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Preface to the Second
Edition

Twelve years have passed since the publication of the “rst edition ofA Multigrid
Tutorial. During those years, the “eld of multigrid and multilevel methods has
expanded at a tremendous rate, re”ecting progress in the development and analysis
of algorithms and in the evolution of computing environments. Because of these
changes, the “rst edition of the book has become increasingly outdated and the
need for a new edition has become quite apparent.

With the overwhelming growth in the subject, an area in which | have never
done serious research, | felt remarkably unquali“ed to attempt a new edition. Re-
alizing that | needed some help, | recruited two experts to assist with the project.
Steve McCormick (Department of Applied Mathematics, University of Colorado at
Boulder) is one of the original researchers in the “eld of multigrid methods and the
real instigator of the “rst edition. There could be no better collaborator on the
subject. Van Emden Henson (Center for Applied Scienti“c Computing, Lawrence
Livermore National Laboratory) has specialized in applications of multigrid meth-
ods, with a particular emphasis on algebraic multigrid methods. Our collaboration
on a previous SIAM monograph made him an obvious choice as a co-author.

With the team in place, we began deliberating on the content of the new edi-
tion. It was agreed that the “rst edition should remain largely intact with little
more than some necessary updating. Our aim was to add a roughly equal amount
of new material that re”ects important core developments in the “eld. A topic
that probably should have been in the “rst edition comprises Chapter 6: FAS
(Full Approximation Scheme), which is used for nonlinear problems. Chapter 7 is
a collection of methods for four special situations that arise frequently in solving
boundary value problems: Neumann boundary conditions, anisotropic problems,
variable-mesh problems, and variable-coe cient problems. One of the chief moti-
vations for writing a second edition was the recent surge of interest in algebraic
multigrid methods, which is the subject of Chapter 8. In Chapter 9, we attempt
to explain the complex subject of adaptive grid methods, as it appears in the FAC
(Fast Adaptive Composite) Grid Method. Finally, in Chapter 10, we depart from
the predominantly “nite di erence approach of the book and show how “nite ele-
ment formulations arise. This chapter provides a natural closing because it ties a
knot in the thread of variational principles that runs through much of the book.

There is no question that the new material in the second half of this edition is
more advanced than that presented in the “rst edition. However, we have tried to
create a safe passage between the two halves, to present many motivating examples,
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and to maintain a tutorial spirit in much of the discourse. While the “rst half of
the book remains highly sequential, the order of topics in the second half is largely
arbitrary.

The FAC examples in Chapter 9 were developed by Bobby Philip and Dan Quin-
lan, of the Center for Applied Scienti“c Computing at Lawrence Livermore National
Laboratory, using AMR++ within the Overture framework. Overture is a parallel
object-oriented framework for the solution of PDEs in complex and moving geome-
tries. More information on Overture can be found at http://www.lInl.gov/casc/
Overture.

We thank Irad Yavneh for a thorough reading of the book, for his technical
insight, and for his suggestion that we enlarge Chapter 4. We are also grateful
to John Ruge who gave Chapter 8 a careful reading in light of his considerable
knowledge of AMG. Their suggestions led to many improvements in the book.

Deborah Poulson, Lisa Briggeman, Donna Witzleben, Mary Rose Muccie, Kelly
Thomas, Lois Sellers, and Vickie Kearn of the editorial sta at SIAM deserve
thanks for coaxing us to write a second edition and for supporting the project from
beginning to end. Finally, I am grateful for the willingness of my co-authors to
collaborate on this book. They should be credited with improvements in the book
and held responsible for none of its shortcomings.

Bill Briggs
November 15, 1999
Boulder, Colorado



Preface to the First Edition

Assuming no acquaintance with the subject, this monograph presents the essential
ideas that underlie multigrid methods and make them work. It has its origins in a
tutorial given at the Third Copper Mountain Conference on Multigrid Methods in
April, 1987. The goal of that tutorial was to give participants enough familiarity
with multigrid methods so that they could understand the following talks of the
conference. This monograph has been written in the same spirit and with a similar
purpose, although it does allow for a more realistic, self-paced approach.

It should be clear from the outset that this book is meant to provide a basic
grounding in the subject. The discussion is informal, with an emphasis on moti-
vation before rigor. The path of the text remains in the lowlands where all of the
central ideas and arguments lie. Crossroads leading to higher ground and more
exotic topics are clearly marked, but those paths must be followed in the Suggested
Reading and the Exercises that follow each chapter. We hope that this approach
will give a good perspective of the entire multigrid landscape.

Although we will frequently refer to the multigrid method, it has become clear
that multigrid is not a single method or even a family of methods. Rather, it
is an entire approach to computational problem solving, a collection of ideas and
attitudes, referred to by its chief developer Achi Brandt as multilevel methods

Originally, multigrid methods were developed to solve boundary value problems
posed on spatial domains. Such problems are made discrete by choosing a set of grid
points in the domain of the problem. The resulting discrete problem is a system of
algebraic equations associated with the chosen grid points. In this way, a physical
grid arises very naturally in the formulation of these boundary value problems.

More recently, these same ideas have been applied to a broad spectrum of prob-
lems, many of which have no association with any kind of physical grid. The original
multigrid approach has now been abstracted to problems in which the grids have
been replaced by more general levels of organization. This wider interpretation of
the original multigrid ideas has led to powerful new techniques with a remarkable
range of applicability.

Chapter 1 of the monograph presents the model problems to which multigrid
methods were “rst applied. Chapter 2 reviews the classical iterative (relaxation)
methods, a “rm understanding of which is essential to the development of multigrid
concepts. With an appreciation of how the conventional methods work and why
they fail, multigrid methods can be introduced as a natural remedy for restoring
and improving the performance of the basic relaxation schemes. Chapters 3 and
4 develop the fundamental multigrid cycling schemes and discuss issues of imple-
mentation, complexity, and performance. Only in Chapter 5 do we turn to some
theoretical questions. By looking at multigrid from a spectral (Fourier mode) point

Xi
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of view and from an algebraic (subspace) point of view, it is possible to give an
explanation of why the basic multigrid cycling scheme works so e ectively.

Not surprisingly, the body of multigrid literature is vast and continues to grow at
an astonishing rate. The Suggested Reading list at the end of this tutorial [see the
bibliography in the Second Edition] contains some of the more useful introductions,
surveys, and classical papers currently available. This list is hardly exhaustive. A
complete and cumulative review of the technical literature may be found in the
Multigrid Bibliography (see Suggested Reading), which is periodically updated. It
seems unnecessary to include citations in the text of the monograph. The ideas
presented are elementary enough to be found in some form in many of the listed
references.

Finally, it should be said that this monograph has been written by one who
has only recently worked through the basic ideas of multigrid. A beginner cannot
have mastered the subtleties of a subject, but often has a better appreciation of
its di culties. However, technical advice was frequently necessary. For this, |
greatly appreciate the guidance and numerous suggestions of Steve McCormick,
who has mastered the subtleties of multigrid. | am grateful to John Bolstad for
making several valuable suggestions and an index for the second printing. For
the fourth printing the Suggested Reading section has been enlarged to include six
recently published books devoted to multigrid and multilevel methods. A genuinely
new development is the creation of mg-net, a bulletin board/newsgroup service
which is accessible by sending electronic mail tongnet@cs.yale.edu. For the real
production of this monograph, | am grateful for the typing skills of Anne Van
Leeuwen and for the editorial assistance of Tricia Manning and Anne-Adele Wight
at SIAM.



Chapter 1

Model Problems

Multigrid methods were originally applied to simple boundary value problems that
arise in many physical applications. For simplicity and for historical reasons, these
problems provide a natural introduction to multigrid methods. As an example,
consider the two-point boundary value problem that describes the steady-state
temperature distribution in a long uniform rod. It is given by the second-order
boundary value problem

Su (x)+ u(x)
u(0) = u(1)

f(x), O<x< 1, 0, (1.1)
0. (1.2)

While this problem can be handled analytically, our present aim is to consider
numerical methods. Many such approaches are possible, the simplest of which is a
“nite di erence method (“nite element formulations will be considered in Chapter
10). The domain of the problem{x : 0 x 1} is partitioned into n subintervals
by introducing the grid points x; = jh, whereh = 1/n is the constant width of the
subintervals. This establishes the grid shown in Fig. 1.1, which we denote ".

At each of thenS 1 interior grid points, the original di erential equation (1.1) is
replaced by a second-order “nite di erence approximation. In making this replace-
ment, we also introducev; as an approximation to the exact solution u(x;). This
approximate solution may now be represented by a vectov = (vi,...,Vhs1)",
whose components satisfy then S 1 linear equations

Svis1+2V Svia
h2

f(x), 1 j nS1 (1.3)

Vo=V, = 0.

Vi

De‘ning f = (f(x1),..., f (Xn51))" = (f1,...,fhs1)T, the vector of right-side
values, we may also represent this system of linear equations in matrix form as
2+ h? S1 Vi fi

S1 2+h? 81 : :

S1 :
Sl 2+ h2 Vhs1 fngl
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Figure 1.1: One-dimensional grid on the interval0 x 1. The grid spacing is
h= 1 and thejth grid pointis x; = jh for 0 j n.

Figure 1.2: Two-dimensional grid on the unit square. The solid dots indicate the
unknowns that are related at a typical grid point by the discrete equationél.5).

or even more compactly asAv = f. The matrix A is (nS 1) x (n S 1), tridiagonal,
symmetric, and positive de“nite.

Analogously, it is possible to formulate a two-dimensional version of this prob-
lem. Consider the second-order partial di erential equation (PDE)

Su,x Suyy + u =f(x,y), 0<x< 1, 0<y< 1, > 0 (1.4)

With =0, this is the Poisson equation; with =0, it is the Helmholtz equation.
We consider this equation subject to the condition that u = 0 on the boundary of
the unit square.

As before, this problem may be cast in a discrete form by de“ning the grid
points (xma_) = (ihy,jhy), where h, = X and hy = 1. This two-dimensional grid
is also denbted M and is shown in Fig. 1.2. Replacing the derivatives of (1.4) by
second-order “nite di erences leads to the system of linear equations

SVig1j 2V S Vi + SvVij 51+ 2V SVij+1
2 2
h2 h2

vip = fi,

(1.5)
Vio = Vin = Voj = Vi =0, 1 i mS1, 1 j nS1

As before,v; is an approximation to the exact solution u(x;,y;) andfy = f (xi,y;).
There are now m S 1)(n S 1) interior grid points and the same number of
unknowns in the problem. We can choose from many di erent orderings of the
unknowns. For the moment, consider thelexicographicordering by lines of constant
i. The unknowns of theith row of the grid may be collected in the vector v; =


stevem
Pencil
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(Vi1,...,Ving1)! for1 i mS 1. Similarly, let fi = (fi1,...,fins1)". The
system of equations (1.5) may then be given in block matrix form as
B Sal Vi f1
Sal B Sal : :
§ Sal
Sal B Vg1 fmg1

This system is symmetric, block tridiagonal, and sparse. It has block dimension
(mS 1)x (mS1). Each diagonal block,B, is an (NS 1) x (n S 1) tridiagonal matrix
that looks much like the matrix for the one-dimensional problem. Each o -diagonal
block is a multiple, a = % of the (n S 1) x (n S 1) identity matrix I.

Matrix Properties. The matrices produced by the discretization of self-
adjoint boundary value problems have some special properties that are desirablg
for many numerical methods. Let A with elements a; be such a matrix. It is
generally symmetric (A = AT) and sparse (a large percentage of the element
are zero). These matrices are also oftenveakly diagonally dominant which
means that, in magnitude, the diagonal element is at least as large as the sun
of the o -diagonal elements in the same row:

12}

n
laj | | ai| for 1 i n.
j=i

These matrices are alsositive de“nite, which means that, for all vectorsu = 0,
we haveu”™ Au > 0. This property is di cult to interpret, but there are several
alternate characterizations. For example, a symmetric positive de“nite matrix
has real and positive eigenvalues. It can also be shown that & is symmetric and
diagonally dominant with positive diagonal elements, then A is positive de“nite.
One other matrix property arises in the course of our work: a symmetric positive
de“nite matrix with positive entries on the diagonal and nonpositive o -diagonal
entries is called anM-matrix .

We occasionally appeal to stencils associated with discrete equations. For the
one-dimensional model problem, the stencil representation of the matrix is

= h—lz(él 2+ h?2 S1).

The two-dimensional stencil forh, = hy = his

1 S1
A= — &1 4+h2 31
h2 y

31

Stencils are useful for representing operators that interact locally on a grid. How-
ever, they must be used with care near boundaries.

The two model linear systems (1.3) and (1.5) provide the testing ground for
many of the methods discussed in the following chapters. Before we proceed, how-
ever, it is useful to give a brief summary of existing methods for solving such
systems.
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During the past 50 years, a tremendous amount of work was devoted to the
numerical solution of sparse systems of linear equations. Much of this attention
was given to structured systems such as (1.3) and (1.5) that arise from boundary
value problems. Existing methods of solution fall into two large categories:direct
methodsand iterative (or relaxation) methods. This tutorial is devoted to the latter
category.

Direct methods, of which Gaussian elimination is the prototype, determine a
solution exactly (up to machine precision) in a “nite number of arithmetic steps.
For systems such as (1.5) that arise from a two-dimensional elliptic equation, very
e cient direct methods have been developed. They are usually based on the fast
Fourier transform or the method of cyclic reduction. When applied to problems on
an n x n grid, these methods requireO(n? logn) arithmetic operations. Because
they approach the minimum operation count of O(n?) operations, these methods are
nearly optimal. However, they are also rather specialized and restricted primarily
to systems that arise from separable self-adjoint boundary value problems.

Relaxation methods, as represented by the Jacobi and Gauss...Seidel iterations,
begin with an initial guess at a solution. Their goal is to improve the current
approximation through a succession of simple updating steps or iterations. The se-
guence of approximations that is generated (ideally) converges to the exact solution
of the linear system. Classical relaxation methods are easy to implement and may
be successfully applied to more general linear systems than most direct methods
[23, 24, 26].

As we see in the next chapter, relaxation schemes su er from some disabling lim-
itations. Multigrid methods evolved from attempts to overcome these limitations.
These attempts have been largely successful: used in a multigrid setting, relaxation
methods are competitive with the fast direct methods when applied to the model
problems, and they have more generality and a wider range of application.

In Chapters 1...5 of this tutorial, we focus on the two model problems. In Chap-
ters 6...10, we extend the basic multigrid methods to treat more general boundary
conditions, operators, and geometries. The basic methods can be applied to many
elliptic and other types of problems without signi“cant modi“cation. Still more
problems can be treated with more sophisticated multigrid methods.

Finally, the original multigrid ideas have been extended to what are more ap-
propriately called multilevel methods Purely algebraic problems (for example, net-
work and structural problems) have led to the development ofalgebraic multigrid or
AMG , which is the subject of Chapter 8. Beyond the boundaries of this book, mul-
tilevel methods have been applied to time-dependent problems and problems in im-
age processing, control theory, combinatorial optimization (the traveling salesman
problem), statistical mechanics (the Ising model), and quantum electrodynamics.
The list of problems amenable to multilevel methods is long and growing. But “rst
we must begin with the basics.

Exercises

1. Derivative (Neumann) boundary conditions. Consider model problem
(1.1) subject to the Neumann boundary conditionsu (0) = u (1) = 0. Find
the system of linear equations that results when second-order “nite di erences
are used to discretize this problem at the grid pointsxg,...,Xs. At the end
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points, Xo and x,, one of many ways to incorporate the boundary conditions
is to let vi = vg and vhy51 = Vv,. (We return to this problem in Chapter
7.) How many equations and how many unknowns are there in this problem?
Give the matrix that corresponds to this boundary value problem.

2. Ordering unknowns. Suppose the unknowns of system (1.5) are ordered
by lines of constantj (or y). Give the block structure of the resulting matrix
and specify the dimensions of the blocks.

