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Residual Vectors & the Gauss-Seidel Method

Motivation
We have seen that the rate of convergence of an iterative
technique depends on the spectral radius of the matrix associated
with the method.

One way to select a procedure to accelerate convergence is to
choose a method whose associated matrix has minimal spectral
radius.
We start by introducing a new means of measuring the amount by
which an approximation to the solution to a linear system differs
from the true solution to the system.
The method makes use of the vector described in the following
definition.
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Residual Vectors & the Gauss-Seidel Method

Definition
Suppose x̃ ∈ IRn is an approximation to the solution of the linear
system defined by

Ax = b

The residual vector for x̃ with respect to this system is

r = b− Ax̃

Comments
A residual vector is associated with each calculation of an
approximate component to the solution vector.
The true objective is to generate a sequence of approximations
that will cause the residual vectors to converge rapidly to zero.

Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 5 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

Residual Vectors & the Gauss-Seidel Method

Definition
Suppose x̃ ∈ IRn is an approximation to the solution of the linear
system defined by

Ax = b

The residual vector for x̃ with respect to this system is

r = b− Ax̃

Comments
A residual vector is associated with each calculation of an
approximate component to the solution vector.

The true objective is to generate a sequence of approximations
that will cause the residual vectors to converge rapidly to zero.

Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 5 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

Residual Vectors & the Gauss-Seidel Method

Definition
Suppose x̃ ∈ IRn is an approximation to the solution of the linear
system defined by

Ax = b

The residual vector for x̃ with respect to this system is

r = b− Ax̃

Comments
A residual vector is associated with each calculation of an
approximate component to the solution vector.
The true objective is to generate a sequence of approximations
that will cause the residual vectors to converge rapidly to zero.

Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 5 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

Residual Vectors & the Gauss-Seidel Method

Looking at the Gauss-Seidel Method
Suppose we let

r(k)
i = (r (k)

1i , r (k)
2i , . . . , r (k)

ni )t

denote the residual vector for the Gauss-Seidel method

corresponding
to the approximate solution vector x(k)

i defined by

x(k)
i = (x (k)

1 , x (k)
2 , . . . , x (k)

i−1, x (k−1)
i , . . . , x (k−1)

n )t

The m-th component of r(k)
i is

r (k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j
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Residual Vectors & the Gauss-Seidel Method

r (k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j

Looking at the Gauss-Seidel Method (Cont’d)

Equivalently, we can write r (k)
mi in the form:

r (k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i+1

amjx
(k−1)
j − amix

(k−1)
i

for each m = 1, 2, . . . , n.
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In particular, the i th component of r(k)
i is

r (k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix

(k−1)
i

so

aiix
(k−1)
i + r (k)

ii = bi −
i−1∑
j=1

aijx
(k)
j −

n∑
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aijx
(k−1)
j

Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 8 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

Residual Vectors & the Gauss-Seidel Method

r (k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i+1

amjx
(k−1)
j − amix

(k−1)
i

Looking at the Gauss-Seidel Method (Cont’d)

In particular, the i th component of r(k)
i is

r (k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix

(k−1)
i

so

aiix
(k−1)
i + r (k)

ii = bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 8 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

Residual Vectors & the Gauss-Seidel Method

(E) aiix
(k−1)
i + r (k)

ii = bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

Looking at the Gauss-Seidel Method (Cont’d)

Recall, however, that in the Gauss-Seidel method, x (k)
i is chosen to be

x (k)
i =

1
aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j



so (E) can be rewritten as

aiix
(k−1)
i + r (k)

ii = aiix
(k)
i
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Residual Vectors & the Gauss-Seidel Method

aiix
(k−1)
i + r (k)

ii = aiix
(k)
i

Looking at the Gauss-Seidel Method (Cont’d)
Consequently, the Gauss-Seidel method can be characterized as
choosing x (k)

i to satisfy

x (k)
i = x (k−1)

i +
r (k)
ii
aii
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Residual Vectors & the Gauss-Seidel Method

A 2nd Connection with Residual Vectors
We can derive another connection between the residual vectors
and the Gauss-Seidel technique.

Consider the residual vector r(k)
i+1, associated with the vector

x(k)
i+1 = (x (k)

1 ,. . ., x (k)
i , x (k−1)

i+1 , . . ., x (k−1)
n )t .

We have seen that the m-th component of r(k)
i is

r (k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j
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Residual Vectors & the Gauss-Seidel Method

r (k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j

A 2nd Connection with Residual Vectors (Cont’d)

Therefore, the i th component of r(k)
i+1 is

r (k)
i,i+1 = bi −

i∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

= bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix

(k)
i
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Residual Vectors & the Gauss-Seidel Method

r (k)
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aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix

(k)
i

A 2nd Connection with Residual Vectors (Cont’d)

By the manner in which x (k)
i is defined in

x (k)
i =

1
aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j


we see that r (k)

i,i+1 = 0.

