'd)

Numerical Analysis (Chapter 6)

Matrix Factorization

R L Burden & J D Faires 40 / 46

Permutation Matrices & Gaussian Elimination (Cont'd)

 This implies that for any nonsingular matrix A, a permutation matrix P exists for which the system

 $PA\mathbf{x} = P\mathbf{b}$ 

can be solved without row interchanges.

# Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont'd)

 This implies that for any nonsingular matrix A, a permutation matrix P exists for which the system

 $PA\mathbf{x} = P\mathbf{b}$ 

can be solved without row interchanges. As a consequence, this matrix *PA* can be factored into PA = LU, where *L* is lower triangular and *U* is upper triangular.

# Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont'd)

 This implies that for any nonsingular matrix A, a permutation matrix P exists for which the system

$$PA\mathbf{x} = P\mathbf{b}$$

can be solved without row interchanges. As a consequence, this matrix *PA* can be factored into PA = LU, where *L* is lower triangular and *U* is upper triangular.

• Because  $P^{-1} = P^t$ , this produces the factorization

$$A = P^{-1}LU = (P^tL)U.$$

Numerical Analysis (Chapter 6)

Permutation Matrices & Gaussian Elimination (Cont'd)

 This implies that for any nonsingular matrix A, a permutation matrix P exists for which the system

$$PA\mathbf{x} = P\mathbf{b}$$

can be solved without row interchanges. As a consequence, this matrix *PA* can be factored into PA = LU, where *L* is lower triangular and *U* is upper triangular.

• Because  $P^{-1} = P^t$ , this produces the factorization

$$A = P^{-1}LU = (P^tL)U.$$

• The matrix U is still upper triangular, but  $P^{t}L$  is not lower triangular unless P = I.

# Matrix Factorization: Permutation Matrices

#### Example

Determine a factorization in the form  $A = (P^t L)U$  for the matrix

$$A = \begin{bmatrix} 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 2 \\ -1 & -1 & 2 & 0 \\ 1 & 2 & 0 & 2 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

< ロ > < 同 > < 三 > < 三 >

Algorithm

Permutation Matrices

#### Matrix Factorization: Permutation Matrices

#### Example

Determine a factorization in the form  $A = (P^t L)U$  for the matrix

$$\mathsf{A} = \begin{bmatrix} 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 2 \\ -1 & -1 & 2 & 0 \\ 1 & 2 & 0 & 2 \end{bmatrix}$$

#### Note

The matrix A cannot have an LU factorization because  $a_{11} = 0$ .

Numerical Analysis (Chapter 6)

Matrix Factorization

R L Burden & J D Faires 41 / 46

< ロ > < 同 > < 三 > < 三 > -

Algorithm

**Permutation Matrices** 

# Matrix Factorization: Permutation Matrices

#### Solution (1/4)

However, using the row interchange  $(E_1) \leftrightarrow (E_2)$ ,

#### Solution (1/4)

# However, using the row interchange $(E_1) \leftrightarrow (E_2)$ , followed by $(E_3 + E_1) \rightarrow (E_3)$

Algorithm

Permutation Matrices

# Matrix Factorization: Permutation Matrices

#### Solution (1/4)

However, using the row interchange  $(E_1) \leftrightarrow (E_2)$ , followed by  $(E_3 + E_1) \rightarrow (E_3)$  and  $(E_4 - E_1) \rightarrow (E_4)$ ,

Algorithm

Permutation Matrices

# Matrix Factorization: Permutation Matrices

#### Solution (1/4)

However, using the row interchange  $(E_1) \leftrightarrow (E_2)$ , followed by  $(E_3 + E_1) \rightarrow (E_3)$  and  $(E_4 - E_1) \rightarrow (E_4)$ , produces

$$\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

#### Solution (1/4)

However, using the row interchange  $(E_1) \leftrightarrow (E_2)$ , followed by  $(E_3 + E_1) \rightarrow (E_3)$  and  $(E_4 - E_1) \rightarrow (E_4)$ , produces

| [1] | 1 | -1 | 2 - |
|-----|---|----|-----|
| 0   | 0 | -1 | 1   |
| 0   | 0 | 1  | 2   |
| 0   | 1 | 1  | 0   |