3. Periodic boundary conditions. Consider model problem (1.1) subject
to the periodic boundary conditions u(0) = u(1) and u (0) = u (1). Find the
system of linear equations that results when second-order “nite di erences are
used to discretize this problem at the grid points X, ...,Xng1. How many
equations and unknowns are there in this problem?

4. Convection terms in two dimensions. A convection term can be added
to the two-dimensional model problem in the form

.4

S (Uxx + Uyy)+ auy = f()i).

Using the grid described in the text and second-order central “nite di erence
approximations, “nd the system of linear equations associated with this prob-
lem. What conditions must be met by a and for the associated matrix to
be diagonally dominant?

5. Three-dimensional problem. Consider the three-dimensional Poisson equa-
tion
Sux S uyy Suy = f(X,Y,2).

Write out the discrete equation obtained by using second-order central “nite
di erence approximations at the grid point ( x;,Y;,zx). Assuming that the
unknowns are ordered “rst by lines of constantx, then lines of constanty,
describe the block structure of the resulting matrix.


stevem
Pencil


Chapter 2

Basic Iterative Methods

We now consider how model problems (1.3) and (1.5) might be treated using con-
ventional iterative or relaxation methods. We “rst establish the notation for this
and all remaining chapters. Let

Au=f

denote a system of linear equations such as (1.3) or (1.6). We always use to
denote the exact solution of this system andv to denote an approximation to the
exact solution, perhaps generated by some iterative method. Bold symbols, such as
u and v, represent vectors, while thej th components of these vectors are denoted
by uj and v;. In later chapters, we need to associatel and v with a particular
grid, say M. In this case, the notationu™ and v is used.

Suppose that the systemAu = f has a unique solution and thatv is a computed
approximation to u. There are two important measures ofv as an approximation
to u. One is theerror (or algebraic error) and is given simply by

e=uSv.

The error is also a vector and its magnitude may be measured by any of the standard
vector norms. The most commonly used norms for this purpose are the maximum
(or in“nity) norm and the Euclidean or 2-norm, de“ned, respectively, by

1/ 2

e = max|g| and e>= e
in .
j=1

Unfortunately, the error is just as inaccessible as the exact solution itself. How-
ever, a computable measure of how wel approximates u is the residual given
by

r=fSAv.

The residual is simply the amount by which the approximation v fails to satisfy
the original problem Au = f. It isalso a vector and its size may be measured by
the same norm used for the error. By the uniqueness of the solutior, = 0 if and
only if e = 0. However, it may not be true that when r is small in norm, e is also
small in norm.
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Residuals and Errors. A residual may be de“ned for any numerical approx-
imation and, in many cases, a small residual doesot necessarily imply a small
error. This is certainly true for systems of linear equations, as shown by the
following two problems:

1 S1 Uy S1 1 81 Up S1

21 §20 u - S19 ad 5 g u 1

Both systems have the exact solutionu = (1,2)". Suppose we have computed
the approximation v = (1.95,3)". The error in this approximation is e =
(50.95,S1)T, for which e , = 1.379. The norm of the residual inv for the
“rst systemis r; , =0.071, while the residual norm for the second system is

r, » = 1.851. Clearly, the relatively small residual for the “rst system does
not re”ect the rather large error. See Exercise 18 for an important relationship
between error and residual norms.

Remembering that Au = f and using the de“nitions of r and e, we can derive
an extremely important relationship between the error and the residual (Exercise
2):

Ae=r.

We call this relationship the residual equation It says that the error satis“es the
same set of equations as the unknownr when f is replaced by the residualr. The
residual equation plays a vital role in multigrid methods and it is used repeatedly
throughout this tutorial.

We can now anticipate, in an imprecise way, how the residual equation can be
used to great advantage. Suppose that an approximatiorv has been computed
by some method. It is easy to compute the residuat = f S Av. To improve the
approximation v, we might solve the residual equation fore and then compute a
new approximation using the de“nition of the error

u=v+e.

In practice, this method must be applied more carefully than we have indicated.

Nevertheless, this idea of residual correction is very important in all that follows.
We now turn to relaxation methods for our “rst model problem (1.3) with = 0.

Multiplying that equation by h? for convenience, the discrete problem becomes

SU]§1+2UJSUJ+1 = hzfl‘, 1 j nsS 1,
Up=u, = 0. (2.1)

One of the simplest schemes is thdacobi (or simultaneous displacement) method.
It is produced by solving the j th equation of (2.1) for the jth unknown and using

the current approximation for the (j S 1)st and (j + 1)st unknowns. Applied to the

vector of current approximations, this produces an iteration scheme that may be
written in component form as

1 .
v = 5 V@ +v +n 1 ) S
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To keep the notation as simple as possible, the current approximation (or the
initial guess on the “rst iteration) is denoted v© | while the new, updated approx-
imation is denoted v . In practice, once all of thev® components have been
computed, the procedure is repeated, withv® playing the role of v© . These iter-
ation sweeps are continued until (ideally) convergence to the solution is obtained.

It is important to express these relaxation schemes in matrix form, as well as
component form. We split the matrix A in the form

A=DSLSU,

where D is the diagonal of A, and SL and SU are the strictly lower and upper
triangular parts of A, respectively. Including the h? term in the vector f, then
Au = f becomes

(DSLSU)u=f.

Isolating the diagonal terms of A, we have
Du=(L+U)u+f

or
u=DSYL+ U)u+ DS,

Multiplxing by DS1 corresponds exactly to solving thej th equation for u;, for
1 j nS1 If we de“ne the Jacobi iteration matrix by

Ry = DSY(L + V),
then the Jacobi method appears in matrix form as
v@® = Ryv@ + DSt

There is a simple but important modi“cation that can be made to the Jacobi
iteration. As before, we compute the new Jacobi iterates using

_1 o 0 - &
Vj‘évj(§1+vj(+)1+h2fj, 1] nsSl

However, v; is now only an intermediate value. The new iterate is given by the
weighted average

vj(l) =1S )vj(o) + v, = vj(o) + (v S vj(o)), 1 j nS1,

where R is a weighting factor that may be chosen. This generates an entire
family of iterations called the weightedor damped Jacobimethod. Notice that =1
yields the original Jacobi iteration.

In matrix form, the weighted Jacobi method is given by (Exercise 3)

v =18 )+ RO + D St
If we de“ne the weighted Jacobi iteration matrix by

R =(1S )+ Ry,
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then the method may be expressed as (Exercise 3)
v = R vO + p Sif,

We should note in passing that the weighted Jacobi iteration can also be written
in the form (Exercise 3) 5

v@® = yO 4 p 51,0
This says that the new approximation is obtained from the current one by adding
an appropriate weighting of the residual.

This is just one example of astationary linear iteration . This term refers to the
fact that the update rule is linear in the unknown v and does not change from one
iteration to the next. We can say more about such iterations in general. Recalling
that e= u S v and Ae = r, we have

uSv=ASl,
Identifying v with the current approximation v(© and u with the new approxima-
tion v, an iteration may be formed by taking
v = vO + BrO (2.2)

where B is an approximation to AS1 If B can be chosen scloseZ t&\S1, then the
iteration should be e ective.

It is useful to examine this general form of iteration a bit further. Rewriting
expression (2.2), we see that

V(l) - V(O) + Br(o)

vO +B(f SAVD)
(1 SBA)WVO + Bf
Rv©® + Bf,

where we have de“ned the general iteration matrix asR = | S BA. It can also be
shown (Exercise 4) thatm sweeps of this iteration result in

vim = RMvO + C(f),

where C(f) represents a series of operations oh. We return to this general form
in Chapter 5.

Before analyzing or implementing these methods, we present a few more of
the basic iterative schemes. Weighted Jacobi computes all components of the new
approximation before using any of them. This requires B storage locations for the
approximation vector. It also means that new information cannot be used as soon
as it is available.

The Gauss...Seidahethod incorporates a simple change: components of the new
approximation are used as soon as they are computed. This means that components
of the approximation vector v are overwritten as soon as they are updated. This
small change reduces the storage requirement for the approximation vector to only
n locations. The Gauss...Seidel method is also equivalent to successively setting
each component of the residual vector to zero and solving for the corresponding
component of the solution (Exercise 5). When applied to the model problem, this
method may be expressed in component form as

Vi S éijl+vj+l+h2fj , 1 ] nsSi,

where the arrow notation stands for replacement or overwriting.
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Once again it is useful to express this method in matrix form. Splitting the
matrix A in the form A = D S L S U, we can now write the original system of
equations as

(DS L)u=Uu+f

or
u=(DSL)>Uu+(DSL)>H.

This representation corresponds to solving thej th equation for u; and using new
approximations for components 12,...,j S 1. De“ning the Gauss...Seidel iteration
matrix by }

Re =(D S L)y,

we can express the method as
vS3 Rgv+(DSL)SH.

Finally, we look at one important variation on the Gauss...Seidel iteration. For
weighted Jacobi, the order in which the components of/ are updated is immaterial,
since components are never overwritten. However, for Gauss...Seidel, the order of
updating is signi“cant. Instead of sweeping through the components (equivalently,
the grid points) in ascending order, we could sweep through the components in
descending order or we might alternate between ascending and descending orders.
The latter procedure is called the symmetric Gauss...Seidehethod.

Another e ective alternative is to update all the even components “rst by the
expression

S o 2
2 Vojg1+ Voj+1 + hofy

2
and then update all the odd components using

= 2
Voj+1 S Voj + Voj42 + WP .

2
This strategy leads to the red-black Gauss...Seidetethod, which is illustrated in
Fig. 2.1 for both one-dimensional and two-dimensional grids. Notice that the red
points correspond to even-indexed points in one dimension and to points whose
index sum is even in two dimensions (assuming that = 0 andj = 0 corresponds
to a boundary). The red points also correspond to what we soon call coarse-grid
points.

The advantages of red-black over regular Gauss...Seidel are not immediately
apparent; the issue is often problem-dependent. However, red-black Gauss...Seidel
does have a clear advantage in terms of parallel computation. The red points need
only the black points for their updating and may therefore be updated in any order.
This work represents % (or % in two dimensions) independent tasks that can be
distributed among several independent processors. In a similar way, the black sweep
can also be done by several independent processors. (The Jacobi iteration is also
well-suited to parallel computation.)

There are many more basic iterative methods. However, we have seen enough
of the essential methods to move ahead toward multigrid. First, it is important to
gain some understanding of how these basic iterations perform. We proceed both
by analysis and by experimentation.

When studying stationary linear iterations, it is su cient to work with the
homogeneous linear systemAu = 0 and use arbitrary initial guesses to start the
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Figure 2.1: A one-dimensional grid (top) and a two-dimensional grid (bottom),
showing the red points( ) and the black points(€) for red-black relaxation.

relaxation scheme (Exercise 6). One reason for doing this is that the exact solution
is known (u = 0) and the error in an approximation v is simply Sv. Therefore, we
return to the one-dimensional model problem withf = 0. It appears as

Sujs1+2u; Sy = 0, 1 j nS1
U =u, = 0. (2.3)

We obtain some valuable insight by applying various iterations to this system
of equations with an initial guess consisting of the vectors (orFourier modes)

vj:sin]kT , 0 j n 1 k nS1

Recall that j denotes the component (or associated grid point) of the vector. The
integer k now makes its “rst appearance. It is called thewavenumber(or frequency)
and it indicates the number of half sine waves that constitutev on the domain of
the problem. We usevy to designate the entire vectorv with wavenumber k.
Figure 2.2 illustrates initial guessesvy, v3, and vg. Notice that small values of
k correspond to long, smooth waves, while large values & correspond to highly
oscillatory waves. We now explore how Fourier modes behave under iteration.

We “rst apply the weighted Jacobi iteration with = % to problem (2.3) on
a grid with n = 64 points. Beginning with initial guesses ofvy, vs, and vg, the
iteration is applied 100 times. Recall that the error is just Sv. Figure 2.3(a) shows
a plot of the maximum norm of the error versus the iteration nhumber.

For the moment, only the qualitative behavior of the iteration is important. The
error clearly decreases with each relaxation sweep and the rate of decrease is larger
for the higher wavenumbers. Figures 2.3(b, ¢) show analogous plots for the regular
and red-black Gauss...Seidel iterations, where we see a similar relationship among
the error, the number of iterations, and the wavenumber. (The complete situation
is not quite so simple with red-black Gauss...Seidel, as illustrated in Exercise 20.)
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Figure 2.2: The modesy; = sin JkT , 0 j n, with wavenumbersk = 1, 3, 6.

The kth mode consists of% full sine waves on the interval.

The experiment of Fig. 2.3(a) is presented in a slightly di erent light in Fig.
2.4. In this “gure, the log of the maximum norm of the error for the weighted
Jacobi method is plotted against the iteration number for various wavenumbers.
This plot clearly shows a linear decrease in the log of the error norm, indicating
that the error itself decreases geometrically with each iteration. If we lete©® bethe
error in the initial guess and e(™) be the error in the mth iterate, then we might
expect to describe the error by a relationship of the form

em =g @

where ¢« is a constant that depends on the wavenumber. We will see that the
theory con“rms this conjecture.

In general, most initial guesses (or, equivalently, most right-side vector$) would
not consist of a single mode. Consider a slightly more realistic situation in which
the initial guess (hence, the error) consists of three modes: a low-frequency wave
(k = 1), a medium-frequency wave k = 6), and a high-frequencywave (k = 32) on
a grid with n = 64 points; it is given by

vJ-:} sin L +sin 8 + sin 33
3 n n n

Figure 2.5 shows the maximum norm of the error plotted against the number of
iterations. The error decreases rapidly within the “rst “ve iterations, after which
it decreases much more slowly. The initial decrease corresponds to the quick elim-
ination of the high-frequency modes of the error. The slow decrease is due to the
presence of persistent low-frequency modes. The important observation is that the
standard iterations converge very quickly as long as the error has high-frequency
components. However, the slower elimination of the low-frequency components
degrades the performance of these methods.

With some experimental evidence in hand, we now turn to a more analytical
approach. Each of the methods discussed so far may be represented in the form

V(l) = RV(O) + g’
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Figure 2.3: (a) Weighted Jacobi iteration with = % (b) regular Gauss...Seidel
iteration, and (c) red-black Gauss...Seidel iteration applied to the one-dimensional
model problem withn = 64 points and with initial guessesv,, v3, and vg. The
maximum norm of the error, e , is plotted against the iteration number for 100
iterations.
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Figure 2.4: Weighted Jacobi iteration with = % applied to the one-dimensional

model problem withn = 64 points and with initial guessesvy, vz, and vg. The log
of e s plotted against the iteration number for 100 iterations.

Figure 2.5: Weighted Jacobi method with = % applied to the one-dimensional
model problem withn = 64 points and an initial guess (v; + vg + v32)/ 3. The
maximum norm of the error, e , is plotted against the iteration number for 100

iterations.
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where R is one of the iteration matrices derived earlier. Furthermore, all of these
methods are designed such that the exact solutiony, is a“xed point of the iteration
(Exercise 4). This means that iteration does not change the exact solution:

u=Ru+g.
Subtracting these last two expressions, we “nd that
e® = Re®,

Repeating this argument, it follows that after m relaxation sweeps, the error in
the mth approximation is given by

eM = RMO

Matrix Norms.  Matrix norms can be de“ned in terms of the commonly used
vector norms. Let A be ann x n matrix with elements a; . Consider the vector
norm Xx , de“ned by

n 1/p
X p = |X||p y 1 p < ’
i=1

sup [xil.
1in

x
1

The matrix norm induced by the vector norm - , is de“ned by

AX
A ;= sup P,
x=0 X p

While not obvious without some computation, this de“nition leads to the fol-

lowing matrix norms induced by the vector norms - 1, - ,and - o
Ai=max . &l (maximum column sum),
A = max jn=1 la | (maximum row sum),
A , = spectral radius of ATA.

Recall that the spectral radius of a matrix is given by
(A) = max| (A)l,

where (A) denotes the eigenvalues of\. For symmetric matrices, the matrix
2-norm is just the spectral radius of A:

Az=  (ATA)=  (A9)= (A).

If we now choose a particular vector norm and its associated matrix norm, it is
possible to bound the error afterm iterations by

e(m ) R m e(o)
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This leads us to conclude that if R < 1, then the error is forced to zero as the
iteration proceeds.
It is shown in many standard texts [9, 20, 24, 26] that

mIim R™=0 ifandonlyif (R)< 1

Therefore, it follows that the iteration associated with the matrix R converges for
all initial guesses if and only if (R) < 1.

The spectral radius (R) is also called theasymptotic convergence factomwhen
it appears in the context of iterative methods. It has some useful interpretations.
First, it is roughly the worst factor by which the error is reduced with each relax-
ation sweep. By the following argument, it also tells us approximately how many
iterations are required to reduce the error by a factor of 1§9. Let m bethe smallest
integer that satis“es

e(m) &d
0 10°9.
This condition will be approximately satis“ed if

[ (RI™ 10°¢

Solving for m, we have
= d

> fogwol (R

The quantity S log;o( (R)) is called the asymptotic convergence rate Its reciprocal
gives the approximate number of iterations required to reduce the error by one
decimal digit. We see that as (R) approaches 1, the convergence rate decreases.
Small values of (R) (thatis, (R) positive and near zero) give a high convergence
rate.

We have established the importance of the spectral radius of the iteration matrix
in analyzing the convergence properties of relaxation methods. Now it is time to
compute some spectral radii. Consider the weighted Jacobi iteration applied to the
one-dimensional model problem. Recalling thatR = (1 S )I + R ;, we have
(Exercise 3)

2 S1
S1 2 S1

- S1
S1 2
Written in this form, it follows that the eigenvalues of R and A are related by

(R ):1§E (A).

The problem becomes one of “nding the eigenvalues of the original matriA. This
useful exercise (Exercise 8) may be done in several di erent ways. The result is
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Interpreting the Spectral Radius. The spectral radius is considered to be
an asymptotic measure of convergence because it predicts the worst-case errpr
reduction over many iterations. It can be shown [9, 20] that, in any vector
norm,

(R)= lm R" tm-

Therefore, in terms of error reduction, we have

e(m) 1/m

R)= Ilim sup ———
(R) m e(o)p el0)

However, the spectral radius does not, in general, predict the behavior of the
error norm for a single iteration. For example, consider the matrix

0 100

R= 0O O
Clearly, (R)= 0. Butif we start with €@ =(0,1)T and computee®® = Re©®
then the convergence factor is

1
& = 100,
e®
The next iterate achieves the asymptotic estimate, (R) = 0, becausee® = 0.
A better worst-case estimate of error reduction for one or a few iterations ig
given by the matrix norm R ,. For the above example, we have R , =
100. The discrepancy between the asymptotic convergence factor,(R), and
the worst-case estimate, R ,, disappears whenR is symmetric because then

(R)= R 2.

that the eigenvalues ofA are

«(A) = 4 sin? ';T] 1 k nS1

Also of interest are the corresponding eigenvectors oA. In all that follows, we
let wyj be the jth component of the kth eigenvector, wy. The eigenvectors ofA
are then given by (Exercise 9)

Wi = sin JkT 1 k nS1, 0 j n

We see that the eigenvectors ofA are simply the Fourier modes discussed eatrlier.
With these results, we “nd that the eigenvalues of R are

« L,k
«(R)Y=182 sin? o 1 k nS1i,

while the eigenvectors ofR are the same as the eigenvectors & (Exercise 10). It
is important to note that if 0 < 1, then| k(R )| < 1 and the weighted Jacobi
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iteration converges. We return to these convergence properties in more detail after
a small detour.

The eigenvectors of the matrixA are important in much of the following discus-
sion. They correspond very closely to the eigenfunctions of the continuous model
problem. Just as we can expand fairly arbitrary functions using this set of eigenfunc-
tions, it is also possible to expand arbitrary vectors in terms of a set of eigenvectors.
Let @ be the error in an initial guess used in the weighted Jacobi method. Then
it is possible to represente® using the eigenvectors ofA in the form

nS1
e® = qwy,
k=1
where the coe cients ¢c R give the «amountZ of each mode in the error. We
have seen that afterm sweeps of the iteration, the error is given by

eM = RMeO

Using the eigenvector expansion foe© , we have

nS1 nS1
M = RMe® = aR™wy = & MR Hwg.
k=1 k=1
The last equality follows because the eigenvectors ok and R are the same; there-
fore, R wyx = (R )wk.

This expansion for e(™) shows that after m iterations, the kth mode of the
initial error has been reduced by a factor of (R ). It should also be noted that
the weighted Jacobi method does not mix modes: when applied to a single mode,
the iteration can change the amplitude of that mode, but it cannot convert that
mode into di erent modes. In other words, the Fourier modes are also eigenvectors
of the iteration matrix. As we will see, this property is not shared by all stationary
iterations.

To develop some familiarity with these Fourier modes, Fig. 2.6 shows them on
a grid with n = 12 points. Notice that the kth mode consists ofg full sine waves
and has a wavelength of = % = % (the entire interval has length 1). The k = %
mode has a wavelength of = 4h and the k = n S 1 mode has a wavelength of
almost = 2h. Waves with wavenumbersgreater than n (wavelengths less than )
cannot be represented on the grid. In fact (Exercise 12), through the phenomenon
of aliasing, a wave with a wavelength less than 2 actually appears on the grid with
a wavelength greater than 2.

At this point, it is important to establish some terminology that is used through-
out the remainder of the tutorial. We need some qualitative terms for the various
Fourier modes that have been discussed. The modes in the lower half of the spec-
trum, with wavenumbers intherange 1  k < %, are calledlow-frequencyor smooth
modes. The modes in the upper half of the spectrum, withy k n S 1, are
called high-frequencyor oscillatory modes.

Having taken this excursion through Fourier modes, we now return to the anal-
ysis of the weighted Jacobi method. We established that the eigenvalues of the
iteration matrix are given by

k(R)=182 sin’ ';—n 1 k nS1

What choice of gives the best iterative scheme?
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Figure 2.6: Graphs of the Fourier modes ofA on a grid with n = 12 points. Modes

with wavenumbersk = 1,2, 3,4, 6, 8,9 are shown. The wavelength of thé&th mode

; — 24h
IS = 5.
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Figure 2.7: Eigenvalues of the iteration matrix R for = % % % 1. The
eigenvalues =1 $2 sin? E—n are plotted as ifk were a continuous variable on

theinterval 0 k n.Infact, 1 k nS 1takes only integer values.

Recall that for 0 < 1, we have | (R )| < 1. We would like to “nd the
value of that makes | (R )| as small as possible forall1 k nS 1. Figure
2.7 is a plot of the eigenvalues y for four di erent values of . Notice that for all
values of satisfying 0< 1,

12182 siP — =182 sin? h 18 2h2.
2n 2

2

This fact implies that 1, the eigenvalue associated with the smoothest mode, will
always be close to 1. Therefore, no value of will reduce the smooth components
of the error e ectively. Furthermore, the smaller the grid spacing h, the closer ; is
to 1. Any attempt to improve the accuracy of the solution (by decreasing the grid

spacing) will only worsen the convergence of the smooth components of the error.

Most basic relaxation schemes share this ironic limitation.
Having accepted the fact that no value of damps the smooth components
satisfactorily, we ask what value of provides the best damping of the oscillatory
components (those with 5 k nS 1). We could impose this condition by

requiring that
w2(R)=S n(R).

Solving this equation for leads to the optimal value__=
We also “nd (Exercise 13) that with = %, | |[</3 forall 3 k nS1

This says that the oscillatory components are reduced at least by a factor of three

with each relaxation. This damping factor for the oscillatory modes is an important

I
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property of any relaxation scheme and is called thesmoothing factor of the scheme.
An important property of the basic relaxation scheme that underlies much of the
power of multigrid methods is that the smoothing factor is not only small, but also

independent of the grid spacingh.

We now turn to some numerical experiments to illustrate the analytical results
that have just been obtained. Once again, the weighted Jacobi method is applied
to the one-dimensional model problemAu = 0 on a grid with n = 64 points. We
use initial guesses (which are also initial errors) consisting of single modes with
wavenumbers 1 k n'S 1. Figure 2.8 shows how the method performs in terms
of di erent wavenumbers. Speci“cally, the wavenumber of the initial error is plotted
against the number of iterations required to reduce the norm of the initial error by
a factor of 100. This experiment is done for weighting factors of =1 and = %

With = 1, both the high- and low-frequency components of the error are
damped very slowly. Components withwavenumbersnear % are damped rapidly.
This behavior is consistent with the eigenvalue curves of Fig. 2.7. We see a quite
di erent behavior in Fig. 2.8(b) with = 2. Recall that = 2 was dhosen to
give preferential damping to the oscillatory components. Indeed, the smooth waves
are damped very slowly, while the upper half of the spectrumk  3) shows rapid
convergence. Again, this is consistent with Fig. 2.7.

Another perspective on these convergence properties is provided in Figure 2.9.
This time the actual approximations are plotted. The weighted Jacobi method
with = % is applied to the same model problem on a grid withn = 64 points.
Figure 2.9(a) shows the error with wavenumber k = 3 after one relaxation sweep
(left plot) and after 10 relaxation sweeps (right plot). This smooth component is
damped very slowly. Figure 2.9(b) shows a more oscillatory errorK = 16) after one
and after 10 iterations. The damping is now much more dramatic. Notice also, as
mentioned before, that the weighted Jacobi method preserves modes: onceka= 3
mode, always ak = 3 mode.

Figure 2.9(c) illustrates the selectivity of the damping property. This experi-
ment uses an initial guess consisting of two modes withk =2 and k = 16. After 10
relaxation sweeps, the high-frequency modulation on the longvave has beemearly
eliminated. However, the original smooth component persists.

We have belabored the discussion of the weighted Jacobi method because it is
easy to analyze and because it shares many properties with other basic relaxation
schemes. In much less detail, let us look at the Gauss...Seidel iteration. We can
show (Exercise 14) that the Gauss...Seidel iteration matrix for the model problem
(matrix A) has eigenvalues

k
«(Rg) = cos o 1 k nS1

These eigenvalues, which are plotted in Fig. 2.10, must be interpreted carefully.
We see that whenk is close to 1 orn, the corresponding eigenvalues are close to 1
and convergence is slow. However, the eigenvectors Bfg are given by (Exercise
14)

where0 j nandl k nS1. These eigenvectors do not coincide with the
eigenvectors ofA. Therefore, ¢(Rg) gives the convergence rate, not for thekth
mode of A, but for the kth eigenvector of Rg.
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Figure 2.8: Weighted Jacobi method with(a) =1 and (b) = % applied to the

one-dimensional maodel problem withn = 64 points. The initial guesses consist of
the modeswy for 1 k 63. The graphs show the number of iterations required
to reduce the norm of the initial error by a factor of 100 for each wi. Note that

for = % the damping is strongest for the oscillatory modes32 k 63).



24 Chapter 2

Figure 2.9: Weighted Jacobi method with = % applied to the one-dimensional
model problem withn = 64 points and with an initial guess consisting of(a) ws,
(b) wis, and (c) (w, + wig)/ 2. The “gures show the approximation after one
iteration (left side) and after 10 iterations (right side).

This distinction is illustrated in Fig. 2.11. As before, the wavenumber k is
plotted against the number of iterations required to reduce the norm of the initial
error by a factor of 100. In Fig. 2.11(a), the initial guess (and error) consists of
the eigenvectors ofRg with wavenumbers 1 k  63. The graph looks similar
to the eigenvalue graph of Fig. 2.10. In Fig. 2.11(b), the initial guess consists of
the eigenvectors of the original matrix A. The structure of this graph would be
much more di cult to anticipate analytically. We see that when convergence of the
Gauss...Seidel method is described in terms of the modesAgfthen once again the
smooth modes are damped slowly, while the oscillatory modes show rapid decay.

We have looked in detail at the convergence properties of some basic relax-
ation schemes. The experiments we presented re”ect the experience of many practi-
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Figure 2.10: Eigenvalues of the Gauss...Seidel iteration matrix. The eigenvalues
Kk = cog kT are plotted as if k were a continuous variable on the intervalO
k n.

tioners. These schemes work very well for the “rst several iterations. Inevitably,
however, convergence slows and the entire scheme appears to stall. We have found
a simple explanation for this phenomenon: the rapid decrease in error during the
early iterations is due to the e cient elimination of the oscillatory modes of that
error; but once the oscillatory modes have been removed, the iteration is much less
e ective in reducing the remaining smooth components.

There is also a good physical explanation for why smooth error modes are so
resistant to relaxation. Recall from (2.2) that stationary linear iterations can be
written in the form

v = vO 4+ gr©

Subtracting this equation from the exact solution u, the error at the next step is
e(l) = e(o) s Br(o) .

We see that changes in the error are made witlspatially local corrections expressed
through the residual. If the residual is small relative to the error itself, then changes
in the error will be correspondingly small. At least for the model problems we have
posed, smooth error modes have relatively small residuals (Exercise 19), so the
error decreases slowly. Conversely, oscillatory errors tend to have relatively large
residuals and the corrections to the error with a single relaxation sweep can be
signi“cant.

Many relaxation schemes possess this property of eliminating the oscillatory
modes and leaving the smooth modes. This so-callesimoothing propertyis a serious
limitation of conventional relaxation methods. However, this limitation can be
overcome and the remedy is one of the pathways to multigrid.

In one very brief chapter, we have barely touched upon the wealth of lore and
theory surrounding iterative methods. The subject constitutes a large and impor-
tant domain of classical numerical analysis. It is also “lled with very elegant math-
ematics from both linear algebra and analysis. However, esoteric iterative methods
are not required for the development of multigrid. The most e ective multigrid
techniques are usually built upon the simple relaxation schemes presented in this
chapter. We now use these few basic schemes and develop them into far more
powerful methods.
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Figure 2.11: Gauss...Seidel iteration matrix applied to the model problem with= 64
points. The initial guesses consist of(a) the eigenvectors of the iteration matrix
Rg with wavenumbersl k 63 and (b) the eigenvectors ofA with wavenumbers
1 k 63 The “gure shows the number of iterations required to reduce the norm
of the initial error by a factor of 100 for each initial guess.
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Exercises

1. Residual vs. error.  Consider the two systems of linear equations given in
the box on residuals and errors in this chapter. Make a sketch showing the
pair of lines represented by each system. Mark the exact solutiom and the
approximation v. Explain why, even though the error is the same in both
cases, the residual is small in one case and large in the other.

2. Residual equation.  Use the de“nition of the algebraic error and the residual
to derive the residual equationAe = r.

3. Weighted Jacobi iteration.

(a) Starting with the component form of the weighted Jacobi method, show
that it can be written in matrix formas v® = [(1S )l + R ;]v©® +
D Sif,
(b) Show that the weighted Jacobi method may also be written in the form
v = R vO + p Sif,

(c) Show that the weighted Jacobi iteration may also be expressed in the

form .
V(l) = V(O) + D Slr(o)7

wherer© is the residual associated with the approximationv©

(d) Assume that A is the matrix associated with the model problem. Show
that the weighted Jacobi iteration matrix can be expressed as

R =1S EA'
4. General stationary linear iteration. It was shown that a general station-
ary linear iteration can be expressed in the form
v = (1 §BA)VO + Bf RvO + Bf.
(&) Show that m sweeps of the iteration has the form
v = RMvO + C(f).
Find an expression forC(f).
(b) Show that the form of the iteration given above is equivalent to
v = yO 4 B

where r© s the initial residual. Use this form to argue that the exact
solution to the linear system, u, is unchanged by (and is therefore a “xed
point of) the iteration.

5. Interpreting Gauss...Seidel.  Show that the Gauss...Seidel iteration is equiv-
alent to successively setting each component of the residual to zero.

6. Zero right side.  Argue that in analyzing the error in a stationary linear
relaxation scheme applied toAu = f, it is su cient to consider Au = 0 with
arbitrary initial guesses.
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10.

11.

12.

13.

14.

15.

Chapter 2

Asymptotic convergence rate. Explain why the asymptotic convergence
rate,

Slog;, (R),
is positive. Which iteration matrix gives a higher asymptotic convergence
rate: one with (R)=0.1 or one with (R)=0.9? Explain.

Eigenvalues of the model problem. Compute the eigenvalues of the
matrix A of the one-dimensional model problem. (Hint: Write out a typical
equation of the systemAw = w with wp = w, = 0. Notice that vectors of

the form w; = sin ’kT ,1 k nS1,0 j n, satisfy the boundary

conditions.) How many distinct eigenvalues are there? Compute 1, 2, ng2,
ng1 whenn = 32.

Eigenvectors of the model problem. Using the results of the previous
problem, “nd the eigenvectors of the one-dimensional model problem matrix
A.

Jacobi eigenvalues and eigenvectors. Find the eigenvalues of the weighted
Jacobi iteration matrix when it is applied to the one-dimensional model prob-
lem matrix A. Verify that the eigenvectors of R are the same as the eigen-
vectors of A.

Fourier modes. Consider the interval 0 x 1 with grid points x; = Jﬁ

0 n. Show that the kth Fourier mode wy; = sin JkT has wavelength

. Which mode has wavelength = 8h? Which mode haswavelength

Aliasing. On a grid with n S 1 interior points, show that the mode wy; =

sin ”‘T with n < k < 2n is actually represented amre
k =2nS k. How is the mode with wavenumberk = 37” represented on the
grid? How is the mode with wavelength| = % represented on the grid? Make

sketches for these two examples.

Optimal Jacobi.  Show that when the weighted Jacobi method is used with
= 2, the smoothing factor is 3. Show that if is chosen to damp the
smooth modes e ectively, then the oscillatory modes are actually ampli“ed.

Gauss...Seidel eigenvalues and eigenvectors.

(&) Show that the eigenvalue problem for the Gauss...Seing iteration matrix,
Rew = w, may be expressed in the formUw = (D S L) | w, where
U, L, D are de“ned in the text.

(b) Write out the equations of this system and note the boundary condition
Wp = W, = 0. Look for solutions of this system of equations of the form
w; = W, wherep  C must be determined. Show that the boundary
conditions can be satis‘ed only if = | = cog kT ,1 k, nS1

(c) Show that the eigenvector associated with | iswy; = E:os(%ﬂq%in % .

Richardson iteration.

(a) Recall that for real vectors u, v, the inner product is given by (u,v) =
uTvand u % =(u,u). Furthermore, if A is symmetric positive de“nite,
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then A , = (A), the spectral radius of A. Richardsones iteration is
given by

v = yO@ 4 _5 (O forp<s< 2,
A

wherer© = £ S Av© is the residual. Show that whenA has a constant
diagonal, this method reduces to the weighted Jacobi method.

(b) Show that the error after one sweep of Richardsones method is governed

by
W2 18 s2S s)(Ae@,e®) 2
2 A, (e® eO) 2
(c) If the eigenvalues of A are ordered 0< ; < , < ..+ < , and

the smallest eigenvalues correspond to the smooth modes, show that

Richardsones method has the smoothing property. (Use the fact that

the eigenvalues are given by the Rayleigh quotients of the eigenvectors,
k = (Awyg,wy)/ (wg,wg), where wy is the eigenvector associated with

k-)
16. Properties of Gauss...Seidel. AssumeA is symmetric, positive de“nite.
(&) Show that the jth step of a single sweep of the Gauss...Seidel method
applied to Au = f may be expressed as
T

Vi Vi + —.
&

(b) Show that the jth step of a single sweep of the Gauss...Seidel method can
be expressed in vector form as

(r.&)
vV v+ ——"—g,
(Ae,- ,e,- ) )
where g; is the j th unit vector.

(c) Show that each sweep of Gauss...Seidel decreases the quantie,(e),
wheree= uSv 3

(d) Show that Gauss...Seidel is optimal in the sense that the quantitye S
sej a isminimizedforeachl j nwhens=(r,¢g)/ (Agj,e), which
is precisely a Gauss...Seidel step.

17. Matrix 2-norm . Show that the matrix 2-norm is given by

A,= (ATA).

Use the de“nition of matrix norm and the relations x 3 =(x,x)and Ax 3=
(AX, AX).

18. Error and residual norms. The condition number of a matrix, cond(A) =
A , A5l , gives an idea of how well the residual measures the error. In
the following exercise, use the property of matrix and vector norms that
AX A x.
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(a) Begin with the relations Ae = r and ASLf = u. Taking norms and
combining terms, show that

ro2

cond(A)%.
2

—
N

Knowing that this bound is sharp (that is, equality can be achieved),
interpret this inequality in the case that the condition number is large.

(b) Now begin with the relations Au = f and ASlr=e Taking norms and
combining terms, show that

€2 ro»
0 cond(A) r,

Knowing that this bound is sharp (that is, equality can be achieved),
interpret this inequality in the case that the condition number is large.

(c) Combine the above bounds to form the following relations:

1 r o e -
cond(A) f

cond(A) fr 2
2

19. Residuals of smooth errors.  Consider the residual equation,Ae = r, at a
single point, whereA is the matrix for the model problem in either one or two
dimensions. Show that if e is smooth (for example, nearly constant), thenr
is small relative to A e . Conversely, show that if e is oscillatory, then r is
relatively large.

20. Numerical experiments. Write a short program that performs weighted
Jacobi (with variable ), Gauss...Seidel, and red-black Gauss...Seidel for the
one-dimensional model problem. First reproduce the experiments shown in
Fig. 2.3. Then experiment with initial guesses with di erent wavenumbers.
Describe how each method performs as thevavenumbersincrease and ap-
proach n.
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Elements of Multigrid

Through analysis and experimentation, we have examined some of the basic iter-
ative methods. Our discoveries have formed the beginnings of what we might call
a sectral (or Fourier mode) picture of relaxation schemes. As we proceed, more
essential details of this picture will become clear. So far we have established that
many standard iterative methods possess the smoothing property. This property
makes these methods very e ective at eliminating the high-frequency or oscillatory
components of the error, while leaving the low-frequency or smooth components rel-
atively unchanged. The immediate issue is whether these methods can be modi“ed
in some way to make them e ective on all error components.

One way to improve a relaxation scheme, at least in its early stages, is to use
a good initial guess. A well-known technique for obtaining an improved initial
guess is to perform some preliminary iterations on a coarse grid. Relaxation on a
coarse grid is less expensive because there are fewer unknowns to be updated. Also,
because the convergence factor behaves likeSIO(h?), the coarse grid will have a
marginally improved convergence rate. This line of reasoning at least suggests that
coarse grids might be worth considering.

With the coarse grid idea in mind, we can think more carefully about its impli-
cations. Recall that most basic relaxation schemes su er in the presence of smooth
components of the error. Assume that a particular relaxation scheme has been ap-
plied until only smooth error components remain. We now ask what these smooth
components look like on a coarser grid. Figure 3.1 shows the answer. A smooth
wave with k = 4 on a grid " with n = 12 points has been projected directly to
the grid 2" with n = 6 points. On this coarse grid, the original wave still has a
wavenumber ofk = 4. We see that a smooth wave on " looks more oscillatory on

2h

To be more precise, note that the grid points of the coarse grid 2" are the
even-numbered grid points of the “ne grid ". Consider the kth mode on the “ne
grid evaluated at the even-numbered grid points. If 1k < %, its components
may be written as

Wg 5 = sin % = sin N = wgl, 1 k<%.
Notice that superscripts have been used to indicate the grids on which the vectors
are de“ned. From this identity, we see that the kth mode on " becomes thekth

31
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Figure 3.1: Wave with wavenumberk =4 on " (n = 12 points) projected onto
2h (n =6 points). The coarse grid *seesZ a wave that is more oscillatory on the
coarse grid than on the “ne grid.

mode on 2"; this fact is easier to understand by noting that there are half as many
modes on 2" as there are on ". The important consequence of this fact is that
in passing from the “ne grid to the coarse grid, a mode becomes more oscillatory.
This is true provided that 1~ k < %. It should be veri“ed that the k = 5 mode
on M becomes the zero vector on 2".

As an aside, it is worth mentioning that “ne-grid modes with k > % undergo
a more curious transformation. Through the phenomenon ofaliasing mentioned
earlier, the kth mode on " becomes the S k)th mode on 2" whenk > §
(Exercise 1). In other words, the oscillatory modes of " are misrepresented as
relatively smooth modes on 2",

The important point is that smooth modes on a “ne grid look less smooth on
a coarse grid. This suggests that when relaxation begins to stall, signaling the
predominance of smooth error modes, it is advisable to move to a coarser grid;
there, the smooth error modes appear more oscillatory and relaxation will be more
e ective. The question is: how do we move to a coarser grid and relax on the more
oscillatory error modes?

It is at this point that multigrid begins to come together like a jigsaw puzzle.
We must keep all of the related facts in mind. Recall that we have an equation
for the error itself, namely, the residual equation. If v is an approximation to the
exact solution u, then the error e = u S v satis“es

Ae=r=1fSAv,

which says that we can relax directly on the error by using the residual equation.
There is another argument that justi“es the use of the residual equation:

Relaxation on the original equation Au = f with an arbitrary initial
guessv is equivalent to relaxing on the residual equationAe = r with
the speci“c initial guesse = 0.
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This intimate connection between the original and the residual equations further
motivates the use of the residual equation (Exercise 2).

We must now gather these loosely connected ideas. We know that many re-
laxation schemes possess the smoothing property. This leads us to consider using
coarser grids during the computation to focus the relaxation on the oscillatory
components of the error. In addition, there seems to be good reason to involve
the residual equation in the picture. We now try to give these ideas a little more
de“nition by proposing two strategies.

We begin by proposing a strategy that uses coarse grids to obtain better initial
guesses.

€ Relax on Au = f on a very coarse grid to obtain an initial guess for the next
“ner grid.

€ Relax onAu = f on " to obtain an initial guess for 2",
€ Relax onAu = f on 2" to obtain an initial guess for M.

€ Relax onAu = f on " to obtain a “nal approximation to the solution.

This idea of using coarser grids to generate improved initial guesses is the basis
of a strategy called nested iteration. Although the approach is attractive, it also
leaves some questions. For instance, what does it mean to relax ¢ku = f on  2"?
We must somehow de“ne the original problem on the coarser grids. Also, what
happens if, having once reached the “ne grid, there are still smooth components
in the error? We may have obtained some improvement by using the coarse grids,
but the “nal iteration will stall if smooth components still remain. We return to
these questions and “nd answers that will allow us to use nested iteration in a very
powerful way.

A second strategy incorporates the idea of using the residual equation to relax
on the error. It can be represented by the following procedure:

€ Relax onAu = f on " to obtain an approximation v".

€ Compute the residualr = f S Av".
Relax on the residual equationAe = r on 2" to obtain
an approximation to the error e2".

€ Correct the approximation obtained on " with the error estimate obtained
on 2n:yh yh4 e

This procedure is the basis of what is calledthe correction scheme Having
relaxed on the “ne grid until convergence deteriorates, we relax on theresidual
equation on a coarser grid to obtain an approximation to the error itself. We then
return to the “ne grid to correct the approximation “rst obtained there.

There is a rationale for using this correction strategy, but it also leaves some
guestions to be answered. For instance, what does it mean to relax oAe = r on

2h2 To answer this question, we “rst need to know how to compute the residual
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Figure 3.2: Interpolation of a vector on coarse grid 2" to “ne grid ".

on M and transferitto 2". We also need to know how to relax on 2" and what

initial guess should be used. Moreover, how do we transfer the error estimate from
2h pack to  "? These questions suggest that we need mechanisms for transferring

information between the grids. We now turn to this important consideration.

In our discussion of intergrid transfers, we consider only the case in which the
coarse grid has twice the grid spacing of the next “nest grid. This is a nearly
universal practice, because there is usually no advantage in using grid spacings
with ratios other than 2. Think for a moment about the step in the correction
scheme that requires transferring the error approximatione?" from the coarse grid

2h to the “ne grid M. This is a common procedure in numerical analysis and is
generally calledinterpolation or prolongation. Many interpolation methods could
be used. Fortunately, for most multigrid purposes, the simplest of these is quite
e ective. For this reason, we consider only linear interpolation.

The linear interpolation operator will be denoted 15, . It takes coarse-grid vec-
tors and produces “ne-grid vectors according to the rulel , v2" = v, where

h - 2h
vy = v,

Vi = % vV, 0 %S 1.
Figure 3.2 shows graphically the action ofl , . At even-numbered “ne-grid points,
the values of the vector are transferred directly from 2" to ". At odd-numbered
“ne-grid points, the value of v" is the average of the adjacent coarse-grid values.
In anticipation of discussions to come, we note that }, is a linear operator from
RZ51 to R">1, It has full rank and the trivial null space, N = {0}. For the case
n = 8, this operator has the form

1 Vi
2 Vo
1 V1 V3
Vo = Vs =V
1 V3 2h Vg
2 Vg
1 V7 4

NI =

h \2h —

PN R

How well does this interpolation process work? First assume that the erealZ
error (which is not known exactly) is a smooth vector on the “ne grid. Assume
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Figure 3.3: (a) If the exact error on " (indicated by and €) is smooth, an
interpolant of the coarse-grid error e" (solid line connecting points) should give
a good representation of the exact error. (b) If the exact error on " (indicated
by and €) is oscillatory, an interpolant of the coarse-grid error €?" (solid line
connecting points) may give a poor representation of the exact error.

also that a coarse-grid approximation to the error has been determined on 2"
and that this approximation is exact at the coarse-grid points. When this coarse-
grid approximation is interpolated to the “ne grid, the interpolant is also smooth.
Therefore, we expect a relatively good approximation to the “ne-grid error, as
shown in Fig. 3.3(a). By contrast, if the srealZ error is oscillatory, even a very good
coarse-grid approximation may produce an interpolant that is not very accurate.
This situation is shown in Fig. 3.3(b).

Thus, interpolation is most e ective when the error is smooth. Because inter-
polation is necessary for both nested iteration and the correction scheme, we may
conclude that these two processes are most e ective when the error is smooth. As
we will see shortly, these processes provide a fortunate complement to relaxation,
which is most e ective when the error is oscillatory.

For two-dimensional problems, the interpolation operator may be de“ned in a
similar way. If we let 15, v2" = v", then the components ofv" are given by

h _  2h
Vaigp = Vi
1
h _ 2h 2h
Vaier2p = 5 Vi T Vi
1
h _ 2h 2h
Vaigier = 5 Vi T Vije1 s
Wi _ 1V2h+V2h + v 4 y2h 0 ii nél
2iv1 241 = 2 Vi i+1 ij +1 i+1j+1 o ') 5 .

The second class of intergrid transfer operations involves moving vectors from
a “ne grid to a coarse grid. They are generally calledrestriction operators and are
denoted by 2". The most obvious restriction operator isinjection. It is de“ned by
| 2hvh = v2h where
V:



36 Chapter 3

Figure 3.4: Restriction by full weighting of a “ne-grid vector to the coarse grid.

In other words, with injection, the coarse-grid vector simply takes its value directly
from the corresponding “ne-grid point.

An alternate restriction operator, called full weighting, is de“ned by 12"v" =
v where

v = %ng§1+2ng + V5 1
As Fig. 3.4 shows, the values of the coarse-grid vector are weighted averages of
values at neighboring “ne-grid points.

In the discussion that follows, we use full weighting as a restriction operator.
However, in some instances, injection may be the better choice. The issue of inter-
grid transfers, which is an important part of multigrid theory, is discussed at some
length in Brandtes guide to multigrid [4]. 5 }

The full weighting operator is a linear operator from R"S! to Rz51, It has a
rank of 5 S 1 (Exercise 4) and a null space of dimensior; (Exercise 5). For the
casen = 8, the full weighting operator has the form

S1

NS

Vi
V2
1 2 1 V3 \Z1
1 2 1 \ = =V
1 2 1 Vs V3 2h
Ve
V7 h

2h

One reason for our choice of full weighting as a restriction operator is the important
fact (Exercise 6) that
1B =c12MT, ¢ R.

The fact that the interpolation operator and the full weighting operator are trans-
poses of each other up to a constant is called gariational property and will soon
be of importance.

For the sake of completeness, we give the full weighting operator in two dimen-
sions. Itis just an averaging of the “ne-grid nearest neighbors. Lettingl 2'vh = v2",
we have that

on _ 1 oon h . h } h
Vit = 16 Vois12i81F Vaiseoj+1r ¥ Vaivr 2j51 F Voie1 2j+1
h h h h
+2 vy 2ié1 T Voig+1 T V2ig1.2) F Vois o

: .. n x
+AVE 5 1] 551t
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We now have a well-de“ned way to transfer vectors between “ne and coarse
grids. Therefore, we can return to the correction scheme and make it precise. To
do this, we de“ne the following two-grid correction scheme.

Two-Grid Correction Scheme
vl MG (v M.
€ Relax 1 times on A"uM = f" on M with initial guess v".

€ Compute the “ne-grid residual r" = f" S APv" and restrict it to the coarse
grid by r2" = 2nhrh,

€ SolveAZheg2h = r2h g 2h,

€ Interpolate the coarse-grid error to the “ne grid by e" = I}, e2" and correct
the “ne-grid approximation by v" v+ e,

€ Relax , times on A"u" = " on M with initial guess v".

This procedure is simply the original correction scheme, now re“ned by the
use of the intergrid transfer operators. We relax on the “ne grid until it ceases
to be worthwhile; in practice, ; is often 1, 2, or 3. The residual of the current
approximation is computed on " and then transferred by a restriction operator
to the coarse grid. As it stands, the procedure calls for the exact solution of the
residual equation on 2", which may not be possible. However, if the coarse-grid
error can at least be approximated, it is then interpolated up to the “ne grid, where
it is used to correct the “ne-grid approximation. This is followed by , additional
“ne-grid relaxation sweeps.

Several comments are in order. First, notice that the superscriptsh or 2h are
essential to indicate the grid on which a particular vector or matrix is de“ned.
Second, all of the quantities in the above procedure are well de“ned except fok2".
For the moment, we take A2" simply to be the result of discretizing the problem
on 2", Finally, the integers ; and , are parameters in the scheme that control
the number of relaxation sweeps before and after visiting the coarse grid. They
are usually “xed at the start, based on either theoretical considerations or on past
experimental results.

It is important to appreciate the complementarity at work in the process. Re-
laxation on the “ne grid eliminates the oscillatory components of the error, leaving
a relatively smooth error. Assuming the residual equation can be solved accurately
on 2" itis still important to transfer the error accurately back to the “ne grid.
Because the error is smooth, interpolation should work very well and the correction
of the “ne-grid solution should be e ective.

Numerical example. A numerical example will be helpful. Consider the weighted

Jacobi method with = % applied to the one-dimensional model problemAu = 0
on a grid with n = 64 points. We use an initial guess,

v-h:} sin 18 + sin 49 ,

2 n n

consisting of thek = 16 and k = 40 modes. The following two-grid correction
scheme is used:
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€ Relax three times onA"u" = 0 on " with initial guess v".

€ Compute r2" = |2nrh,

[
e

€ Relax three times onA2"e?" = r2h on 2" with initial guess e" =
€ Correct the “ne-grid approximation: vh  vh + [f e

€ Relax three times onA"u" = 0 on " with initial guess v".

€ Compute r2" = | 2hrh,

€ Relax three times onA2"e?" = 12" on 2" with initial guess e?" = 0.
€ Correct the “ne-grid approximation: vh  vh+ £ e

The results of this calculation are given in Fig. 3.5. The initial guess with its two
modes is shown in the top left “gure. In the top right, the approximation v" after
one relaxation sweep is superimposed on the initial guess. Much of the oscillatory
component of the initial guess has already been removed, and the 2-norm of the
error has been diminished to 57% of the norm of the initial error. The middle left
plot shows the approximation after three relaxation sweeps on the “ne grid, again
superimposed on the initial guess. The solution (in this case, the error) has become
smoother and its norm is now 36% of the initial error norm. Further relaxations
on the “ne grid would provide only a slow improvement at this point. This signals
that it is time to move to the coarse grid.

The middle right plot shows the “ne-grid error after one relaxation sweep on the
coarse-grid residual equation, superimposed on the initial guess. Clearly, we have
achieved another reduction in the error by moving to the coarse grid; the norm of
the error is now 26% of the initial error norm. This improvement occurs because
the smooth error components, inherited from the “ne grid, appear oscillatory on the
coarse grid and are quickly removed. The error after three coarse-grid relaxation
sweeps is shown in the bottom left “gure. The norm of the error is now about 8%
of its initial value.

The coarse-grid approximation to the error is now used to correct the “ne-grid
approximation. After three additional “ne-grid relaxations, the 2-norm of the error
is reduced to about 3% of the initial error norm. This result is plotted in the
bottom right “gure. The residual is once again transferred to the coarse grid and
three coarse-grid relaxations follow. At this point, the 2-norm of the error is about
1% of its original value. This experiment demonstrates that relaxation, when done
on two grids and applied to both the original and the residual equation, can be
very powerful.

The two-grid correction scheme, as outlined above, leaves one looming procedu-
ral question: what is the best way to solve the coarse-grid problenA2"e?" = r2h?
The answer may be apparent, particularly to those who think recursively. The
coarse-grid problem is not much di erent from the original problem. Therefore, we
can apply the two-grid correction scheme to the residual equation on 2", which
means relaxing there and then moving to “" for the correction step. We can re-
peat this process on successively coarser grids until a direct solution of the residual
equation is possible.
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Figure 3.5: Coarse-grid correction for Su
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=0 on a grid with n = 64. Top left:

The initial guess, (W1 + W40)/ 2. Top right: The error after one sweep of weighted
Jacobi. Middle left: The error after three sweeps of weighted JacobiMiddle right:
The “ne-grid error after one sweep of weighted Jacobi on the coarse-grid problem.
Bottom left: The “ne-grid error after three sweeps of weighted Jacobi on the coarse-
grid problem. Bottom right: The “ne-grid error after the coarse-grid correction is
followed by three weighted Jacobi sweeps on the “ne grid.
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To facilitate the description of this procedure, some economy of notation is de-
sirable. The same notation is used for the computer implementation of the resulting
algorithm. We call the right-side vector of the residual equation f2", rather than
r2h, because it is just another right-side vector. Instead of calling the solution of the
residual equatione®", we useu?" because it is just a solution vector. We can then
usev?" to denote approximations to u?". These changes simplify the notation, but
it is still important to remember the meaning of these variables.

One more point needs to be addressed: what initial guess do we use fof" on
the “rst visit to ~ 2"? Because there is presumably no information available about
the solution, u?", we simply choosev?" = 0. Here then is the two-grid correction
scheme, now imbedded within itself. We assume that there aré > 1 grids with
grid spacingsh, 2h, 4h,...,Lh = 2'S1h,

V-Cycle Scheme
VARRRAVATCVAN 1)

€ Relax on AMuM = £ | times with initial guess v".
€ Compute f2" = | 21rh,
€ Relax on A?"u2" = £2" | times with initial guess v2" = 0.
€ Compute f4h = |4hr2h,
€ Relax on A%y = 4 times with initial guess v*" = 0.
€ Compute f8h = | ghypah,

€ Solve ALh yth = fLh

€ Correct vah  y4n 4+ | dhy8h,
€ Relax on A%y = 4", times with initial guess v".
€ Correctv2"  v2h 4+ | 2hy4h,
€ Relax on AZ'y2h = f2h , times with initial guess v2".
€ Correctv" v+ 15 veh
€ Relax on AMu" = f" 5 times with initial guess v".

The algorithm telescopes down to the coarsest grid, which can consist of one or
a few interior grid points, then works its way back to the “nest grid. Figure 3.6(a)
shows the schedule for the grids in the order in which they are visited. Because of
the pattern in this diagram, this algorithm is called the V-cycle It isour “rst true

multigrid method.
Not surprisingly, the V-cycle has a compact recursive de“nition, which is given

as follows.

V-Cycle Scheme (Recursive De"nition)
VARRRAVAT(VILN L%

1. Relax ; times on AMuM = f" with a given initial guess v".
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Figure 3.6: Schedule of grids for(a) V-cycle, (b) W-cycle, and (c) FMG scheme,
all on four levels.

2. If M= coarsest grid, then go to step 4.
Else
f2h2n(h S A,
y2h 0,
V2h V2h(V2h,f2h).
3. Correct vl v+ 15 v2",

4. Relax , times on A"u" = " with initial guess v".



42 Chapter 3

The V-cycle is just one of a family of multigrid cycling schemes. The entire
family is called the p-cycle method and is de“ned recursively by the following.

Hu-Cycle Scheme
v Muhh M.
1. Relax ; times on AMuM = " with a given initial guess v".

2. If M = coarsest grid, then go to step 4.
Else

f2hj2n(fh § Ahyh),

V2h 0,

v Mp2h(vah, £20) ptimes.
3. Correct v v+ [ v,

4. Relax , times on AMu" = " with initial guess v".

In practice, only pu = 1 (which gives the V-cycle) andu = 2 are used. Figure
3.6(b) shows the schedule of grids fop = 2 and the resulting W-cycle We refer
to a V-cycle with ; relaxation sweeps before the correction step and, relaxation
sweeps after the correction step as a V(, 2)-cycle, with a similar notation for
W-cycles.

We originally stated that two ideas would lead to multigrid. So far we have
developed only the correction scheme. The nested iteration idea has yet to be
explored. Recall that nested iteration uses coarse grids to obtain improved initial
guesses for “ne-grid problems. In looking at the V-cycle, we might ask how to
obtain an informed initial guess for the “rst “ne-grid relaxation. Nested iteration
would suggest solving a problem on 2". But how can we obtain a good initial
guess for the 2" problem? Nested iteration sends us to *". Clearly, we are on
another recursive path that leads to the coarsest grid.

The algorithm that joins nested iteration with the V-cycle is called the full
multigrid V-cycle (FMG) . Given “rst in explicit terms, it appears as follows.

Full Multigrid V-Cycle
v FMGM ().
Initialize f2h [2fh f4h ahg2h
€ Solve or relax on coarsest grid.

€ V4h |4hv8h_
€ v Ay 40 times.
2h 2h,4h
€ v I Zhven. .
€ v vy £20) ) times.
h h \2h
€ v [BYRVESLS _
€ vh Vi M), o times.
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We initialize the coarse-grid right sides by transferring f" from the “ne grid. An-
other option is to use the original right-side function f. The cycling parameter,

0, sets the number of V-cycles done at each level. It is generally determined by
a previous numerical experiment; o = 1 is the most common choice. Expressed
recursively, the algorithm has the following compact form.

Full Multigrid V-Cycle (Recursive Form)
v EMGI(FM).
1. If " = coarsest grid, setv" 0 and go to step 3.
Else
f2h |§h (fh),
v EMG2N(F2h),
2. Correct v I v2",
3.vh o vhh i) times.

Figure 3.6(c) shows the schedule of grids for FMG with ¢ = 1. Each V-
cycle is preceded by a coarse-grid V-cycle designed to provide the best initial guess
possible. As we will see, the extra work done in these preliminary V-cycles is not
only inexpensive (Exercise 8), but easily pays for itself.

Full multigrid is the complete knot into which the many threads of the pre-
ceding chapters are tied. It is a remarkable synthesis of ideas and techniques that
individually have been well known and used for a long time. Taken alone, many of
these ideas have serious defects. Full multigrid is a technique for integrating them
so that they can work together in a way that overcomes these limitations. The
result is a very powerful algorithm.

Exercises

1. Aliasing. Show that the kth mode on a grid " with n S 1 interior points
appears as the (1 S k)th mode on 2" when J <k <n .

2. An important equivalence. Consider a stationary, linear method of the
formv v+ BSY(f S Av) applied to the problem Au = f. Use the following
steps to show that relaxation on Au = f with an arbitrary initial guess is
equivalent to relaxation on Ae = r with the zero initial guess:

(a) First consider the problem Au = f with an arbitrary initial guess v = vg.
What are the error and residual associated withvg?

(b) Now consider the associated residual equatiose = ro = fSAvy. What
are the error and residual in the initial guesseg = 0?

(c) Conclude that the problems in (a) and (b) are equivalent.

3. Properties of interpolation. Show that I}, based upon linear interpolation
is a linear operator with full rank in one and two dimensions.

4. Properties of restriction. What is the rank of 12" based on (a) full weight-
ing and (b) injection in one and two dimensions?
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5. Null space of full weighting. Show that the null space of the full weighting
operator, N (12"), has a basis consisting of vectors of the form

©,0,...,81,2,81,...,0,0)".
By counting these vectors, show that the dimension ofN (12") is 5.
6. Variational property.

(@) Let 15 and 2" bede“ned as in the text. Show that linear interpolation
and full weighting satisfy the variational property I = c(I2")T by
computing ¢ R for both one and two dimensions.

(b) The choice of c = 1 found in part (a) is used because full weighting
essentially preserves constants. Show that, except at the boundary,
I2h(ah) = 12" (where 1" and 12" are the vectors with entries 1 on
their respective grids).

7. Properties of red-black Gauss...Seidel. Suppose red-black Gauss...Seidel
is used with the V-cycle scheme for the one-dimensional model problem.

(a) Does it matter whether the odd unknowns or even unknowns are updated
“rst? Explain.

(b) Show that one sweep of red-black Gauss...Seidel ofi leaves the error
e" in the range of interpolation 15, .

(c) Demonstrate that one V-cycle based on red-black Gauss...Seidel and full
weighting is a direct (exact) solver for the one-dimensional model prob-
lem.

8. FMG cost. The dierence in cost between FMG and a single V-cycle is the
cost of all but the last V-cycle on " in the FMG scheme. Estimate the cost
of these extra V-cycles. Assume that the cost of a V-cycle on grid P" is
proportional to the number of points in that grid, where p=2,4,8,...,n/ 2.
Assume also that ¢ = 1.
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Implementation

The preceding chapter was devoted to the development of several multigrid schemes.
We now turn to the practical issues of writing multigrid programs and determining
whether they work. This will lead us to issues such as data structures, complexity,
predictive tools, diagnostic tools, and performance.

Complexity

Writing multigrid programs can be both fun and challenging. The experience of
many practitioners suggests that such programs should be highly modular. This
allows them to evolve from simple relaxation programs and makes them much easier
to check and debug. Also, the various components of the program (for example,
relaxation, interpolation, and restriction subroutines) can be replaced individually.
Choosing a manageable data structure for a multigrid program is essential.
Modern programming languages are replete with devices that make data manage-
ment easy. For example, in most languages, one can declaresructure that groups
together all the associated information for each grid level. In a structured language,
for instance, a V-cycle could be written along the lines of the followingpseudocode

declare structure:
grid = { double Ddim_array f %% the right hand side
double Ddim_array v %% the current approximation }

declare Grid: array of structure grid
for j =0 to coarsest - 1
Grid[j].v <- relax(Grid[j].v, Grid[j].f, num_sweeps_down)
Grid[j+1].f <- restrict(Grid[j].f - apply_operator(Grid[j].v))
endfor
Grid[coarsest].v = direct_solve(Grid[coarsest].v, Grid[coarsest].f)

for j = coarsest-1to 1 ) b -|
Grid[jl.v <- Grid[j].v + inte%cﬁgltg}(Grid[jﬂ].v)

Grid[j].v <- relax(Grid[j].v, Grid[j].f, num_sweeps_down)
endfor

o
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The routines relax, restrict, apply_operator, interpolate, and direct_solve take
the appropriate Ddim _arrays, v and f, for the speci“ed grid level and perform the
appropriate operations. We do not describe this type of data management in any
further detail, as the advances in these languages occur so rapidly that any discus-
sion would soon be outdated!

We describe a data structure for a simpler FORTRAN-like language. Multigrid
codes sgrew upZ in such an environment and many people learn to write multigrid
codes usingMATLAB or a similar prototyping language with more restrictive data
structures. With these languages, there seems to be general agreement that the
solutions and right-side vectors on the various grids should be stored contiguously
in single arrays. Complicating factors such as irregular domains or local “ne-grid
patches might require an exception to this practice. However, single arrays are
advisable for the regular grids discussed in this chapter.

We begin by considering a four-level V-cycle applied to a one-dimensional prob-
lem with n = 16 points. A typical data structure is shown in Fig. 4.1. It is
instructive to note how the data structure changes as the V-cycle progresses. Each
grid needs two arrays: one to hold the current approximations on each grid and one
to hold the right-side vectors on each grid. Because boundary values must also be
stored, the coarsest grid involves three grid points (one interior and two boundary
points). In general, the th coarsest grid involves 2 + 1 points.

Initially, the entire solution array v may be set to zero, which will be the initial
guess on each grid. The right-side arrayf will also be set to zero, except for the
values on the “nest grid, which are known at the outset.

As the V-cycle «descendsZ into coarser grids, relaxation “lls the segment of the
solution array corresponding to each grid. At the same time, the residual vectors
f “Il the right-side array corresponding to the next coarsest grid. As the V-cycle
sascendsZ through “ner grids, the right-side array does not change. However, the
solution array is overwritten by additional relaxations on each level. Notice that
when a new approximation is computed on one level, the approximation on the
previous level is zeroed out. This provides a zero initial guess on each level in case
another V-cycle is performed.

We now turn to the important questions of complexity. How much do the
multigrid schemes cost in terms of storage and computation? The storage question
is easier to answer. Consider al-dimensional grid with n? points. (Actually, for
Dirichlet boundary conditions, there will be (nS 1)¢ interior points and, as we will
see later, for Neumann boundary conditions, there will be (+1) ¢ unknown points.)
For simplicity, supposen is a power of 2. We have just seen that two arrays must
be stored on each level. The “nest grid, ", requires 1Y storage locations; 2"

requires £9 times as much storage as "; 4" requires £ 9 times as much storage
h

as M in general, P" requires psd times as much storage as ". Adding these
terms and using the sum of the geometric series as an upper bound gives
n . . B # 2nd
Storage =2n9 1+259 425204 .. 450" ¢
g 15 25

In particular, for a one-dimensional problem (d = 1), the storage requirement is
less than twice that of the “ne-grid problem alone. For problems in two or more
dimensions, the requirement drops to less than‘g" of the “ne-grid problem alone
(Exercise 3). Thus, the storage costs of multigrid algorithms decrease relatively as
the dimension of the problem increases.
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Figure 4.1: lllustration of the course of a four-level (h = 16) V-cycle showing
changes in the data arrays. Thev and f arrays hold the solution vectors and right-
side vectors, respectively, in the four grids.

We may use similar reasoning to estimate the computational cost of multigrid
methods. It is convenient to measure these costs in terms of work unit (WU),
which is the cost of performing one relaxation sweep on the “nest grid. It is cus-
tomary to neglect the cost of intergrid transfer operations, which typically amounts
to 10...20% of the cost of the entire cycle.

First consider a V-cycle with one relaxation sweep on each level ¢ = , = 1).
Each level is visited twice and grid P" requiresp>¢ work units. Adding these costs
and again using the geometric series for an upper bound gives

V-cycle computation cost

. H 2

- $08d082d, L o8nd" o £ _
2 1+2%942 2 1% 550 WU
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A single V-cycle costs about 4 WUs for a one-dimensionald(= 1) problem, about
8 WUs for d =2, and £ WUs for d = 3 (Exercise 4).

With a slight modi“cation, we can “nd the computational cost for an FMG cycle.
Assume again that one relaxation sweep is done on each levelp(= ;= 2= 1).
As just shown, a full V-cycle beginning from " costs about 2(1S 259)1 WuUs.
A V-cycle beginning from 2" costs 29 of a full V-cycle. In general, a V-cycle
beginning from P" costsp>¢ of a full V-cycle. Adding these costs gives us

FMG computation cost

_ 2 $d, »52d & nd 2

= 1854 1+2°7+2 + +2 <—,_(1S25d)2\/\/u_
An FMG cycle costs 8 WUs for a one-dimensional problem, aboug— WUs for d = 2,
and 3 WU for d = 3 (Exercise 5).

As expected, a single FMG cycle costs more than a single V-cycle, although the
discrepancy is less for higher-dimensional problems. We really need to know how
many V-cycles and FMG cycles are needed to obtain satisfactory results. This begs
the fundamental question: how well do these multigrid cycling schemes work?

Predictive Tools: Local Mode Analysis

The previous section dealt with the practical considerations of implementing multi-
grid algorithms. However, it is a common experience to have a multigrid code that
runs, but does not work! Indeed, it can often be puzzling to know what to expect
in terms of e ciency and accuracy. The remainder of this chapter presents some
practical tools for determining whether an algorithm is working properly. First, we
deal with tools for predicting the convergence rates that can be expected from the
basic relaxation methods applied to standard problems.

Recall from Chapter 2 that the asymptotic convergence factor of a relaxation
scheme is the spectral radius (the largest eigenvalue magnitude) of the correspond-
ing iteration matrix. We also de“ned the smoothing factor as the convergence factor
associated with the oscillatory modes only. Because eigenvalue calculations can be
di cult, this approach to “nding convergence factors is limited to fairly simple
iterations applied primarily to model problems.

We now present a more versatile approach for approximating convergence and
smoothing factors calledlocal mode analysis(or normal mode analysisor Fourier
analysis). The goal of this section is rather modest: we show how to apply the basic
procedure to some prototype problems and then point the way to more advanced
calculations. In its full generality, local mode analysis can be applied to general
operators and to a wide class of relaxation schemes on one or more levels. With
this generality, local mode analysis is a powerful predictive tool that can be used
to compare multigrid performance with theoretical expectations.

The original proponent of local mode analysis was Achi Brandt, who expressed
its signi“cance by saying that

...the main importance of the smoothing factor is that it separates the
design of the interior relaxation from all other algorithmic questions.
Moreover, it sets an ideal “gure against which the performance of the
full algorithm can later be judged. [4]
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Local mode analysis begins with the assumption that relaxation is a local pro-
cess: each unknown is updated using information from nearby neighbors. Because
it is a local process, it is argued that boundaries and boundary conditions can be
neglected if we are considering a few relaxation sweeps at interior points. For this
reason, the “nite domain of the problem is replaced by an in“nite domain.

As before, we are interested in how a particular relaxation scheme acts on the
errors in an approximation. Assume that relaxation is a linear process and denote
the associated matrix by R. Let e(™) denote the algebraic error at themth step of
relaxation. Recall (Chapter 2) that the error itself evolves under the action of R:

eMD = Re(™,

The approach of local mode analysis is to assume that the error consists of Fourier
modes and to determine how relaxation acts on those modes. The Fourier modes
we encountered in Chapter 2 have the formw; = sin(%), where the wavenumber

k is an integer between 1 andn. This means that the term = kT runs roughly
from 0 to . With the new assumption of an in“nite domain (no boundaries or
boundary conditions to satisfy), the Fourier modes need not be restricted to dis-
crete wavenumbers. Instead, we consider modes of the fornw; = e/ , where the
wavenumber can take on any value in the interval (S, ]. (For the remainder
of the chapter, we let = S1 to avoid confusingi with the grid indices.) Notice
that the mode corresponding to a particular has a wavelength of%; values of

| | near zero correspond to low-frequency waves; value ¢f| near correspond to
high-frequency waves. The choice of a complex exponential makes computations
much easier and accounts for both sine and cosine terms.

An important point should be mentioned here. Local mode analysis is not
completely rigorous unless the Fourier modes are eigenvectors of the relaxation
matrix, which is not generally the case. However, the analysis is useful for the high
frequency modes of the error, whichdo tend to resemble the eigenvectors of the
relaxation matrix very closely. For this reason, local mode analysis is used for a
smoothing analysis of the high frequency modes.

With these ground rules, we are ready to apply the method. We begin with
one-dimensional problems and assume that the error at thenth step of relaxation
at the j th grid point consists of a single mode of the form

d" = A(m)e! , where $§ < . (4.1)

The goal is to determine how the amplitude of the mode A(m), changes with each
relaxation sweep. In each case we consider, the amplitudes at successive steps are
related by an expression of the form

A(m+1)= G( )A(m).

The function G that describes how the error amplitudes evolve is called theam-
pli“cation factor . For convergence of the method, we must havéG( )| < 1 for
all . As we have seen, relaxation is used in multigrid to eliminate the oscillatory
modes of the error. Therefore, the quantity of interest is really the smoothing fac-
tor, which is found by restricting the ampli“cation factor, G( ), to the oscillatory
modes, | | . Speci“cally, we de“ne the smoothing factor as

p= max |G )l

2
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This is the factor by which we can expect the oscillatory modes to be damped (at
worst) with each relaxation sweep. With these de“nitions, it is best to proceed by
example.

Example: One-dimensional problems. Consider the one-dimensional model
problem 3
Su (x)+ c(x)u(x) = f(x).

i ximation to u(x;7), we discretize the problem with the usual
second-order “nite-di erence approximations and apply weighted Jacobi relaxation.
This results in the familiar Jacobi updating step

ij+1 = m(vlmgl + anll + h2f1)+ (l g )Vm, (42)
where ¢ = c¢(x;j). Knowing that the‘ﬁ;ror, g = uéq ?/3 vj, is also governed by the
same weighted Jacobi relaxation, can write the updating step for the error at
the j th grid point as (Exercise 6)

= g @ T @S e 4.3)
Assume now that the error consists of a mode of the form (4.1) and substitute it
into (4.3). Letting ¢ =0 for the moment, we have

A(m+1)ej - §$A(m)$/§(j+l) Ele(iél) )) +(1 8 )A(m)ej

\

2el cos

As indicated, the Euler formula for cos allows for some simpli“cation. Collecting
terms now leads to

A(m+1)el = Am)@AS %_Sggos Z)ej
Zsinz(/_z)

Canceling the common terme!  and using the indicated trigonometric identity, we
can write the following relationship between successive amplitudes:

Am+1)= 182 sin? 5 A(m) G( )A(m), where S <

The ampli“cation factor G( )=1 S 2 sin?(/ 2) appears naturally in this calcula-
tion and it should look familiar. In this case, we have just reproduced the eigenvalue
calculation for the weighted Jacobi iteration matrix (see Chapter 2); that is, if we
make the substitution | = % then G( k) isjust the kth eigenvalue of the Jacobi
iteration matrix. As we know, |G( )| < 1 provided 0< 1; with = % we have
the optimal smoothing factor

1
p=0G 5 = |G( )|—§-

A similar calculation can be done with Gauss...Seidel. The updating step for the
error at the jth grid point now appears as (Exercise 7)

m+1
me _ Ss1 G

& T T2agne (4-4)

+—


stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Text Box
for approximating the exact discrete solution, uj:

stevem
Pencil

stevem
Text Box
algebraic


A Multigrid Tutorial 51

1

0.9

0.8

0.71

0.6

05f

04r

0.5 1 15 2 25 3 35

Figure 4.2: The ampli“cation factor, |G( )|, for the Gauss...Seidel method applied to
the one-dimensional problemSu (x) = f (x). The graph is symmetric about =0.

The smoothing factor isp = |G(3)| = % =0.45.

Note that because we sweep across the grid from left to right, the previous (S 1)st)
component has already been updated. Again we assume that the errors have the
form (4.1) and substitute. Assuming for the moment that ¢; = 0, we “nd that the
amplitudes are related by (Exercise 7)

A(m+1)= A(m) G( )A(m), where S <

e
2S €S
To “nd the smoothing factor from the complex ampli“cation factor, it is easiest to
plot |G( )|, as shown in Fig. 4.2. A bit of analysis reveals that

=0.45

-
I
>+ *
(@)
|
I
cn|| =

A subtle point could be made here. The ampli“cation factor, G( ), gives the
(complex) eigenvalues of the Gauss...Seidel iteration matrix, not on a bounded
domain with speci“ed boundary conditions, but on an in“nite domain. This cal-
culation di ers from the eigenvalue calculation of Chapter 2, in which the eigen-
values for a bounded domain were found to be real. For this reason, the ampli“ca-
tion factor gives only an estimate of the smoothing factors for a bounded domain
problem.

We can use the above example to illustrate how local mode analysis works with
a variable coe cient operator. Suppose that ¢(x) > 0 on the domain. To avoid
working with a di erent ampli“cation factor at every grid point, the practice is to
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«freezeZ the coe cient, ¢(x), at a representative valuecy, = ¢( ), for some in the
domain (often the minimum or maximum value of ¢(x) on the domain). With the
weighted Jacobi iteration, the ampli“cation factor now appears as

2

:]_v S =
G() S 82+coh2C0

S

The idea is to “nd the value of ¢y, over all possible c( ), that gives the worst
(most pessimistic) smoothing factor. Occasionally, this calculation can be done
analytically; more typically, it is done numerically by choosing several dierent
possible values ofty. We can rewrite this ampli“cation factor as

G()= Go( )3 C"Thzcos(/’)ﬁ+ OU¥)

where Go( ) is the ampli“cation factor for the case that ¢(x) = 0. In this form, we
see that the e ect of the variable coe cient is insigni“cant unless ¢y is comparable
to hS2. There is a more general principle at work here: usually the lower order
terms of the operator can be neglected with impunity in local mode analysis.

Local mode analysis can be extended easily to two or more dimensions. In two
dimensions, the Fourier modes have the form

el = Am)el ko), (4.5)

whereS < 1, » are the wavenumbers in thex- and y-directions, respectively.
Substituting this representation into the error updating step generally leads to an
expression for the change in the amplitudes of the form

Am+1)= G( 1, 2)A(m).

The ampli“cation factor now depends on two wavenumbers. The smoothing factor
is the maximum magnitude of the ampli“cation factor over the oscillatory modes.
As we see in Fig. 4.3, the oscillatory modes correspond tg | | for either
i=1ori=2;thatis,

pH=max [G( 1, 2)|

2] il
Example: Two-dimensional problems. Consider the model problem
U + Uyy = F(X,Y)

on a rectangular domain with a uniform grid in both directions. Applying the
weighted Jacobi method, thﬁ\error satis“es (Exercise 8)

(m+1) _ (m) (m) (m) (m) & (m)
€k =2 ejSl,k+ejTl,k+ej,l<é1+ej,k+1 +(1S ey - (4.6)

Substituting the Fourier modes (4.5) into the error updating equation, we “nd that
(Exercise 8)

Am+1)= 18  sin? ?1 + sin? 72 A(m)  G( 1, 2)A(m).

Two views of the ampli“cation factor are given in Fig. 4.4 for the case that = g.
In the left “gure, each curve shows the variation of G over 0O 2 for “xed
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Figure 4.3: The oscillatory modes in two dimensions correspond to the wavenumbers
5 | il< foreitheri=1 ori=2; this is the region outside the dashed box.

@ ' ' (b)

Figure 4.4: (a) Ampli“cation factor, G( 1, »2), for the weighted Jacobi method ap-
plied to the model problem in two dimensions, shown as individual curves of “xed
1 (1=0 atthetop and ; = at the bottom). (b) Same ampli“cation factor
shown as a surface over the regiof0, ]x [0, ]. The picture is symmetric about

both the ;- and »-axes.

values of ;; the upper curve corresponds to ; = 0 and the lower curve corresponds
to , = . Clearly, the ampli“cation factor decreases in magnitude as the modes
become more oscillatory. The right “gure shows the same ampli“cation factor as a
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Figure 4.5: Ampli“cation factor, |G( 1, 2)|, for the Gauss...Seidel method applied to
the model problem in two dimensions, shown as a surface over the regif# , § ]x

/RT .

surface over the region [0 ]x [0, ]. (The surface is symmetric about both axes.)
Some analysis or experimentation reveals that the best smoothing factor is obtained
when = zanditisgivenby u= |[G(+ , = )| = 0.6 (Exercise 8). This means that
if we use the Jacobi scheme with = g—‘, then we expect a reduction in the residual
norm by approximately a factor of 0.6 per relaxation sweep. A V(2,1)-cycle, for
example, should have a convergence factor of about® = 0.216.

A similar calculation can be done for the Gauss...Seidel method applied to the
model problem. The error updating equation is (Exercise 9)

ej(m+1) _ ej”é’llk) + ej(Tl),k 1’1 ej(rl?;;lf + ej(,rl;nll _ @.7)

Here we assume that the unknowns have a lexicographic ordering (in order of in-
creasingj and k); thus, the unknowns precedingey are updated and appear at

the (m + 1)st step. Once again, we substitute the modes given in (4.5). The
ampli“cation factor is most easily expressed in complex form as (Exercise 9)

el+e?
455 1SS 2
The magnitude of this function is plotted over the region [S, S 1x [, ]in Fig.
4.5.

Some computation is required to show that

G(1, 2)=

1+
G( 1 2P = =
9S 8cos(3) cos(z) + cos
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The Discrete L2 Norm. Another norm that is particularly appropriate for
measuring errors in numerical calculations is thediscrete L? norm. If the vector
uM is associated with ad-dimensional domain with uniform grid spacingh, then
its discrete L2 norm is given by

12
u" p= h? o (u)? :
i

which is the usual Euclidean vector norm, scaled by a factor i{%) that depends
on the geometry of the problem. This scaling factor is introduced to make the
discrete L? norm an approximation to the continuous L2 norm of a function

u(x), which is given by

+ 12
u,= u(x)dx

For example, with d = 1, let u(x) = x™ 2, wherem > S1 is an integer.

Also, let = [0 ,1] with grid spacing h = % Then the associated vector is

uM = x™ 2 = (ih)™ 2. The continuous L2 norm is
+ 1/2
! m/ 2 1
0 m+1
while the corresponding discreteL? norm is
1/ 2
hoo 1

M= (Y2

i=1 m+1

In this case, the discretel 2 norm approaches the continuoud_2 norm ash 0,
which occurs only because of the scaling (see Exercise 18).

where = 1+ ,and = 1S ,. Restricting the ampli“cation factor to the
oscillatory modes, a subtle analysis [25] reveals that the smoothing factor is given

by
H=G —,cos? g :}.

These examples illustrate local mode analysis for relatively elementary prob-
lems. The same technique can be extended, usually with more computation and
analysis, to anisotropic equations (for example,u, + uyy, = f) and line relaxation,
as discussed in Chapter 7. It can be used for more general operators (for example,
convection-di usion) and for systems of equations. It can also be applied to other
relaxation methods with di erent orderings, some of which lead to new compli-
cations. For example, red-black relaxation has the property that Fourier modes
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become mixed in pairs (in one dimension) or in groups of four (in two dimensions).
Thus, the ampli“cation factor is replaced by an ampli“cation matrix . The exten-
sion to the coarse-grid correction scheme [10] on two levels requires an analysis of
interpolation and restriction in a Fourier setting, a subject discussed in the next
chapter.

Diagnostic Tools

As with any numerical code, debugging can be the most di cult part of creating
a successful program. For multigrid, this situation is exacerbated in two ways.
First, the interactions between the various multigrid components are very subtle,
and it can be di cult to determine which part of a code is defective. Even more
insidious is the fact that an incorrectly implemented multigrid code can perform
quite well,sometimes better than other solution methods! It is not uncommon for
the beginning multigrid user to write a code that exhibits convergence factors in the
0.2...0.3 range for model problems, while proper tuning would improve the factors
to something more like 0.05. The di culty is convincing the user that 0.2...0.3 is
not good enough. After all, this kind of performance solves the problem in very few
cycles. But the danger is that performance that is below par for model problems
might really expose itself as more complexities are introduced. Diagnostic tools
can be used to detect defects in a multigrid code,or increase con“dence in the
observed results.

Achi Brandt has said that <the amount of computational work should be pro-
portional to the amount of real physical changes in the computed systemZ and
estalling numerical processes must be wrong.Z These statements challenge us to
develop codes that achieve the best possible multigrid performance. The following
short list of diagnostic tools should help to achieve that goal. A systematic ap-
proach to writing multigrid codes is also given by Brandt in the section «Stages in
Developing Fast SolversZ in his 1984uide [4].

Of course, no short list of debugging techniques can begin to cover all contin-
gencies. What we provide here is a limited list of tricks and techniques that can
be useful in evaluating a multigrid code; they often tell more about the symptoms
of a defective code than thecauses Nevertheless, with increasing experience, they
can guide the user to develop properly tuned codes that achieve multigrides full
potential.

€ Methodical Plan.  The process of testing and debugging a multigrid code should
be planned and executed methodically. The code should be built in a modular
way so that each component can be tested and integrated into the evolving
code with con“dence. It is best to test the algebraic solver “rst (for example,
V-cycles); then the discretization can be tested, followed by the FMG solver,
if it is to be used. In other words, the initial focus should be on ensuring that
the basic cycling process solves the discrete system up to expectations. This
solver can then be used to test discretization accuracy. Poor discretization,
especially at boundaries, is often the source of multigrid ine ciency. There-
fore, it is important to test the discretization, perhaps with another solver,
when multigrid troubles persist. FMG requires an e cient VV-cycle or W-cycle
solver and an accurate discretization method. This means that FMG should
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beimplemented and tested after the solver and the discretization components
are veri‘ed (see last item).

€ Starting Simply.  This recommendation is perhaps the most obvious: it is al-
ways best to begin with basic methods applied to small, simple problems.
Simpler cases expose troubles more clearly and make it easier to trace the
sources. Test problems should consist of either a discrete system with a known
solution or the simplest form of the desired PDE (usually this means constant
coe cients, no convection, no nonlinearity, and trivial boundary conditions).
A good sequence is to test the solver on the coarsest grid that your code
accepts, then add one “ner level to test the two-grid scheme thoroughly. One
can then proceed progressively and methodically to larger problems. Once
the simplest cases show expected performance, complexities can be added one
at a time.

€ Exposing Trouble. Itis critical to start with simple problems so that potential
di culties are kept in reserve. At the same time, it is also important to avoid
aspects of the problem that mask troubles. For example, reaction terms can
produce strong enough diagonal dominance in the matrix that relaxation by
itself is e cient. These terms should be eliminated in the initial tests if
possible. Similarly, if the matrix arises from implicit time-stepping applied to
a time-dependent problem, then a very large or even in“nite time step should
be taken in the initial tests.

€ Fixed Point Property. Relaxation should not alter the exact solution to the
linear system: it should be a “xed point of the iteration. Thus, using the
exact solution as an initial guess should yield a zero residual beforend af-
ter the relaxation process. Furthermore, the coarse-grid problem takes the
transferred residual as its right side, which means that its solution should
also be zero. Because the coarse-grid problem uses zero as the initial guess,
it is solved exactly, and the correction passed up to the “ner grid is also zero.
Therefore, neither relaxation nor coarse-grid correction should alter the exact
solution.

This property can be checked by creating a right-side vector corresponding
to the known solution (of the linear system) and then using that solution as
an initial guess. The relaxation module should be tested “rst, after which the
V-cycle can be tested. If the output from either di ers by more than machine
precision from the input, there must be an error in the code.

€ Homogeneous Problem.  Applying a multigrid V-cycle code to a homogeneous
problem has the advantage that both the norm of the residual and the norm
of the error are computable and should decrease to zero (up to machine pre-
cision) at a steady rate; it may take eight to ten V-cycles for the steady rate
to appear. The predictive mode analysis tools described above can be used
to determine the factor by which the residual norm should decrease; it should
tend to the asymptotic factor predicted by the smoothing analysis.

€ Zero Residuals. A useful technique is to multiply the residual by zero just prior
to transferring it to the coarse grid. As in the homogeneous problem, the
coarse-grid problem now has a zero right side, so its solution is zero. Because
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the initial guess to the coarse-grid problem is zero, it is solved exactly, and the
correction (also zero) is passed back to the “ne grid. The utility of this test is
that the only part of the code now a ecting the approximation is relaxation
on the “ne grid. This means that the sequence of approximations generated
by V( 1, 2)-cycles should be identical to the approximations generated using
only relaxation; this is an easy property to test.

€ Residual Printout. A good technique for monitoring performance is to print
out the norm of the residual on each level after relaxation on both the descent
and ascent legs of the V-cycle. Here again, it is important that the discrete
L2 norm be used, because its scaling makes the error norms comparable from
one level to the next. The residuals should behave in a regular fashion: on
each level, the sequence of norms should decline to machine zero at a steady
rate as the cycling continues. The norm on each level should be smaller
after post-relaxation (on the upward leg) than it was after pre-relaxation (on
the downward leg). This ensures that the coarse-grid correction/relaxation
tandem is working on each level.

Because most multigrid codes are recursive in nature (although they may not
actually use recursive calls), it is important to note that seeing an abnor-
mal residual pattern on a given level does not necessarily mean the code is
somehow wrong on that level. More frequently, the "aw exists on all levels,
because all levels are treated by the same code. Indeed, the most common
culprits are the intergrid transfer operators and boundary treatments. Moni-
toring the sequence of residuals, however, can be more helpful in ascertaining
the presence of a problem than simply observing the overall convergence rate
on the “ne grid.

€ Error Graph.  Solver trouble that seems impervious to diagnosis can sometimes
be resolved with a picture of the error. Surface plots of the algebraic error
before and after relaxation on the “ne grid can be extremely informative.
Of course, knowledge of the error is required, so solving the homogeneous
problem can be advantageous here. Is the error oscillatory after coarse-grid
correction? Is it e ectively smoothed by relaxation everywhere? Is there
unusual behavior of the error near special features of the domain such as
boundaries or interfaces?

€ Two-Level Cycles.  For any multigrid method to work, it is necessary that the

two-level scheme (relaxation and exact coarse-grid correction) work. A useful
technique is to test the two-level scheme. This may be done by replacing the
recursive call for V-cycles with a direct or iterative solver on the coarse grid.
If an iterative solver is used (many multigrid cycles on the coarse grid might
actually be used here), the coarse-grid problem should be solved very accu-
rately, possibly to machine precision. The correction can then be transferred
to the “ne grid and applied there.

Another useful trick is to use two-level cycling between speci“c pairs of levels.
In particular, if the residual printouts indicate an abnormal residual on a
speci“c level, it is useful to perform two-level cycling between that level and
the level below it (or between that level and the one above it). This may
isolate exactly where the problem occurs.
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€ Boundaries. One of the most common sources of errors in multigrid programs
is the incorrect treatment of boundary data. Generally, interpolation and re-
striction stencils must be altered at boundary points and neighbors of bound-
ary points. Issues involved here are often very subtle and errors can be di cult
to detect. Among the most common indicators is that V-cycles will show con-
vergence factors at or near the predicted values for several V-cycles, only to
have convergence slow down and eventually stall with continued cycling. The
reason is that early in the process, errors at the boundaries have little e ect,
since the boundary is a lower-dimensional feature of the problem. However,
as the cycling continues, the errors from the boundaries propagate into the
interior, eventually infecting the entire domain.

One of the most useful techniques in building or debugging a multigrid code is
to separate the e ects of the boundary entirely. This can be done by replacing
the given boundary conditions by periodic conditions. A periodic boundary
value problem should attain convergence factors near those predicted by mode
analysis, because the assumptions underlying the Fourier analysis are more
closely met. Once it is determined that periodic boundary conditions work
properly, the actual boundary conditions may be applied. If the convergence
factors degrade with continued cycling, then the treatment at the boundaries
may be suspected. A useful technique is to apply extra relaxation sweeps
at the boundaries. Often, the extra relaxations will overcome any boundary
di culties and the overall results will approach the ideal convergence factors.

If this does not occur, then a very careful examination of how each piece of
the code treats the boundaries is in order. Special attention should be paid to
the intergrid transfer operators at and near the boundaries. Just as it is easy
to obtain discretizations that are of lower order on the boundary than the
interior, it is also easy to produce intergrid transfers that fail to be consistent
in their treatment of boundary data.

€ Symmetry. Matrices that arise in the discretization of self-adjoint problems
are often symmetric. Such is the case for most of the matrices featured in
this book. Many coarsening strategies preserve matrix symmetry when it is
present, as does the so-called Galerkin scheme introduced in the next chapter.
Inadvertent loss of symmetry often occurs at boundaries, especially at corners
and other irregularities of the domain. This loss can lead to subtle di culties
that are hard to trace. If the “ne- and coarse-grid matrices are supposed to
be symmetric, then this should be tested. This is easily done by comparing
entriesi,j andj,i of the matrix on each grid.

€ Compatibility Conditions. We have not yet discussed compatibility condi-
tions, but they arise in the context of Neumann boundary conditions (among
other settings), which we discuss in Chapter 7. A compatibility condition is
one that must be enforced on the right-side vector to ensure that the problem
is solvable. A common source of error is that, while great care may be taken
to enforce a compatibility condition on the “ne grid, it might not be enforced
on the coarse grids. Sometimes, the compatibility condition is enforced au-
tomatically in the coarsening process. However, round-o errors may enter
and compound themselves as coarsening proceeds, so it may be worthwhile
to enforce the condition explicitly on all coarse grids.
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€ Linear Performance by Nonlinear Codes. We describe the FAS (Full Ap-

proximation Scheme) for nonlinear problems in Chapter 6. A useful technique
for debugging an FAS code is to begin by applying it to a linear problem. FAS
reduces to standard multigrid in this case, so an FAS code should exhibit
standard performance on these problems. FAS codes should be written so the
nonlinearity can be controlled by a parameter: setting the parameter to zero
yields a linear problem, while increasing the parameter value strengthens the
nonlinearity. As the nonlinearity increases, the performance of FAS should
not, in general, degrade signi“cantly (at least for reasonable values of the
parameter).

€ Solutions to the PDE. A known solution to the underlying PDE can be very
useful in assessing whether a multigrid code is working as it should. The
“rst thing to consider is whether the solution computed from the multigrid
code looks like a sampled version of the continuous solution. The “rst cur-
sory examination can be qualitative: Does the overall shape of the computed
solution resemble the exact solution? Are the peaks and valleys in the right
places?

If the qualitative comparison is good, more quantitative tests can be per-
formed. First, the norm of the error (the di erence between the sampled
continuous solution and the approximation) should be monitored as a func-
tion of the number of V-cycles. The discreteL? norm is usually appropriate
here. This norm should behave in very speci“c ways, depending on the accu-
racy of the discretization. If the known solution has no discretization error
(for example, if second-order “nite di erences are used and the known so-
lution is a second degree polynomial), then the error norm should be driven
steadily to machine zero with continued V-cycles. Indeed, the rate at which it
goes to zero should be about the same rate at which the norm of the residual
declines, and it should re"ect the predicted asymptotic convergence factor.

On the other hand, if discretization error is present, then we expect the norm
to stop decreasing after several V-cycles, and it may even grow slightly. This
indicates (in a correctly working code) that we have reached thdevel of dis-
cretization error (roughly the di erence between the continuous and discrete
solutions, as discussed in Chapter 5). Here it is useful to solve the same
problem repeatedly, with the same right side, on a sequence of grids with de-
creasing grid spacingh. If the discretization is, for example, O(h?) accurate
in the discrete L2 norm, then the error norms should decrease roughly by a
factor of four each time h is halved. Naturally, the “t will not be perfect, but

if the code is working correctly, the trend should be very apparent.

€ FMG Accuracy. The basic components of an e ective FMG scheme are an
e cient V-cycle (or W-cycle) solver and an accurate discretization. The idea
is to assess the discretization error for a given problem using a sequence
of increasingly “ner grids. This can be done by choosing a PDE with a
known solution and solving each level in turn, starting from the coarsest.
Each level should be solved very accurately, perhaps using many V-cycles,
testing the residual norm to be sure it is small. The computed solution can
then be compared on each level to the PDE solution, evaluated at the grid
points, using the discrete L? norm. These comparisons yield discretization
error estimates on each level. FMG can then be tested by comparing its
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computed approximation on each level to the PDE solution. The ratio of
these estimates to the discretization error estimates should be close to one as
the mesh size decreases. This signals that FMG is achieving accuracy to the
level of discretization error. Properly tuning the FMG scheme by choosing the
right number of V-cycles, pre-smoothing sweeps, and post-smoothing sweeps
may be required to achieve this property.