In a sense, then, the Gauss-Seidel technique is
characterized by choosing each x (k)

i+1 in such a way that the i th
component of r(k)

i+1 is zero.
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From Gauss-Seidel to Relaxation Methods

Reducing the Norm of the Residual Vector
Choosing x (k)

i+1 so that one coordinate of the residual vector is
zero, however, is not necessarily the most efficient way to reduce
the norm of the vector r(k)

i+1.

If we modify the Gauss-Seidel procedure, as given by

x (k)
i = x (k−1)

i +
r (k)
ii
aii

to

x (k)
i = x (k−1)

i + ω
r (k)
ii
aii

then for certain choices of positive ω we can reduce the norm of
the residual vector and obtain significantly faster convergence.
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From Gauss-Seidel to Relaxation Methods
Introducing the SOR Method

Methods involving

x (k)
i = x (k−1)

i + ω
r (k)
ii
aii

are called relaxation methods.

For choices of ω with 0 < ω < 1,
the procedures are called under-relaxation methods.
We will be interested in choices of ω with 1 < ω, and these are
called over-relaxation methods.
They are used to accelerate the convergence for systems that are
convergent by the Gauss-Seidel technique.
The methods are abbreviated SOR, for Successive
Over-Relaxation, and are particularly useful for solving the linear
systems that occur in the numerical solution of certain
partial-differential equations.
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The SOR Method
A More Computationally-Efficient Formulation

Note that by using the i-th component of r(k)
i in the form

r (k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix

(k−1)
i

we can reformulate the SOR equation

x (k)
i = x (k−1)

i + ω
r (k)
ii
aii

for calculation purposes as

x (k)
i = (1− ω)x (k−1)

i +
ω
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aijx
(k)
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The SOR Method

A More Computationally-Efficient Formulation (Cont’d)
To determine the matrix form of the SOR method, we rewrite

x (k)
i = (1− ω)x (k−1)

i +
ω

aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j



as

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi
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The SOR Method

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi

A More Computationally-Efficient Formulation (Cont’d)
In vector form, we therefore have

(D − ωL)x(k) = [(1− ω)D + ωU]x(k−1) + ωb

from which we obtain:

The SOR Method

x(k) = (D − ωL)−1[(1− ω)D + ωU]x(k−1) + ω(D − ωL)−1b
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The SOR Method

x(k) = (D − ωL)−1[(1− ω)D + ωU]x(k−1) + ω(D − ωL)−1b

Letting

Tω = (D − ωL)−1[(1− ω)D + ωU]

and cω = ω(D − ωL)−1b

gives the SOR technique the form

x(k) = Tωx(k−1) + cω
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The SOR Method

Example
The linear system Ax = b given by

4x1 + 3x2 = 24
3x1 + 4x2 − x3 = 30

− x2 + 4x3 = −24

has the solution (3, 4,−5)t .

Compare the iterations from the Gauss-Seidel method and the
SOR method with ω = 1.25 using x(0) = (1, 1, 1)t for both
methods.
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The SOR Method

Solution (1/3)

For each k = 1, 2, . . . , the equations for the Gauss-Seidel method are

x (k)
1 = −0.75x (k−1)

2 + 6

x (k)
2 = −0.75x (k)

1 + 0.25x (k−1)
3 + 7.5

x (k)
3 = 0.25x (k)

2 − 6

and the equations for the SOR method with ω = 1.25 are

x (k)
1 = −0.25x (k−1)

1 − 0.9375x (k−1)
2 + 7.5

x (k)
2 = −0.9375x (k)

1 − 0.25x (k−1)
2 + 0.3125x (k−1)

3 + 9.375

x (k)
3 = 0.3125x (k)

2 − 0.25x (k−1)
3 − 7.5
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The SOR Method: Solution (2/3)

Gauss-Seidel Iterations

k 0 1 2 3 · · · 7

x (k)
1 1 5.250000 3.1406250 3.0878906 3.0134110

x (k)
2 1 3.812500 3.8828125 3.9267578 3.9888241

x (k)
3 1 −5.046875 −5.0292969 −5.0183105 −5.0027940

SOR Iterations (ω = 1.25)

k 0 1 2 3 · · · 7

x (k)
1 1 6.312500 2.6223145 3.1333027 3.0000498

x (k)
2 1 3.5195313 3.9585266 4.0102646 4.0002586

x (k)
3 1 −6.6501465 −4.6004238 −5.0966863 −5.0003486
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The SOR Method

Solution (3/3)

For the iterates to be accurate to 7 decimal places,

the Gauss-Seidel method requires 34 iterations,
as opposed to 14 iterations for the SOR method with ω = 1.25.
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Outline

1 Residual Vectors & the Gauss-Seidel Method

2 Relaxation Methods (including SOR)

3 Choosing the Optimal Value of ω

4 The SOR Algorithm
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Choosing the Optimal Value of ω

An obvious question to ask is how the appropriate value of ω is
chosen when the SOR method is used?

Although no complete answer to this question is known for the
general n × n linear system, the following results can be used in
certain important situations.
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Choosing the Optimal Value of ω

Theorem (Kahan)
If aii 6= 0, for each i = 1, 2, . . . , n, then ρ(Tω) ≥ |ω − 1|. This implies
that the SOR method can converge only if 0 < ω < 2.

The proof of this theorem is considered in Exercise 9, Chapter 7 of
Burden R. L. & Faires J. D., Numerical Analysis, 9th Ed., Cengage,
2011.

Theorem (Ostrowski-Reich)
If A is a positive definite matrix and 0 < ω < 2, then the SOR method
converges for any choice of initial approximate vector x(0).

The proof of this theorem can be found in Ortega, J. M., Numerical
Analysis; A Second Course, Academic Press, New York, 1972, 201 pp.
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Choosing the Optimal Value of ω

Theorem
If A is positive definite and tridiagonal, then ρ(Tg) = [ρ(Tj)]

2 < 1, and
the optimal choice of ω for the SOR method is

ω =
2

1 +
√

1− [ρ(Tj)]2

With this choice of ω, we have ρ(Tω) = ω − 1.

The proof of this theorem can be found in Ortega, J. M., Numerical
Analysis; A Second Course, Academic Press, New York, 1972, 201 pp.
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The SOR Method

Example
Find the optimal choice of ω for the SOR method for the matrix

A =

 4 3 0
3 4 −1
0 −1 4



Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 29 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

The SOR Method

Solution (1/3)
This matrix is clearly tridiagonal, so we can apply the result in the
SOR theorem if we can also show that it is positive definite.

Because the matrix is symmetric, the theory tells us that it is
positive definite if and only if all its leading principle submatrices
has a positive determinant.
This is easily seen to be the case because

det(A) = 24, det
([

4 3
3 4

])
= 7 and det ([4]) = 4
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The SOR Method
Solution (2/3)
We compute

Tj = D−1(L + U)

=


1
4 0 0

0 1
4 0

0 0 1
4


 0 −3 0
−3 0 1

0 1 0


=

 0 −0.75 0
−0.75 0 0.25

0 0.25 0


so that

Tj − λI =

 −λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ



Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 31 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

The SOR Method
Solution (2/3)
We compute

Tj = D−1(L + U)

=


1
4 0 0

0 1
4 0

0 0 1
4


 0 −3 0
−3 0 1

0 1 0



=

 0 −0.75 0
−0.75 0 0.25

0 0.25 0


so that

Tj − λI =

 −λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ



Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 31 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

The SOR Method
Solution (2/3)
We compute

Tj = D−1(L + U)

=


1
4 0 0

0 1
4 0

0 0 1
4


 0 −3 0
−3 0 1

0 1 0


=

 0 −0.75 0
−0.75 0 0.25

0 0.25 0



so that

Tj − λI =

 −λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ



Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 31 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

The SOR Method
Solution (2/3)
We compute

Tj = D−1(L + U)

=


1
4 0 0

0 1
4 0

0 0 1
4


 0 −3 0
−3 0 1

0 1 0


=

 0 −0.75 0
−0.75 0 0.25

0 0.25 0


so that

Tj − λI =

 −λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ


Numerical Analysis (Chapter 7) Relaxation Techniques R L Burden & J D Faires 31 / 36



Residual Vectors SOR Method Optimal ω SOR Algorithm

The SOR Method

Solution (3/3)
Therefore

det(Tj − λI) =

∣∣∣∣∣∣
−λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ

∣∣∣∣∣∣

= −λ(λ2 − 0.625)

Thus
ρ(Tj) =

√
0.625

and
ω =

2

1 +
√

1− [ρ(Tj)]2
=

2
1 +

√
1− 0.625

≈ 1.24.

This explains the rapid convergence obtained in the last example when
using ω = 1.25.
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This explains the rapid convergence obtained in the last example when
using ω = 1.25.
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Residual Vectors SOR Method Optimal ω SOR Algorithm

The SOR Algorithm (1/2)

To solve
Ax = b

given the parameter ω and an initial approximation x(0):

INPUT the number of equations and unknowns n;
the entries aij , 1 ≤ i , j ≤ n, of the matrix A;
the entries bi , 1 ≤ i ≤ n, of b;
the entries XOi , 1 ≤ i ≤ n, of XO = x(0);
the parameter ω; tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x1, . . . , xn or a message
that the number of iterations was exceeded.
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The SOR Algorithm (2/2)

Step 1 Set k = 1
Step 2 While (k ≤ N) do Steps 3–6:

Step 3 For i = 1, . . . , n

set xi = (1− ω)XOi +
1
aii

[
ω

(
−

∑i−1
j=1 aijxj −

∑n
j=i+1 aijXOj + bi

)]
Step 4 If ||x− XO|| < TOL then OUTPUT (x1, . . . , xn)

STOP (The procedure was successful)
Step 5 Set k = k + 1
Step 6 For i = 1, . . . , n set XOi = xi

Step 7 OUTPUT (‘Maximum number of iterations exceeded’)
STOP (The procedure was successful)
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