Iterative Techniques in Matrix Algebra

Relaxation Techniques for Solving Linear Systems

Numerical Analysis（9th Edition）
R L Burden \＆J D Faires

Beamer Presentation Slides
prepared by
John Carroll
Dublin City University
（C） 2011 Brooks／Cole，Cengage Learning

Outline

(1) Residual Vectors \& the Gauss-Seidel Method

Outline

(9) Residual Vectors \& the Gauss-Seidel Method
(2) Relaxation Methods (including SOR)

Outline

(9) Residual Vectors \& the Gauss-Seidel Method
(2) Relaxation Methods (including SOR)
(3) Choosing the Optimal Value of ω

Outline

(1) Residual Vectors \& the Gauss-Seidel Method
(2) Relaxation Methods (including SOR)
(3) Choosing the Optimal Value of ω
(4) The SOR Algorithm

Outline

(2) Relaxation Methods (including SOR)
(3) Choosing the Optimal Value of ω

4 The SOR Algorithm

Residual Vectors \& the Gauss-Seidel Method

Motivation

- We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.

Residual Vectors \& the Gauss-Seidel Method

Motivation

- We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.

Residual Vectors \& the Gauss-Seidel Method

Motivation

- We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.
- We start by introducing a new means of measuring the amount by which an approximation to the solution to a linear system differs from the true solution to the system.

Residual Vectors \& the Gauss-Seidel Method

Motivation

- We have seen that the rate of convergence of an iterative technique depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.
- We start by introducing a new means of measuring the amount by which an approximation to the solution to a linear system differs from the true solution to the system.
- The method makes use of the vector described in the following definition.

Residual Vectors \& the Gauss-Seidel Method

Definition

Suppose $\tilde{\mathbf{x}} \in \mathbb{R}^{n}$ is an approximation to the solution of the linear system defined by

$$
A \mathbf{x}=\mathbf{b}
$$

The residual vector for $\tilde{\mathbf{x}}$ with respect to this system is

$$
\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}
$$

Residual Vectors \& the Gauss-Seidel Method

Definition

Suppose $\tilde{\mathbf{x}} \in \mathbb{R}^{n}$ is an approximation to the solution of the linear system defined by

$$
A \mathbf{x}=\mathbf{b}
$$

The residual vector for $\tilde{\mathbf{x}}$ with respect to this system is

$$
\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}
$$

Comments

- A residual vector is associated with each calculation of an approximate component to the solution vector.

Residual Vectors \& the Gauss-Seidel Method

Definition

Suppose $\tilde{\mathbf{x}} \in \mathbb{R}^{n}$ is an approximation to the solution of the linear system defined by

$$
A \mathbf{x}=\mathbf{b}
$$

The residual vector for $\tilde{\mathbf{x}}$ with respect to this system is

$$
\mathbf{r}=\mathbf{b}-A \tilde{\mathbf{x}}
$$

Comments

- A residual vector is associated with each calculation of an approximate component to the solution vector.
- The true objective is to generate a sequence of approximations that will cause the residual vectors to converge rapidly to zero.

Residual Vectors \& the Gauss-Seidel Method

Looking at the Gauss-Seidel Method

Suppose we let

$$
\mathbf{r}_{i}^{(k)}=\left(r_{1 i}^{(k)}, r_{2 i}^{(k)}, \ldots, r_{n i}^{(k)}\right)^{t}
$$

denote the residual vector for the Gauss-Seidel method

Residual Vectors \& the Gauss-Seidel Method

Looking at the Gauss-Seidel Method

Suppose we let

$$
\mathbf{r}_{i}^{(k)}=\left(r_{1 i}^{(k)}, r_{2 i}^{(k)}, \ldots, r_{n i}^{(k)}\right)^{t}
$$

denote the residual vector for the Gauss-Seidel method corresponding to the approximate solution vector $\mathbf{x}_{i}^{(k)}$ defined by

$$
\mathbf{x}_{i}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right)^{t}
$$