Then, the row interchange  $(E_2) \leftrightarrow (E_4)$ ,

#### Solution (1/4)

However, using the row interchange  $(E_1) \leftrightarrow (E_2)$ , followed by  $(E_3 + E_1) \rightarrow (E_3)$  and  $(E_4 - E_1) \rightarrow (E_4)$ , produces

Then, the row interchange  $(E_2) \leftrightarrow (E_4)$ , followed by  $(E_4 + E_3) \rightarrow (E_4)$ ,

#### Solution (1/4)

However, using the row interchange  $(E_1) \leftrightarrow (E_2)$ , followed by  $(E_3 + E_1) \rightarrow (E_3)$  and  $(E_4 - E_1) \rightarrow (E_4)$ , produces

| 1 | 1 | -1 | 2 ] |
|---|---|----|-----|
| 0 | 0 | -1 | 1   |
| 0 | 0 | 1  | 2   |
| 0 | 1 | 1  | 0 ] |

Then, the row interchange  $(E_2) \leftrightarrow (E_4)$ , followed by  $(E_4 + E_3) \rightarrow (E_4)$ , gives the matrix

$$U= egin{array}{ccccc} 1 & 1 & -1 & 2 \ 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 3 \ \end{array}$$

# Matrix Factorization: Permutation Matrices

Solution (2/4)

The permutation matrix associated with the row interchanges

Numerical Analysis (Chapter 6)

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Algorithm

**Permutation Matrices** 

# Matrix Factorization: Permutation Matrices

#### Solution (2/4)

The permutation matrix associated with the row interchanges  $(E_1) \leftrightarrow (E_2)$  and  $(E_2) \leftrightarrow (E_4)$ 

э

Algorithm

Permutation Matrices

# Matrix Factorization: Permutation Matrices

#### Solution (2/4)

The permutation matrix associated with the row interchanges  $(E_1) \leftrightarrow (E_2)$  and  $(E_2) \leftrightarrow (E_4)$  is

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

#### Solution (2/4)

The permutation matrix associated with the row interchanges  $(E_1) \leftrightarrow (E_2)$  and  $(E_2) \leftrightarrow (E_4)$  is

$$P = \left[ \begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

and

$$PA = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & 0 & 2 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Numerical Analysis (Chapter 6)

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

# Matrix Factorization: Permutation Matrices

#### Solution (3/4)

• Gaussian elimination is performed on *PA* using the same operations as on *A*, except without the row interchanges.

#### Solution (3/4)

- Gaussian elimination is performed on *PA* using the same operations as on *A*, except without the row interchanges.
- That is,  $(E_2 E_1) \rightarrow (E_2)$ ,  $(E_3 + E_1) \rightarrow (E_3)$ , followed by  $(E_4 + E_3) \rightarrow (E_4)$ .

#### Solution (3/4)

- Gaussian elimination is performed on *PA* using the same operations as on *A*, except without the row interchanges.
- That is,  $(E_2 E_1) \rightarrow (E_2)$ ,  $(E_3 + E_1) \rightarrow (E_3)$ , followed by  $(E_4 + E_3) \rightarrow (E_4)$ .
- The nonzero multipliers for PA are consequently,

$$m_{21} = 1$$
,  $m_{31} = -1$ , and  $m_{43} = -1$ ,

and the LU factorization of PA is

$$PA = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix} = LU$$

Numerical Analysis (Chapter 6)

Algorithm

**Permutation Matrices** 

# Matrix Factorization: Permutation Matrices

# Solution (4/4)

#### Multiplying by $P^{-1} = P^t$ produces the factorization

$$A = P^{-1}(LU) = P^t(LU) = (P^tL)U$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

# Matrix Factorization: Permutation Matrices

# Solution (4/4)

Multiplying by  $P^{-1} = P^t$  produces the factorization

$$A = P^{-1}(LU) = P^t(LU) = (P^tL)U$$

イロン イロン イヨン イヨン

# **Questions?**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで