Outline

1. Residual Vectors & the Gauss-Seidel Method
Outline

1. Residual Vectors & the Gauss-Seidel Method
2. Relaxation Methods (including SOR)
Outline

1. Residual Vectors & the Gauss-Seidel Method

2. Relaxation Methods (including SOR)

3. Choosing the Optimal Value of ω
Outline

1. Residual Vectors & the Gauss-Seidel Method
2. Relaxation Methods (including SOR)
3. Choosing the Optimal Value of ω
4. The SOR Algorithm
Outline

1. Residual Vectors & the Gauss-Seidel Method
2. Relaxation Methods (including SOR)
3. Choosing the Optimal Value of ω
4. The SOR Algorithm
Motivation

- We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.
Motivation

- We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.

- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.
We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.

One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.

We start by introducing a new means of measuring the amount by which an approximation to the solution to a linear system differs from the true solution to the system.
Motivation

- We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.
- We start by introducing a new means of measuring the amount by which an approximation to the solution to a linear system differs from the true solution to the system.
- The method makes use of the vector described in the following definition.
Residual Vectors & the Gauss-Seidel Method

Definition

Suppose $\tilde{x} \in \mathbb{R}^n$ is an approximation to the solution of the linear system defined by

$$A\tilde{x} = b$$

The residual vector for \tilde{x} with respect to this system is

$$r = b - A\tilde{x}$$
Residual Vectors & the Gauss-Seidel Method

Definition

Suppose \(\tilde{x} \in \mathbb{R}^n \) is an approximation to the solution of the linear system defined by

\[
Ax = b
\]

The residual vector for \(\tilde{x} \) with respect to this system is

\[
r = b - A\tilde{x}
\]

Comments

A residual vector is associated with each calculation of an approximate component to the solution vector.
Residual Vectors & the Gauss-Seidel Method

Definition

Suppose \(\tilde{x} \in \mathbb{R}^n \) is an approximation to the solution of the linear system defined by

\[
Ax = b
\]

The **residual vector** for \(\tilde{x} \) with respect to this system is

\[
r = b - A\tilde{x}
\]

Comments

- A residual vector is associated with each calculation of an approximate component to the solution vector.

- The true objective is to generate a sequence of approximations that will cause the residual vectors to converge rapidly to zero.
Looking at the Gauss-Seidel Method

Suppose we let

$$ r_i^{(k)} = (r_{1i}^{(k)}, r_{2i}^{(k)}, \ldots, r_{ni}^{(k)})^t $$

denote the residual vector for the Gauss-Seidel method
Residual Vectors & the Gauss-Seidel Method

Looking at the Gauss-Seidel Method

Suppose we let

$$r_i^{(k)} = (r_{1i}^{(k)}, r_{2i}^{(k)}, \ldots, r_{ni}^{(k)})^t$$

denote the residual vector for the Gauss-Seidel method corresponding to the approximate solution vector $x_i^{(k)}$ defined by

$$x_i^{(k)} = (x_1^{(k)}, x_2^{(k)}, \ldots, x_{i-1}^{(k)}, x_i^{(k-1)}, \ldots, x_n^{(k-1)})^t$$
Residual Vectors & the Gauss-Seidel Method

Looking at the Gauss-Seidel Method

Suppose we let

$$r_i^{(k)} = (r_1^{(k)}, r_2^{(k)}, \ldots, r_n^{(k)})^t$$

denote the residual vector for the Gauss-Seidel method corresponding to the approximate solution vector $x_i^{(k)}$ defined by

$$x_i^{(k)} = (x_1^{(k)}, x_2^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i+1}^{(k-1)}, \ldots, x_n^{(k-1)})^t$$

The m-th component of $r_i^{(k)}$ is

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj}x_j^{(k)} - \sum_{j=i}^{n} a_{mj}x_j^{(k-1)}$$
Residual Vectors & the Gauss-Seidel Method

\[r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)} \]

Looking at the Gauss-Seidel Method (Cont’d)

Equivalently, we can write \(r_{mi}^{(k)} \) in the form:

\[r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)} - a_{mi} x_i^{(k-1)} \]

for each \(m = 1, 2, \ldots, n \).
Residual Vectors & the Gauss-Seidel Method

Residual Vector:

\[r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)} - a_{mi} x_i^{(k-1)} \]

Looking at the Gauss-Seidel Method (Cont’d)

In particular, the \(i \)th component of \(r_i^{(k)} \) is

\[r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)} \]
Residual Vectors & the Gauss-Seidel Method

\[r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj}x_j^{(k)} - \sum_{j=i+1}^{n} a_{mj}x_j^{(k-1)} - a_{mi}x_i^{(k-1)} \]

Looking at the Gauss-Seidel Method (Cont’d)

In particular, the \(i \)th component of \(r_i^{(k)} \) is

\[r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} - a_{ii}x_i^{(k-1)} \]

so

\[a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \]
Residual Vectors & the Gauss-Seidel Method

(E) \[a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \]

Looking at the Gauss-Seidel Method (Cont’d)

Recall, however, that in the Gauss-Seidel method, \(x_i^{(k)} \) is chosen to be

\[
x_i^{(k)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right]
\]
Residual Vectors & the Gauss-Seidel Method

Looking at the Gauss-Seidel Method (Cont’d)

Recall, however, that in the Gauss-Seidel method, \(x_i^{(k)}\) is chosen to be

\[
x_i^{(k)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right]
\]

so (E) can be rewritten as

\[
a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = a_{ii}x_i^{(k)}
\]
Residual Vectors & the Gauss-Seidel Method

Consequently, the Gauss-Seidel method can be characterized as choosing $x_i^{(k)}$ to satisfy

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}$$
We can derive another connection between the residual vectors and the Gauss-Seidel technique.
Residual Vectors & the Gauss-Seidel Method

A 2nd Connection with Residual Vectors

- We can derive another connection between the residual vectors and the Gauss-Seidel technique.

- Consider the residual vector $r_{i+1}^{(k)}$, associated with the vector

 $$ x_{i+1}^{(k)} = (x_1^{(k)}, \ldots, x_i^{(k)}, x_{i+1}^{(k-1)}, \ldots, x_n^{(k-1)})^t. $$

Residual Vectors & the Gauss-Seidel Method

A 2nd Connection with Residual Vectors

- We can derive another connection between the residual vectors and the Gauss-Seidel technique.

- Consider the residual vector $r_{i+1}^{(k)}$, associated with the vector $x_{i+1}^{(k)} = (x_1^{(k)}, \ldots, x_i^{(k)}, x_{i+1}^{(k-1)}, \ldots, x_n^{(k-1)})^t$.

- We have seen that the m-th component of $r_i^{(k)}$ is

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^{n} a_{mj} x_j^{(k-1)}$$
Residual Vectors & the Gauss-Seidel Method

\[r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj}x_j^{(k)} - \sum_{j=i}^{n} a_{mj}x_j^{(k-1)} \]

A 2nd Connection with Residual Vectors (Cont’d)

Therefore, the \(i \)th component of \(r_{i+1}^{(k)} \) is

\[r_{i,i+1}^{(k)} = b_i - \sum_{j=1}^{i} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \]
Residual Vectors & the Gauss-Seidel Method

\[r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^{n} a_{mj} x_j^{(k-1)} \]

A 2nd Connection with Residual Vectors (Cont’d)

Therefore, the \(i\)th component of \(r_{i+1}^{(k)}\) is

\[
r_{i,i+1}^{(k)} = b_i - \sum_{j=1}^{i} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}
\]

\[= b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k)}\]
Residual Vectors & the Gauss-Seidel Method

\[r_{i,i+1}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} - a_{ii} x_{i}^{(k)} \]

A 2nd Connection with Residual Vectors (Cont’d)

By the manner in which \(x_{i}^{(k)} \) is defined in

\[x_{i}^{(k)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right] \]

we see that \(r_{i,i+1}^{(k)} = 0. \)
Residual Vectors & the Gauss-Seidel Method

\[r_{i,i+1}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k)} \]

A 2nd Connection with Residual Vectors (Cont’d)

By the manner in which \(x_i^{(k)} \) is defined in

\[x_i^{(k)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right] \]

we see that \(r_{i,i+1}^{(k)} = 0 \). In a sense, then, the Gauss-Seidel technique is characterized by choosing each \(x_i^{(k)} \) in such a way that the \(i \)th component of \(r_{i+1}^{(k)} \) is zero.
Outline

1. Residual Vectors & the Gauss-Seidel Method
2. Relaxation Methods (including SOR)
3. Choosing the Optimal Value of ω
4. The SOR Algorithm
Reducing the Norm of the Residual Vector

Choosing $x_{i+1}^{(k)}$ so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector $r_{i+1}^{(k)}$. If we modify the Gauss-Seidel procedure, as given by

$$x_i^{(k)} = x_i^{(k-1)} + \omega r_i^{(k)}$$

then for certain choices of positive ω we can reduce the norm of the residual vector and obtain significantly faster convergence.
Choosing $x_{i+1}^{(k)}$ so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector $r_{i+1}^{(k)}$.

If we modify the Gauss-Seidel procedure, as given by

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}$$

then for certain choices of positive ω we can reduce the norm of the residual vector and obtain significantly faster convergence.
Reducing the Norm of the Residual Vector

Choosing $x_{i+1}^{(k)}$ so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector $r_{i+1}^{(k)}$.

If we modify the Gauss-Seidel procedure, as given by

$$ x_i^{(k)} = x_i^{(k-1)} + \frac{r_i^{(k)}}{a_{ii}} $$

to

$$ x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_i^{(k)}}{a_{ii}} $$
From Gauss-Seidel to Relaxation Methods

Reducing the Norm of the Residual Vector

Choosing \(x_{i+1}^{(k)} \) so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector \(r_{i+1}^{(k)} \).

If we modify the Gauss-Seidel procedure, as given by

\[
 x_i^{(k)} = x_i^{(k-1)} + \frac{r_i^{(k)}}{a_{ii}}
\]

then for certain choices of positive \(\omega \) we can reduce the norm of the residual vector and obtain significantly faster convergence.
From Gauss-Seidel to Relaxation Methods

Introducing the SOR Method

Methods involving

\[x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_i^{(k)}}{a_{ii}} \]

are called relaxation methods.
Introducing the SOR Method

Methods involving

\[
x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_i^{(k)}}{a_{ii}}
\]

are called relaxation methods. For choices of \(\omega \) with \(0 < \omega < 1 \), the procedures are called under-relaxation methods.
Introducing the SOR Method

- Methods involving

\[x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}} \]

are called relaxation methods. For choices of \(\omega \) with \(0 < \omega < 1 \), the procedures are called under-relaxation methods.

- We will be interested in choices of \(\omega \) with \(1 < \omega \), and these are called over-relaxation methods.
Introducing the SOR Method

Methods involving

\[x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_i^{(k)}}{a_{ii}} \]

are called relaxation methods. For choices of \(\omega \) with \(0 < \omega < 1 \), the procedures are called under-relaxation methods.

We will be interested in choices of \(\omega \) with \(1 < \omega \), and these are called over-relaxation methods.

They are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel technique.
From Gauss-Seidel to Relaxation Methods

Introducing the SOR Method

- Methods involving

\[x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ji}^{(k)}}{a_{ii}} \]

are called relaxation methods. For choices of \(\omega \) with \(0 < \omega < 1 \), the procedures are called under-relaxation methods.

- We will be interested in choices of \(\omega \) with \(1 < \omega \), and these are called over-relaxation methods.

- They are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel technique.

- The methods are abbreviated SOR, for Successive Over-Relaxation, and are particularly useful for solving the linear systems that occur in the numerical solution of certain partial-differential equations.
The SOR Method

A More Computationally-Efficient Formulation

Note that by using the i-th component of $r_i^{(k)}$ in the form

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)}$$
The SOR Method

A More Computationally-Efficient Formulation

Note that by using the i-th component of $\mathbf{r}^{(k)}_i$ in the form

$$r^{(k)}_{ii} = b_i - \sum_{j=1}^{i-1} a_{ij}x^{(k)}_j - \sum_{j=i+1}^{n} a_{ij}x^{(k-1)}_j - a_{ii}x^{(k-1)}_i$$

we can reformulate the SOR equation

$$x^{(k)}_i = x^{(k-1)}_i + \omega \frac{r^{(k)}_{ii}}{a_{ii}}$$

for calculation purposes.
The SOR Method

A More Computationally-Efficient Formulation

Note that by using the i-th component of $r_i^{(k)}$ in the form

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} - a_{ii}x_i^{(k-1)}$$

we can reformulate the SOR equation

$$x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}$$

for calculation purposes as

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right]$$
The SOR Method

A More Computationally-Efficient Formulation (Cont’d)

To determine the matrix form of the SOR method, we rewrite

\[x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right] \]
The SOR Method

A More Computationally-Efficient Formulation (Cont’d)

To determine the matrix form of the SOR method, we rewrite

\[x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right] \]

as

\[a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1 - \omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} + \omega b_i \]
The SOR Method

\[a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1 - \omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} + \omega b_i \]

A More Computationally-Efficient Formulation (Cont’d)

In vector form, we therefore have

\[(D - \omega L)x^{(k)} = [(1 - \omega)D + \omega U]x^{(k-1)} + \omega b \]
The SOR Method

\[a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1 - \omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} + \omega b_i \]

A More Computationally-Efficient Formulation (Cont’d)

In vector form, we therefore have

\[(D - \omega L)x^{(k)} = [(1 - \omega)D + \omega U]x^{(k-1)} + \omega b\]

from which we obtain:

The SOR Method

\[x^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]x^{(k-1)} + \omega(D - \omega L)^{-1}b\]
The SOR Method

\[x^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]x^{(k-1)} + \omega(D - \omega L)^{-1}b \]
The SOR Method

\[x^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]x^{(k-1)} + \omega(D - \omega L)^{-1}b \]

Letting

\[T_\omega = (D - \omega L)^{-1}[(1 - \omega)D + \omega U] \]
The SOR Method

\[x^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]x^{(k-1)} + \omega(D - \omega L)^{-1}b \]

Letting

\[T_\omega = (D - \omega L)^{-1}[(1 - \omega)D + \omega U] \]

and

\[c_\omega = \omega(D - \omega L)^{-1}b \]
The SOR Method

\[x^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]x^{(k-1)} + \omega(D - \omega L)^{-1}b \]

Letting

\[T_\omega = (D - \omega L)^{-1}[(1 - \omega)D + \omega U] \]

and

\[c_\omega = \omega(D - \omega L)^{-1}b \]

gives the SOR technique the form

\[x^{(k)} = T_\omega x^{(k-1)} + c_\omega \]
The SOR Method

Example

- The linear system $Ax = b$ given by

$$
4x_1 + 3x_2 = 24 \\
3x_1 + 4x_2 - x_3 = 30 \\
- x_2 + 4x_3 = -24
$$

has the solution $(3, 4, -5)^t$.

Numerical Analysis (Chapter 7)
The SOR Method

Example

- The linear system $Ax = b$ given by

\[
\begin{align*}
4x_1 + 3x_2 &= 24 \\
3x_1 + 4x_2 - x_3 &= 30 \\
- x_2 + 4x_3 &= -24
\end{align*}
\]

has the solution $(3, 4, -5)^t$.

- Compare the iterations from the Gauss-Seidel method and the SOR method with $\omega = 1.25$ using $x^{(0)} = (1, 1, 1)^t$ for both methods.
The SOR Method

Solution (1/3)

For each $k = 1, 2, \ldots$, the equations for the Gauss-Seidel method are

\[
\begin{align*}
x_1^{(k)} &= -0.75 x_1^{(k-1)} + 6.0 x_2^{(k-1)}, \\
x_2^{(k)} &= -0.75 x_1^{(k)} + 0.25 x_2^{(k-1)} + 7.5 x_3^{(k)}, \\
x_3^{(k)} &= 0.25 x_2^{(k)} - 6.0 x_3^{(k-1)} - 9.375 x_3^{(k)}.
\end{align*}
\]

and the equations for the SOR method with $\omega = 1.25$ are

\[
\begin{align*}
x_1^{(k)} &= -0.25 x_1^{(k-1)} - 0.9375 x_1^{(k-1)} + 7.5 x_2^{(k)}, \\
x_2^{(k)} &= -0.9375 x_1^{(k)} + 0.25 x_2^{(k)} + 0.3125 x_2^{(k-1)} + 9.375 x_3^{(k)}, \\
x_3^{(k)} &= 0.3125 x_2^{(k)} - 0.25 x_3^{(k)} - 7.5 x_3^{(k-1)}.
\end{align*}
\]
The SOR Method

Solution (1/3)

For each $k = 1, 2, \ldots$, the equations for the Gauss-Seidel method are

\[
\begin{align*}
 x_1^{(k)} &= -0.75x_2^{(k-1)} + 6 \\
 x_2^{(k)} &= -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5 \\
 x_3^{(k)} &= 0.25x_2^{(k)} - 6
\end{align*}
\]
The SOR Method

Solution (1/3)

For each $k = 1, 2, \ldots$, the equations for the Gauss-Seidel method are

\[
\begin{align*}
x_1^{(k)} &= -0.75x_2^{(k-1)} + 6 \\
x_2^{(k)} &= -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5 \\
x_3^{(k)} &= 0.25x_2^{(k)} - 6
\end{align*}
\]

and the equations for the SOR method with $\omega = 1.25$ are

\[
\begin{align*}
x_1^{(k)} &= -0.25x_1^{(k-1)} - 0.9375x_2^{(k-1)} + 7.5 \\
x_2^{(k)} &= -0.9375x_1^{(k)} - 0.25x_2^{(k-1)} + 0.3125x_3^{(k-1)} + 9.375 \\
x_3^{(k)} &= 0.3125x_2^{(k)} - 0.25x_3^{(k-1)} - 7.5
\end{align*}
\]
The SOR Method: Solution (2/3)

Gauss-Seidel Iterations

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1^{(k)}$</td>
<td>1</td>
<td>5.250000</td>
<td>3.140625</td>
<td>3.087890</td>
<td>3.013411</td>
<td>3.013411</td>
</tr>
<tr>
<td>$x_2^{(k)}$</td>
<td>1</td>
<td>3.812500</td>
<td>3.882812</td>
<td>3.926758</td>
<td>3.988824</td>
<td>3.988824</td>
</tr>
<tr>
<td>$x_3^{(k)}$</td>
<td>1</td>
<td>−5.046875</td>
<td>−5.029269</td>
<td>−5.018310</td>
<td>−5.002794</td>
<td>−5.002794</td>
</tr>
</tbody>
</table>
The SOR Method: Solution (2/3)

Gauss-Seidel Iterations

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1^{(k)}$</td>
<td>1</td>
<td>5.250000</td>
<td>3.1406250</td>
<td>3.0878906</td>
<td>3.0134110</td>
<td></td>
</tr>
<tr>
<td>$x_2^{(k)}$</td>
<td>1</td>
<td>3.812500</td>
<td>3.8828125</td>
<td>3.9267578</td>
<td>3.9888241</td>
<td></td>
</tr>
<tr>
<td>$x_3^{(k)}$</td>
<td>1</td>
<td>-5.046875</td>
<td>-5.0292969</td>
<td>-5.0183105</td>
<td>-5.0027940</td>
<td></td>
</tr>
</tbody>
</table>

SOR Iterations ($\omega = 1.25$)

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_1^{(k)}$</td>
<td>1</td>
<td>6.312500</td>
<td>2.6223145</td>
<td>3.1333027</td>
<td>3.0000498</td>
<td></td>
</tr>
<tr>
<td>$x_2^{(k)}$</td>
<td>1</td>
<td>3.5195313</td>
<td>3.9585266</td>
<td>4.0102646</td>
<td>4.0002586</td>
<td></td>
</tr>
<tr>
<td>$x_3^{(k)}$</td>
<td>1</td>
<td>-6.6501465</td>
<td>-4.6004238</td>
<td>-5.0966863</td>
<td>-5.0003486</td>
<td></td>
</tr>
</tbody>
</table>
The SOR Method

Solution (3/3)

For the iterates to be accurate to 7 decimal places, the Gauss-Seidel method requires 34 iterations, as opposed to 14 iterations for the SOR method with $\omega = 1.25$.

Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 24 / 36
The SOR Method

Solution (3/3)

For the iterates to be accurate to 7 decimal places,

- the Gauss-Seidel method requires 34 iterations,
For the iterates to be accurate to 7 decimal places,

- the Gauss-Seidel method requires 34 iterations,
- as opposed to 14 iterations for the SOR method with $\omega = 1.25$.
Outline

1. Residual Vectors & the Gauss-Seidel Method
2. Relaxation Methods (including SOR)
3. Choosing the Optimal Value of ω
4. The SOR Algorithm
Choosing the Optimal Value of ω

An obvious question to ask is how the appropriate value of ω is chosen when the SOR method is used?
Choosing the Optimal Value of ω

An obvious question to ask is how the appropriate value of ω is chosen when the SOR method is used?

Although no complete answer to this question is known for the general $n \times n$ linear system, the following results can be used in certain important situations.
Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{ii} \neq 0$, for each $i = 1, 2, \ldots, n$, then $\rho(T_\omega) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector x_0. The proof of this theorem can be found in Ortega, J. M., *Numerical Analysis; A Second Course*, Academic Press, New York, 1972, 201 pp.
Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{ii} \neq 0$, for each $i = 1, 2, \ldots, n$, then $\rho(T_\omega) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{ii} \neq 0$, for each $i = 1, 2, \ldots, n$, then $\rho(T_\omega) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector $x^{(0)}$.

Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{ii} \neq 0$, for each $i = 1, 2, \ldots, n$, then $\rho(T_\omega) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0 < \omega < 2$, then the SOR method converges for any choice of initial approximate vector $x^{(0)}$.

Choosing the Optimal Value of ω

Theorem

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}$$
Choosing the Optimal Value of ω

Theorem

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, and the optimal choice of ω for the SOR method is

$$
\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}
$$

With this choice of ω, we have $\rho(T_\omega) = \omega - 1$.

Choosing the Optimal Value of ω

Theorem

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$, and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}$$

With this choice of ω, we have $\rho(T_\omega) = \omega - 1$.

The SOR Method

Example

Find the optimal choice of ω for the SOR method for the matrix

$$A = \begin{bmatrix}
4 & 3 & 0 \\
3 & 4 & -1 \\
0 & -1 & 4
\end{bmatrix}$$
The SOR Method

Solution (1/3)

This matrix is clearly tridiagonal, so we can apply the result in the SOR theorem if we can also show that it is positive definite.
This matrix is clearly tridiagonal, so we can apply the result in the SOR theorem if we can also show that it is positive definite.

Because the matrix is symmetric, the theory tells us that it is positive definite if and only if all its leading principle submatrices has a positive determinant.
The SOR Method

Solution (1/3)

This matrix is clearly tridiagonal, so we can apply the result in the SOR theorem if we can also show that it is positive definite.

Because the matrix is symmetric, the theory tells us that it is positive definite if and only if all its leading principle submatrices have a positive determinant.

This is easily seen to be the case because

\[
\text{det}(A) = 24, \quad \text{det} \left(\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix} \right) = 7 \quad \text{and} \quad \text{det} ([4]) = 4
\]
The SOR Method

Solution (2/3)

We compute

$$T_j = D^{-1}(L + U)$$
The SOR Method

Solution (2/3)

We compute

\[T_j = D^{-1}(L + U) \]

\[= \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & -3 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]
The SOR Method

Solution (2/3)

We compute

\[T_j = D^{-1}(L + U) \]

\[
= \begin{bmatrix}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{bmatrix}
\begin{bmatrix}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & -0.75 & 0 \\
-0.75 & 0 & 0.25 \\
0 & 0.25 & 0
\end{bmatrix}
\]
The SOR Method

Solution (2/3)

We compute

\[
T_j = D^{-1}(L + U)
\]

\[
= \begin{bmatrix}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{bmatrix}
\begin{bmatrix}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & -0.75 & 0 \\
-0.75 & 0 & 0.25 \\
0 & 0.25 & 0
\end{bmatrix}
\]

so that

\[
T_j - \lambda I = \begin{bmatrix}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{bmatrix}
\]
The SOR Method

Solution (3/3)

Therefore

\[
\operatorname{det}(T_j - \lambda I) = \begin{vmatrix}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda \\
\end{vmatrix}
\]

Thus

\[
\rho(T_j) = \sqrt{0.625}
\]

and

\[
\omega = \frac{2}{1 + \sqrt{1 - \rho(T_j)^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24.
\]

This explains the rapid convergence obtained in the last example when using \(\omega = 1.25 \).
The SOR Method

Solution (3/3)

Therefore

\[
\det(T_j - \lambda I) = \begin{vmatrix} -\lambda & -0.75 & 0 \\ -0.75 & -\lambda & 0.25 \\ 0 & 0.25 & -\lambda \end{vmatrix} = -\lambda(\lambda^2 - 0.625)
\]
The SOR Method

Solution (3/3)

Therefore

$$\text{det}(T_j - \lambda I) = \begin{vmatrix} -\lambda & -0.75 & 0 \\ -0.75 & -\lambda & 0.25 \\ 0 & 0.25 & -\lambda \end{vmatrix} = -\lambda(\lambda^2 - 0.625)$$

Thus

$$\rho(T_j) = \sqrt{0.625}$$
The SOR Method

Solution (3/3)

Therefore

\[
\det(T_j - \lambda I) = \begin{vmatrix}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{vmatrix} = -\lambda(\lambda^2 - 0.625)
\]

Thus

\[\rho(T_j) = \sqrt{0.625}\]

and

\[\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24.\]
The SOR Method

Solution (3/3)

Therefore

\[
\det(T_j - \lambda I) = \begin{vmatrix}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda \\
\end{vmatrix} = -\lambda(\lambda^2 - 0.625)
\]

Thus

\[
\rho(T_j) = \sqrt{0.625}
\]

and

\[
\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24.
\]

This explains the rapid convergence obtained in the last example when using \(\omega = 1.25\).
Outline

1. Residual Vectors & the Gauss-Seidel Method
2. Relaxation Methods (including SOR)
3. Choosing the Optimal Value of ω
4. The SOR Algorithm
To solve

\[Ax = b \]

given the parameter \(\omega \) and an initial approximation \(x^{(0)} \):
The SOR Algorithm (1/2)

To solve

\[Ax = b \]

given the parameter \(\omega \) and an initial approximation \(x^{(0)} \):

INPUT
- the number of equations and unknowns \(n \);
- the entries \(a_{ij}, 1 \leq i, j \leq n \), of the matrix \(A \);
- the entries \(b_i, 1 \leq i \leq n \), of \(b \);
- the entries \(XO_i, 1 \leq i \leq n \), of \(XO = x^{(0)} \);
- the parameter \(\omega \); tolerance \(TOL \);
- maximum number of iterations \(N \).

OUTPUT
- the approximate solution \(x_1, \ldots, x_n \) or a message that the number of iterations was exceeded.
The SOR Algorithm (2/2)

Step 1 Set $k = 1$
Step 2 While $(k \leq N)$ do Steps 3–6:
The SOR Algorithm (2/2)

Step 1 Set \(k = 1 \)

Step 2 While \((k \leq N) \) do Steps 3–6:

Step 3 For \(i = 1, \ldots, n \)

set \(x_i = (1 - \omega)XO_i + \frac{1}{a_{ii}} \left[\omega \left(- \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}XO_j + b_i \right) \right] \)
The SOR Algorithm (2/2)

Step 1 Set \(k = 1 \)

Step 2 While \((k \leq N)\) do Steps 3–6:

Step 3 For \(i = 1, \ldots, n\)

set \(x_i = (1 - \omega)XO_i + \frac{1}{a_{ii}} \left[\omega \left(- \sum_{j=1}^{i-1} a_{ij} x_j - \sum_{j=i+1}^{n} a_{ij} XO_j + b_i \right) \right] \)

Step 4 If \(||x - XO|| < TOL||\) then OUTPUT \((x_1, \ldots, x_n)\)

STOP \((The\ \text{procedure\ was\ successful}) \)
The SOR Algorithm (2/2)

Step 1 Set \(k = 1 \)

Step 2 While \((k \leq N)\) do Steps 3–6:

Step 3 For \(i = 1, \ldots, n \)

set \(x_i = (1 - \omega)XO_i + \frac{1}{a_{ii}} \left[\omega \left(- \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}XO_j + b_i \right) \right] \)

Step 4 If \(||x - XO|| < TOL||\) then OUTPUT \((x_1, \ldots, x_n)\)

STOP \((The \ procedure \ was \ successful)\)

Step 5 Set \(k = k + 1 \)
The SOR Algorithm (2/2)

Step 1 Set $k = 1$
Step 2 While $(k \leq N)$ do Steps 3–6:

Step 3 For $i = 1, \ldots, n$

set $x_i = (1 - \omega)XO_i + \frac{1}{a_{ii}} \left[\omega \left(- \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}XO_j + b_i \right) \right]$

Step 4 If $||x - XO|| < TOL$ then OUTPUT (x_1, \ldots, x_n)

STOP (The procedure was successful)

Step 5 Set $k = k + 1$
Step 6 For $i = 1, \ldots, n$ set $XO_i = x_i$
The SOR Algorithm (2/2)

Step 1 Set $k = 1$

Step 2 While ($k \leq N$) do Steps 3–6:

Step 3 For $i = 1, \ldots, n$

set $x_i = (1 - \omega)XO_i + \frac{1}{a_{ii}} \left[\omega \left(- \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}XO_j + b_i \right) \right]$

Step 4 If $\|x - XO\| < TOL$ then OUTPUT (x_1, \ldots, x_n)

STOP (*The procedure was successful*)

Step 5 Set $k = k + 1$

Step 6 For $i = 1, \ldots, n$ set $XO_i = x_i$

Step 7 OUTPUT (*Maximum number of iterations exceeded*)

STOP (*The procedure was successful*)
Questions?