Residual Vectors \& the Gauss-Seidel Method

Looking at the Gauss-Seidel Method

Suppose we let

$$
\mathbf{r}_{i}^{(k)}=\left(r_{1 i}^{(k)}, r_{2 i}^{(k)}, \ldots, r_{n i}^{(k)}\right)^{t}
$$

denote the residual vector for the Gauss-Seidel method corresponding to the approximate solution vector $\mathbf{x}_{i}^{(k)}$ defined by

$$
\mathbf{x}_{i}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right)^{t}
$$

The m-th component of $\mathbf{r}_{i}^{(k)}$ is

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i}^{n} a_{m j} x_{j}^{(k-1)}
$$

Residual Vectors \& the Gauss-Seidel Method

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i}^{n} a_{m j} x_{j}^{(k-1)}
$$

Looking at the Gauss-Seidel Method (Cont'd)

Equivalently, we can write $r_{m i}^{(k)}$ in the form:

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{m j} x_{j}^{(k-1)}-a_{m i} x_{i}^{(k-1)}
$$

for each $m=1,2, \ldots, n$.

Residual Vectors \& the Gauss-Seidel Method

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{m j} x_{j}^{(k-1)}-a_{m i} x_{i}^{(k-1)}
$$

Looking at the Gauss-Seidel Method (Cont'd)

In particular, the ith component of $\mathbf{r}_{i}^{(k)}$ is

$$
r_{i j}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i j} x_{i}^{(k-1)}
$$

Residual Vectors \& the Gauss-Seidel Method

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{m j} x_{j}^{(k-1)}-a_{m i} x_{i}^{(k-1)}
$$

Looking at the Gauss-Seidel Method (Cont'd)

In particular, the i th component of $\mathbf{r}_{i}^{(k)}$ is

$$
r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}
$$

so

$$
a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}
$$

Residual Vectors \& the Gauss-Seidel Method

$$
\text { (E) } \quad a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}
$$

Looking at the Gauss-Seidel Method (Cont'd)

Recall, however, that in the Gauss-Seidel method, $x_{i}^{(k)}$ is chosen to be

$$
x_{i}^{(k)}=\frac{1}{a_{i j}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
$$

Residual Vectors \& the Gauss-Seidel Method

$$
\text { (E) } \quad a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}
$$

Looking at the Gauss-Seidel Method (Cont'd)

Recall, however, that in the Gauss-Seidel method, $x_{i}^{(k)}$ is chosen to be

$$
x_{i}^{(k)}=\frac{1}{a_{i j}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
$$

so (E) can be rewritten as

$$
a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)}=a_{i i} x_{i}^{(k)}
$$

Residual Vectors \& the Gauss-Seidel Method

$$
a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)}=a_{i i} x_{i}^{(k)}
$$

Looking at the Gauss-Seidel Method (Cont'd)

Consequently, the Gauss-Seidel method can be characterized as choosing $x_{i}^{(k)}$ to satisfy

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}}
$$

Residual Vectors \& the Gauss-Seidel Method

A 2nd Connection with Residual Vectors

- We can derive another connection between the residual vectors and the Gauss-Seidel technique.

Residual Vectors \& the Gauss-Seidel Method

A 2nd Connection with Residual Vectors

- We can derive another connection between the residual vectors and the Gauss-Seidel technique.
- Consider the residual vector $\mathbf{r}_{i+1}^{(k)}$, associated with the vector $\mathbf{x}_{i+1}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{i}^{(k)}, x_{i+1}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right)^{t}$.

Residual Vectors \& the Gauss-Seidel Method

A 2nd Connection with Residual Vectors

- We can derive another connection between the residual vectors and the Gauss-Seidel technique.
- Consider the residual vector $\mathbf{r}_{i+1}^{(k)}$, associated with the vector $\mathbf{x}_{i+1}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{i}^{(k)}, x_{i+1}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right)^{t}$.
- We have seen that the m-th component of $\mathbf{r}_{i}^{(k)}$ is

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i}^{n} a_{m j} x_{j}^{(k-1)}
$$

Residual Vectors \& the Gauss-Seidel Method

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i}^{n} a_{m j} x_{j}^{(k-1)}
$$

A 2nd Connection with Residual Vectors (Cont'd)

Therefore, the i th component of $\mathbf{r}_{i+1}^{(k)}$ is

$$
r_{i, i+1}^{(k)}=b_{i}-\sum_{j=1}^{i} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}
$$

Residual Vectors \& the Gauss-Seidel Method

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i}^{n} a_{m j} x_{j}^{(k-1)}
$$

A 2nd Connection with Residual Vectors (Cont'd)

Therefore, the i th component of $\mathbf{r}_{i+1}^{(k)}$ is

$$
\begin{aligned}
r_{i, i+1}^{(k)} & =b_{i}-\sum_{j=1}^{i} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)} \\
& =b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k)}
\end{aligned}
$$

Residual Vectors \& the Gauss-Seidel Method

$$
r_{i, i+1}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k)}
$$

A 2nd Connection with Residual Vectors (Cont'd)

By the manner in which $x_{i}^{(k)}$ is defined in

$$
x_{i}^{(k)}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
$$

we see that $r_{i, i+1}^{(k)}=0$.

Residual Vectors \& the Gauss-Seidel Method

$$
r_{i, i+1}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k)}
$$

A 2nd Connection with Residual Vectors (Cont'd)

By the manner in which $x_{i}^{(k)}$ is defined in

$$
x_{i}^{(k)}=\frac{1}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
$$

we see that $r_{i, i+1}^{(k)}=0$. In a sense, then, the Gauss-Seidel technique is characterized by choosing each $x_{i+1}^{(k)}$ in such a way that the i th component of $\mathbf{r}_{i+1}^{(k)}$ is zero.

Outline

(1) Residual Vectors \& the Gauss-Seidel Method

(2) Relaxation Methods (including SOR)
(3) Choosing the Optimal Value of ω

4 The SOR Algorithm

From Gauss-Seidel to Relaxation Methods

Reducing the Norm of the Residual Vector

- Choosing $x_{i+1}^{(k)}$ so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector $\mathbf{r}_{i+1}^{(k)}$.

From Gauss-Seidel to Relaxation Methods

Reducing the Norm of the Residual Vector

- Choosing $x_{i+1}^{(k)}$ so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector $\mathbf{r}_{i+1}^{(k)}$.
- If we modify the Gauss-Seidel procedure, as given by

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}}
$$

From Gauss-Seidel to Relaxation Methods

Reducing the Norm of the Residual Vector

- Choosing $x_{i+1}^{(k)}$ so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector $\mathbf{r}_{i+1}^{(k)}$.
- If we modify the Gauss-Seidel procedure, as given by

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}}
$$

to

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}}
$$

From Gauss-Seidel to Relaxation Methods

Reducing the Norm of the Residual Vector

- Choosing $x_{i+1}^{(k)}$ so that one coordinate of the residual vector is zero, however, is not necessarily the most efficient way to reduce the norm of the vector $\mathbf{r}_{i+1}^{(k)}$.
- If we modify the Gauss-Seidel procedure, as given by

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}}
$$

to

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}}
$$

then for certain choices of positive ω we can reduce the norm of the residual vector and obtain significantly faster convergence.

From Gauss-Seidel to Relaxation Methods

Introducing the SOR Method

- Methods involving

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}}
$$

are called relaxation methods.

From Gauss-Seidel to Relaxation Methods

Introducing the SOR Method

- Methods involving

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}}
$$

are called relaxation methods. For choices of ω with $0<\omega<1$, the procedures are called under-relaxation methods.

From Gauss-Seidel to Relaxation Methods

Introducing the SOR Method

- Methods involving

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}}
$$

are called relaxation methods. For choices of ω with $0<\omega<1$, the procedures are called under-relaxation methods.

- We will be interested in choices of ω with $1<\omega$, and these are called over-relaxation methods.

From Gauss-Seidel to Relaxation Methods

Introducing the SOR Method

- Methods involving

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i j}^{(k)}}{a_{i i}}
$$

are called relaxation methods. For choices of ω with $0<\omega<1$, the procedures are called under-relaxation methods.

- We will be interested in choices of ω with $1<\omega$, and these are called over-relaxation methods.
- They are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel technique.

From Gauss-Seidel to Relaxation Methods

Introducing the SOR Method

- Methods involving

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i j}^{(k)}}{a_{i i}}
$$

are called relaxation methods. For choices of ω with $0<\omega<1$, the procedures are called under-relaxation methods.

- We will be interested in choices of ω with $1<\omega$, and these are called over-relaxation methods.
- They are used to accelerate the convergence for systems that are convergent by the Gauss-Seidel technique.
- The methods are abbreviated SOR, for Successive

Over-Relaxation, and are particularly useful for solving the linear systems that occur in the numerical solution of certain partial-differential equations.

The SOR Method

A More Computationally-Efficient Formulation

Note that by using the i-th component of $\mathbf{r}_{i}^{(k)}$ in the form

$$
r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}
$$

The SOR Method

A More Computationally-Efficient Formulation

Note that by using the i-th component of $\mathbf{r}_{i}^{(k)}$ in the form

$$
r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}
$$

we can reformulate the SOR equation

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}}
$$

for calculation purposes

The SOR Method

A More Computationally-Efficient Formulation

Note that by using the i-th component of $\mathbf{r}_{i}^{(k)}$ in the form

$$
r_{i j}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}
$$

we can reformulate the SOR equation

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}}
$$

for calculation purposes as

$$
x_{i}^{(k)}=(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
$$

The SOR Method

A More Computationally-Efficient Formulation (Cont'd)

To determine the matrix form of the SOR method, we rewrite

$$
x_{i}^{(k)}=(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i j}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
$$

The SOR Method

A More Computationally-Efficient Formulation (Cont'd)

To determine the matrix form of the SOR method, we rewrite

$$
x_{i}^{(k)}=(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i j}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right]
$$

as

$$
a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i}
$$

The SOR Method

$$
a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i}
$$

A More Computationally-Efficient Formulation (Cont'd)

In vector form, we therefore have

$$
(D-\omega L) \mathbf{x}^{(k)}=[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega \mathbf{b}
$$

The SOR Method

$$
a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i}
$$

A More Computationally-Efficient Formulation (Cont'd)

In vector form, we therefore have

$$
(D-\omega L) \mathbf{x}^{(k)}=[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega \mathbf{b}
$$

from which we obtain:
The SOR Method

$$
\mathbf{x}^{(k)}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega(D-\omega L)^{-1} \mathbf{b}
$$

The SOR Method

$$
\mathbf{x}^{(k)}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega(D-\omega L)^{-1} \mathbf{b}
$$

The SOR Method

$$
\mathbf{x}^{(k)}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega(D-\omega L)^{-1} \mathbf{b}
$$

Letting

$$
T_{\omega}=(D-\omega L)^{-1}[(1-\omega) D+\omega U]
$$

The SOR Method

$$
\mathbf{x}^{(k)}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega(D-\omega L)^{-1} \mathbf{b}
$$

Letting

$$
\begin{aligned}
& T_{\omega}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \\
& \mathbf{c}_{\omega}=\omega(D-\omega L)^{-1} \mathbf{b}
\end{aligned}
$$

and

The SOR Method

$$
\mathbf{x}^{(k)}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \mathbf{x}^{(k-1)}+\omega(D-\omega L)^{-1} \mathbf{b}
$$

Letting

$$
\begin{aligned}
T_{\omega} & =(D-\omega L)^{-1}[(1-\omega) D+\omega U] \\
\text { and } \quad \mathbf{c}_{\omega} & =\omega(D-\omega L)^{-1} \mathbf{b}
\end{aligned}
$$

gives the SOR technique the form

$$
\mathbf{x}^{(k)}=T_{\omega} \mathbf{x}^{(k-1)}+\mathbf{c}_{\omega}
$$

The SOR Method

Example

- The linear system $A \mathbf{x}=\mathbf{b}$ given by

$$
\begin{aligned}
4 x_{1}+3 x_{2} & =24 \\
3 x_{1}+4 x_{2}-x_{3} & =30 \\
-x_{2}+4 x_{3} & =-24
\end{aligned}
$$

has the solution $(3,4,-5)^{t}$.

The SOR Method

Example

- The linear system $A \mathbf{x}=\mathbf{b}$ given by

$$
\begin{aligned}
4 x_{1}+3 x_{2} & =24 \\
3 x_{1}+4 x_{2}-x_{3} & =30 \\
-x_{2}+4 x_{3} & =-24
\end{aligned}
$$

has the solution $(3,4,-5)^{t}$.

- Compare the iterations from the Gauss-Seidel method and the SOR method with $\omega=1.25$ using $\mathbf{x}^{(0)}=(1,1,1)^{t}$ for both methods.

The SOR Method

Solution (1/3)

The SOR Method

Solution (1/3)

For each $k=1,2, \ldots$, the equations for the Gauss-Seidel method are

$$
\begin{aligned}
& x_{1}^{(k)}=-0.75 x_{2}^{(k-1)}+6 \\
& x_{2}^{(k)}=-0.75 x_{1}^{(k)}+0.25 x_{3}^{(k-1)}+7.5 \\
& x_{3}^{(k)}=0.25 x_{2}^{(k)}-6
\end{aligned}
$$

The SOR Method

Solution (1/3)

For each $k=1,2, \ldots$, the equations for the Gauss-Seidel method are

$$
\begin{aligned}
& x_{1}^{(k)}=-0.75 x_{2}^{(k-1)}+6 \\
& x_{2}^{(k)}=-0.75 x_{1}^{(k)}+0.25 x_{3}^{(k-1)}+7.5 \\
& x_{3}^{(k)}=0.25 x_{2}^{(k)}-6
\end{aligned}
$$

and the equations for the SOR method with $\omega=1.25$ are

$$
\begin{aligned}
& x_{1}^{(k)}=-0.25 x_{1}^{(k-1)}-0.9375 x_{2}^{(k-1)}+7.5 \\
& x_{2}^{(k)}=-0.9375 x_{1}^{(k)}-0.25 x_{2}^{(k-1)}+0.3125 x_{3}^{(k-1)}+9.375 \\
& x_{3}^{(k)}=0.3125 x_{2}^{(k)}-0.25 x_{3}^{(k-1)}-7.5
\end{aligned}
$$

The SOR Method: Solution (2/3)

Gauss-Seidel Iterations

k	0	1	2	3	\cdots	7
$x_{1}^{(k)}$	1	5.250000	3.1406250	3.0878906		3.0134110
$x_{2}^{(k)}$	1	3.812500	3.8828125	3.9267578		3.9888241
$x_{3}^{(k)}$	1	-5.046875	-5.0292969	-5.0183105		-5.0027940

The SOR Method: Solution (2/3)

Gauss-Seidel Iterations

k	0	1	2	3	\cdots	7
$x_{1}^{(k)}$	1	5.250000	3.1406250	3.0878906		3.0134110
$x_{2}^{(k)}$	1	3.812500	3.8828125	3.9267578		3.9888241
$x_{3}^{(k)}$	1	-5.046875	-5.0292969	-5.0183105		-5.0027940

SOR Iterations ($\omega=1.25$)

k	0	1	2	3	\cdots
$x_{1}^{(k)}$	1	6.312500	2.6223145	3.1333027	
$x_{2}^{(k)}$	1	3.5195313	3.9585266	4.0102646	
$x_{3}^{(k)}$	1	-6.6501465	-4.6004238	-5.0966863	

The SOR Method

Solution (3/3)

The SOR Method

Solution (3/3)

For the iterates to be accurate to 7 decimal places,

- the Gauss-Seidel method requires 34 iterations,

The SOR Method

Solution (3/3)

For the iterates to be accurate to 7 decimal places,

- the Gauss-Seidel method requires 34 iterations,
- as opposed to 14 iterations for the SOR method with $\omega=1.25$.

Outline

(1) Residual Vectors \& the Gauss-Seidel Method

(2) Relaxation Methods (including SOR)
(3) Choosing the Optimal Value of ω
(4) The SOR Algorithm

Choosing the Optimal Value of ω

- An obvious question to ask is how the appropriate value of ω is chosen when the SOR method is used?

Choosing the Optimal Value of ω

- An obvious question to ask is how the appropriate value of ω is chosen when the SOR method is used?
- Although no complete answer to this question is known for the general $n \times n$ linear system, the following results can be used in certain important situations.

Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

The proof of this theorem is considered in Exercise 9, Chapter 7 of Burden R. L. \& Faires J. D., Numerical Analysis, 9th Ed., Cengage, 2011.

Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

The proof of this theorem is considered in Exercise 9, Chapter 7 of Burden R. L. \& Faires J. D., Numerical Analysis, 9th Ed., Cengage, 2011.

Theorem (Ostrowski-Reich)
If A is a positive definite matrix and $0<\omega<2$, then the SOR method converges for any choice of initial approximate vector $\mathbf{x}^{(0)}$.

Choosing the Optimal Value of ω

Theorem (Kahan)

If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

The proof of this theorem is considered in Exercise 9, Chapter 7 of Burden R. L. \& Faires J. D., Numerical Analysis, 9th Ed., Cengage, 2011.

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0<\omega<2$, then the SOR method converges for any choice of initial approximate vector $\mathbf{x}^{(0)}$.

The proof of this theorem can be found in Ortega, J. M., Numerical Analysis; A Second Course, Academic Press, New York, 1972, 201 pp.

Choosing the Optimal Value of ω

Theorem

If A is positive definite and tridiagonal, then $\rho\left(T_{g}\right)=\left[\rho\left(T_{j}\right)\right]^{2}<1$, and the optimal choice of ω for the SOR method is

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}}
$$

Choosing the Optimal Value of ω

Theorem

If A is positive definite and tridiagonal, then $\rho\left(T_{g}\right)=\left[\rho\left(T_{j}\right)\right]^{2}<1$, and the optimal choice of ω for the SOR method is

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}}
$$

With this choice of ω, we have $\rho\left(T_{\omega}\right)=\omega-1$.

Choosing the Optimal Value of ω

Theorem

If A is positive definite and tridiagonal, then $\rho\left(T_{g}\right)=\left[\rho\left(T_{j}\right)\right]^{2}<1$, and the optimal choice of ω for the SOR method is

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}}
$$

With this choice of ω, we have $\rho\left(T_{\omega}\right)=\omega-1$.

The proof of this theorem can be found in Ortega, J. M., Numerical Analysis; A Second Course, Academic Press, New York, 1972, 201 pp.

The SOR Method

Example

Find the optimal choice of ω for the SOR method for the matrix

$$
A=\left[\begin{array}{rrr}
4 & 3 & 0 \\
3 & 4 & -1 \\
0 & -1 & 4
\end{array}\right]
$$

The SOR Method

Solution (1/3)

- This matrix is clearly tridiagonal, so we can apply the result in the SOR theorem if we can also show that it is positive definite.

The SOR Method

Solution (1/3)

- This matrix is clearly tridiagonal, so we can apply the result in the SOR theorem if we can also show that it is positive definite.
- Because the matrix is symmetric, the theory tells us that it is positive definite if and only if all its leading principle submatrices has a positive determinant.

The SOR Method

Solution (1/3)

- This matrix is clearly tridiagonal, so we can apply the result in the SOR theorem if we can also show that it is positive definite.
- Because the matrix is symmetric, the theory tells us that it is positive definite if and only if all its leading principle submatrices has a positive determinant.
- This is easily seen to be the case because

$$
\operatorname{det}(A)=24, \quad \operatorname{det}\left(\left[\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right]\right)=7 \quad \text { and } \quad \operatorname{det}([4])=4
$$

The SOR Method

Solution (2/3)

We compute

$$
T_{j}=D^{-1}(L+U)
$$

The SOR Method

Solution (2/3)

We compute

$$
\begin{aligned}
T_{j} & =D^{-1}(L+U) \\
& =\left[\begin{array}{lll}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{rrr}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

The SOR Method

Solution (2/3)

We compute

$$
\begin{aligned}
T_{j} & =D^{-1}(L+U) \\
& =\left[\begin{array}{lll}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{rrr}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cll}
0 & -0.75 & 0 \\
-0.75 & 0 & 0.25 \\
0 & 0.25 & 0
\end{array}\right]
\end{aligned}
$$

The SOR Method

Solution (2/3)

We compute

$$
\begin{aligned}
T_{j} & =D^{-1}(L+U) \\
& =\left[\begin{array}{lll}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{rrr}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cll}
0 & -0.75 & 0 \\
-0.75 & 0 & 0.25 \\
0 & 0.25 & 0
\end{array}\right]
\end{aligned}
$$

so that

$$
T_{j}-\lambda I=\left[\begin{array}{ccc}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right]
$$

The SOR Method

Solution (3/3)

Therefore

$$
\operatorname{det}\left(T_{j}-\lambda I\right)=\left|\begin{array}{ccc}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right|
$$

The SOR Method

Solution (3/3)

Therefore

$$
\operatorname{det}\left(T_{j}-\lambda I\right)=\left|\begin{array}{ccc}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right|=-\lambda\left(\lambda^{2}-0.625\right)
$$

The SOR Method

Solution (3/3)

Therefore

$$
\operatorname{det}\left(T_{j}-\lambda I\right)=\left|\begin{array}{ccc}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right|=-\lambda\left(\lambda^{2}-0.625\right)
$$

Thus

$$
\rho\left(T_{j}\right)=\sqrt{0.625}
$$

The SOR Method

Solution (3/3)

Therefore

$$
\operatorname{det}\left(T_{j}-\lambda I\right)=\left|\begin{array}{ccc}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right|=-\lambda\left(\lambda^{2}-0.625\right)
$$

Thus

$$
\rho\left(T_{j}\right)=\sqrt{0.625}
$$

and

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}}=\frac{2}{1+\sqrt{1-0.625}} \approx 1.24
$$

The SOR Method

Solution (3/3)

Therefore

$$
\operatorname{det}\left(T_{j}-\lambda I\right)=\left|\begin{array}{ccc}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right|=-\lambda\left(\lambda^{2}-0.625\right)
$$

Thus

$$
\rho\left(T_{j}\right)=\sqrt{0.625}
$$

and

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}}=\frac{2}{1+\sqrt{1-0.625}} \approx 1.24
$$

This explains the rapid convergence obtained in the last example when using $\omega=1.25$.

Outline

(1) Residual Vectors \& the Gauss-Seidel Method

(2) Relaxation Methods (including SOR)

(3) Choosing the Optimal Value of ω

4 The SOR Algorithm

The SOR Algorithm (1/2)

To solve

$$
A \mathbf{x}=\mathbf{b}
$$

given the parameter ω and an initial approximation $\mathbf{x}^{(0)}$:

The SOR Algorithm (1/2)

To solve

$$
A \mathbf{x}=\mathbf{b}
$$

given the parameter ω and an initial approximation $\mathbf{x}^{(0)}$:

INPUT the number of equations and unknowns n; the entries $a_{i j}, 1 \leq i, j \leq n$, of the matrix A; the entries $b_{i}, 1 \leq i \leq n$, of \mathbf{b}; the entries $X O_{i}, 1 \leq i \leq n$, of $\mathbf{X O}=\mathbf{x}^{(0)}$; the parameter ω; tolerance TOL; maximum number of iterations N.

OUTPUT the approximate solution x_{1}, \ldots, x_{n} or a message that the number of iterations was exceeded.

The SOR Algorithm (2/2)

Step 1 Set $k=1$
Step 2 While $(k \leq N)$ do Steps 3-6:

The SOR Algorithm (2/2)

Step 1 Set $k=1$
Step 2 While $(k \leq N)$ do Steps 3-6:
Step 3 For $i=1, \ldots, n$
set $x_{i}=(1-\omega) X O_{i}+\frac{1}{a_{i j}}\left[\omega\left(-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} X O_{j}+b_{i}\right)\right]$

The SOR Algorithm (2/2)

Step 1 Set $k=1$
Step 2 While $(k \leq N)$ do Steps 3-6:
Step 3 For $i=1, \ldots, n$
set $x_{i}=(1-\omega) X O_{i}+\frac{1}{a_{i j}}\left[\omega\left(-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} X O_{j}+b_{i}\right)\right]$
Step 4 If $\|\mathbf{x}-\mathbf{X O}\|<$ TOL then OUTPUT $\left(x_{1}, \ldots, x_{n}\right)$ STOP (The procedure was successful)

The SOR Algorithm (2/2)

Step 1 Set $k=1$
Step 2 While $(k \leq N)$ do Steps 3-6:
Step 3 For $i=1, \ldots, n$
set $x_{i}=(1-\omega) X O_{i}+\frac{1}{a_{i j}}\left[\omega\left(-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} X O_{j}+b_{i}\right)\right]$
Step 4 If $\|\mathbf{x}-\mathbf{X O}\|<$ TOL then OUTPUT $\left(x_{1}, \ldots, x_{n}\right)$ STOP (The procedure was successful)
Step 5 Set $k=k+1$

The SOR Algorithm (2/2)

Step 1 Set $k=1$
Step 2 While $(k \leq N)$ do Steps 3-6:
Step 3 For $i=1, \ldots, n$
set $x_{i}=(1-\omega) X O_{i}+\frac{1}{a_{i j}}\left[\omega\left(-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} X O_{j}+b_{i}\right)\right]$
Step 4 If $\|\mathbf{x}-\mathbf{X O}\|<$ TOL then OUTPUT $\left(x_{1}, \ldots, x_{n}\right)$ STOP (The procedure was successful)
Step 5 Set $k=k+1$
Step 6 For $i=1, \ldots, n$ set $X O_{i}=x_{i}$

The SOR Algorithm (2/2)

Step 1 Set $k=1$
Step 2 While $(k \leq N)$ do Steps 3-6:
Step 3 For $i=1, \ldots, n$
set $x_{i}=(1-\omega) X O_{i}+\frac{1}{a_{i j}}\left[\omega\left(-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} X O_{j}+b_{i}\right)\right]$
Step 4 If $\|\mathbf{x}-\mathbf{X O}\|<$ TOL then OUTPUT $\left(x_{1}, \ldots, x_{n}\right)$ STOP (The procedure was successful)
Step 5 Set $k=k+1$
Step 6 For $i=1, \ldots, n$ set $X O_{i}=x_{i}$
Step 7 OUTPUT ('Maximum number of iterations exceeded') STOP (The procedure was successful)

Questions?