Having discussed a variety of practical matters, it is now time to observe these
ideas at work in some numerical experiments.

Numerical example.  The “rst experiment deals with the one-dimensional model
problem Au = 0. The weighted Jacobi method with = % is applied to this
problem on a grid with n = 64 points. The initial guess consists of two waves with
wavenumbersk = 3 and k = 10. For purposes of illustration, we implemented
a modi“ed V-cycle algorithm. Called the immediate replacement algorithm this
version makes an error correction directly to the “ne grid after every coarse-grid
relaxation. In this way, it is possible to see the immediate e ect of each coarse-
grid correction on the full, “ne-grid solution. Although this version is algebraically
equivalent to the standard algorithm, it is impractical because it involves an inor-
dinate number of intergrid transfers. Nevertheless, it is useful for demonstrating
algorithm performance because it allows us to monitor the e ects of individual
coarse-grid operations on the error.

Figures 4.6(a, b) show the course of the algorithm by plotting the maximum
norms of the error and the residual after each coarse-grid correction. The algorithm
progresses from left to right in the direction of increasing work units (WUs). Notice
that the data points are spaced nonuniformly due to the di erent amount of work
done on each level.

Figure 4.6(a) illustrates “ve full V-cycles with ; = , = 1 relaxation sweep
on each grid. This computation requires roughly 15 WUs. In these 15 WUs, the
initial error norm is reduced by about three orders of magnitude, giving an average
convergence rate of about 0.2 decimal digits per WU. Figure 4.6(b) shows the result
of performing V-cycles with ; = , = 2 relaxation sweeps on each level. In this
case, three V-cycles are done in 20 WUs, giving an average convergence rate of
about 0.15 decimal digits per WU. In this case, it seems more e cient to relax
only once on each level. For another problem, a di erent cycling strategy might
be preferable. It is also possible to relax, say, twice on the sdescentZ phase of the
V-cycle and only once on the sascentZ phase.

The curves of these two “gures also show a lot of regular “ne structure. Neither
the error norm nor the residual norm decreases monotonically. The error curve
decreases rapidly on the descentZ to the coarsest grid, while the residual curve
decreases rapidly on the eascentZ to the “nest grid. A detailed account of this “ne
structure should be left to multigrid a“cionados!

The previous experiment indicates that the choice of cycling parameters
( 0, 1, 2) for multigrid schemes may not be obvious. They are often chosem
priori , based on analysis or prior experimentation, and they remain “xed through-
out the course of the algorithm. For certain problems, there are heuristic methods
for changing the parameters adaptively [4].
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We have devoted much attention to the one-dimensional model problem with
the understanding that many of the algorithms, ideas, and results extend directly
to higher dimensions. It is useful to mention a few issues that arise only in higher-
dimensional problems. For example, the basic relaxation schemes have many more
variations. In two dimensions, we can relax by points (updating one unknown
at a time in one-dimensional problems) or by lines. In line relaxation, an entire
row or column of the grid is updated at once, which generally requires the direct
solution of a tridiagonal system for each line. Line relaxation permits additional
options, determined by orderings. The lines may be swept forward, backward, or
both (symmetric relaxation). The lines may be colored and relaxed alternately
in a red-black fashion (often calledzebra relaxatior). Or the grid may be swept
alternately by rows and then by columns, giving analternating direction method.
Line relaxation will be discussed further in Chapter 7.

These ideas are further generalized in three dimensions. Here we can relax by
points, lines, or planes, with various choices for ordering, coloring, and direction.
There are also ways to incorporate fast direct solvers for highly structured subprob-
lems that may be imbedded within a relaxation sweep. Many of these possibilities
have been analyzed; many more have been implemented. However, there is still
room for more work and understanding.

Numerical example.  We conclude this chapter with an extensive numerical ex-
periment in which several multigrid methods are applied to the two-dimensional
problem

!
Su S uyy 2 (1S6x?)y?(1Sy?)+(1 Sey?)x?(1Sx?) in , (4.8)
u =0 on ,

where is the unit square, {(x,y) : 0 <x< 1, 0<y < 1}. Knowing that the
analytical solution to this problem is

u(x,y) = (x> S xH)(y* S y?),

errors can be computed.

It should be mentioned in passing that the convergence properties of the basic
relaxation methods carry over directly from one to two dimensions when they are
applied to the model problem. Most importantly, weighted Jacobi and Gauss...Seidel
retain the property that they smooth high-frequency Fourier modes e ectively and
leave low-frequency modes relatively unchanged. A guided eigenvalue calculation
that leads to these conclusions is given in Exercise 12.

We “rst use red-black Gauss...Seidel relaxation in a V-cycle scheme on “ne grids
with n = 16, 32, 64, and 128 points in each direction (four separate experiments).
Full weighting and linear interpolation are used. We let e be the vector with
componentsu(x;) S v!' and compute its discreteL > norm of the error, - . Because
the error is not available in most problems, a more practical measure, the discrete
L2 norm of the residual r", is also computed.

Table 4.1 shows the residual and error norms after each V-cycle. For each V-
cycle, the two columns labeledratio show the ratios of r" , and e ;, between
successive V-cycles. There are several points of interest. First consider the column
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n=16 n=32

V-cycle Mo ratio en ratio "o ratio en ratio
0 6.75e+02 5.456501 2.60e+03 5.616501
1 4.01e+00 0.01 1.05602 0.02 | 1.97e+01 0.01 1.38802 0.02
2 111501 0.03 4.10804 0.04 | 5.32¢501 0.03 6.32604 0.05
3 3.966503 0.04 1.05804 0.26 | 2.066502 0.04 4.41&05 0.07
4 1636504 0.04 1.03604 0.98 | 9.796504 0.05 2.59&05 0.59
5 7.456506 0.05 1.03804 1.00 | 5206505 0.05 2.58805 1.00
6 3.756507 0.05 1.03804 1.00 | 2.96506 0.06 2.58605 1.00
7 2.086508 0.06 1.03804 1.00 | 1.776507 0.06 2.58805 1.00
8 1246509 0.06 1.03804 1.00 | 1.106508 0.06 2.58&605 1.00
9 7.746511 0.06 1.03804 1.00 | 7.166510 0.06 2.58605 1.00
10 4996512 0.06 1.03804 1.00 | 4796511 0.07 2.58805 1.00
11 3.276513 0.07 1.03804 1.00 | 3.296512 0.07 2.58805 1.00
12 2.186514 0.07 1.03804 1.00 | 2.31813 0.07 2.58505 1.00
13 2.33¢515 0.11 1.03804 1.00 | 1.80é514 0.08 258805 1.00
14 1.04515 0.45 1.03804 1.00 | 6.476515 0.36 2.58605 1.00
15 6.616516 0.63 1.03804 1.00 | 5.11815 0.79 2.58505 1.00

n =64 n= 128

V-cycle o ratio e n ratio o ratio en ratio
0 1.06e+04 5.726&01 4.16e+04 5.74601
1 7.56e+01 0.01 1.39802 0.02 | 2.97e+02 0.01 1.39602 0.02
2 2.07e+00 0.03 6.87804 0.05 | 8.25e+00 0.03 6.92604 0.05
3 8.306502 0.04 4.21805 0.06 | 3.376501 0.04 4.22605 0.06
4 4106503 0.05 7.05606 0.17 | 1.656502 0.05 3.28606 0.08
5 2.296504 0.06 6.45806 0.91 | 8.996504 0.05 1.63806 0.50
6 1.396505 0.06 6.44806 1.00 | 5.29¢505 0.06 1.61&06 0.99
7 8.926507 0.06 6.44806 1.00 | 3.296506 0.06 1.61806 1.00
8 5.976508 0.07 6.44&806 1.00 | 2.14807 0.06 1.61806 1.00
9 4106509 0.07 6.44806 1.00 | 1436508 0.07 1.61806 1.00
10 2.876510 0.07 6.44806 1.00 | 9.826510 0.07 1.61806 1.00
11 2.046511 0.07 6.44&806 1.00 | 6.84511 0.07 1.61806 1.00
12 1466512 0.07 6.44806 1.00 | 4.83¢512 0.07 1.61&06 1.00
13 1.086513 0.07 6.44806 1.00 | 3.646513 0.08 1.61&06 1.00
14 2606514 0.24 6.44806 1.00 | 1.03813 0.28 1.61806 1.00
15 2306514 0.88 6.44806 1.00 | 9.196514 0.89 1.61806 1.00

Table 4.1: The V(2,1) scheme with red-black Gauss...Seidel applied to a two-
dimensional problem on “ne grids withn = 16, 32, 64, and 128 points. The discrete

L2 norms of the residual and error are shown after eacl-cycle. Theratio columns
give the ratios of residual and error norms of successiv¥ -cycles. The in the error
ratio column indicates that the level of discretization error has been reached.
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of error norms. For each of the four grid sizes, the error norms decrease rapidly and
then level o abruptly as the scheme reaches the level of discretization error. We
con“rm this by comparing the “nal error norms, e p, on the four grids (1.03eS 04,
2.58eS 05, 6.44eS 06, and 1.61eS 06). These norms decrease by a factor of four
as the resolution doubles, which is consistent with the second-order discretization
we have used. The residual norms also decrease rapidly for 12 to 14 V-cycles,
with the value in the corresponding ratio column reaching a nearly constant value,
until the last few cycles. This constant value is a good estimate of the asymptotic
convergence factor of the scheme (approximately 0.07) for this problem. The sharp
increase in the residual norm ratio during the last two cycles re”ects the fact that
the algebraic approximation is already accurate to near machine precision.

In the course of our development, we described several dierent schemes for
relaxation, restriction, and interpolation. Speci“cally, we worked with weighted
Jacobi, Gauss...Seidel, and red-black Gauss...Seidel relaxation schemes; injection and
full weighting restriction operators; and linear interpolation. We now investigate
how various combinations of these schemes perform when used in V-schemes applied
to model problem (4.8).

For completeness, we introduce two more schemelsalf-injection and cubic inter-
polation. Half-injection, as the name implies, is simply de“ned in one dimension by
v]-2h =0 .SVQJ- , with a similar extension to two dimensions. Half-injection is designed
for use on the model problem with red-black relaxation and may be understood
most easily by considering the one-dimensional case. The idea is that because one
sweep of the red-black relaxation produces zero residuals at every other point, full-
weighting and half-injection are equivalent. We will see shortly that the scheme
indeed works well for this case.

Cubic interpolation is one of the many interpolation schemes that could be
applied and is probably the most commonly used in multigrid after linear interpo-
lation. As its name implies, the method interpolates cubic (or lower degree) poly-
nomials exactly. It represents a good compromise between the desire for greater
interpolation accuracy and the increase in computational cost required to achieve
the desired accuracy. In one dimension, the basic cubic interpolation operator is
given by

h — 2h
vy = v,
1 -
h — 2h 2h 2h 2h
V21'+1 - _16 SVJél"'gV] +9Vj+1 SVJ'+2

Table 4.2 gives comparative results for many experiments. For each of the Ja-
cobi, Gauss...Seidel, and red-black Gauss...Seidel relaxation schemes, we performed
six V-cycles, using all possible combinations of the half-injection, injection, and full
weighting restriction operators with linear or cubic interpolations. In each case, the
experiment was performed using (1,0), (1,1), and (2,1) V-cycles, where {, ) indi-
cates ; pre-correction relaxation sweeps and , post-correction relaxation sweeps.
The entries in the table give the average convergence factor for the last “ve V-cycles
of each experiment. A dash indicates that a particular scheme diverged. The en-
tries in the cost line re”ect the cost of the method, in terms of operation count,
shown as a multiple of the cost of the (1,0) scheme using linear interpolation and
injection. Notice that the cost is independent of the di erent relaxation schemes,
as they all perform the same number of operations.
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Relaxation Injection Full Weighting Half-Injection

(1, 2) Scheme Linear Cubic | Linear Cubic | Linear Cubic
(1,0) Jacobi .. | 0.49 0.49 | 0.55 0.62
GS 0.89 0.66 | 0.33 0.34 | 0.38 0.37

RBGS .. | 021 0.23 | 0.45 0.42

Cost 1.00 125 | 1.13 139 | 1.01 1.26

(1,1) Jacobi 0.94 0.56 | 0.35 0.34 | 054 0.52
GS 0.16 0.16 | 0.14 0.14 | 0.45 0.43

RBGS ... | 0.06 0.05 | 0.12 0.16

Cost 1.49 1.75 | 1.63 1.88 | 1.51 1.76

(2,1) Jacobi 0.46 0.31 | 0.24 0.24 | 0.46 0.45
GS 0.07 0.07 | 0.08 0.07 | 0.40 0.39

RBGS ... | 0.04 0.03 | 0.03 0.07

Cost 1.99 224 | 212 3.37 | 151 1.76

Table 4.2: Average convergence factors over “v&/-cycles on model problem(4.8)
for various combinations of relaxation, restriction, and interpolation operators. The
dashes indicate divergent schemes. Theost line gives the computational cost of a
V( 1, 2)-cycle scheme using the speci“ed choice of restriction and interpolation, as
a multiple of the cost of a(1,0) V-cycle scheme using injection and linear interpo-
lation.

A few observations are in order. At least for this problem, cubic interpolation
is only noticeably more e ective than linear interpolation when injection is used
as the restriction operator. It is also apparent that half-injection is useful only
with red-black Gauss...Seidel, as expected; even then, several smoothing sweeps
are required. Finally, and not surprisingly, the table indicates that you get what
you pay for: combinations that produce the best convergence factors are also those
with the higher costs. Parameter selection is largely the art of “nding a compromise
between performance and cost.

The “nal set of experiments concerns the e ectiveness of FMG schemes and,
in particular, whether FMG schemes are more or less e ective than V-cycles.
Table 4.3 describes the performance of three FMG schemes. Square grids with
up to n = 2048 points in each direction are used. The FMG(z, ») scheme uses ;
relaxation sweeps on the descent phase ang relaxation sweeps on the ascent phase
of each V-cycle. Red-black Gauss...Seidel relaxation is used with full weighting and
linear interpolation. In each case, only one complete FMG cycle is done.

The table shows the discreteL? norm of the error for each scheme. Evidence
that the FMG code solves the problem to the level of discretization error on each
grid is that the ratio of the error norms between successive levels is roughly 0.25
(for this two-dimensional problem). If the ratio is noticeably greater than 0.25,
the solution is probably not accurate to the level of discretization. Based on this
observation, we suspect that the FMG(1,0) scheme does not solve the problem to
the level of discretization error on any level. This is con“rmed when we observe the
FMG(1,1) and FMG(2,1) schemes, whichdo solve to the level of the discretization
error on all levels. The FMG(2,1) scheme requires more work than the FMG(1,1)
with little gain in accuracy; so it appears that FMG(1,1) is the best choice for this
problem.
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FMG(1,0) FMG(1,1) FMG(2,1) FMG(1,1) | V(2.1) | V(2,1)
N e h ratio e ratio e h ratio wu cycles Wu
2 | 5.86e503 5.86eS 03 5.86eS 03
4 5.37eS03 0.917 | 2.49e503 0.424 | 2.03e503 0.347 712 3 12
8 | 278503 0.518 | 9.12e504 0.367 | 6.68e504 0.328 712 4 16
16 | 1.19eS03 0.427 | 2.52e504 0.277 | 1.72e504 0.257 712 4 16
32 | 4.70eS04 0.395| 6.00eS05 0.238 | 4.00eS05 0.233 712 5 20
64 | 1.77eS04 0.377 | 1.36eS05 0.227 | 9.36eS06 0.234 712 5 20
128 | 6.49e505 0.366 | 3.12e506 0.229 | 2.26e506 0.241 712 6 24
256 | 2.33e505 0.359 | 7.35e507 0.235 | 5.56e507 0.246 712 7 28
512 | 8.26e506 0.354 | 1.77e507 0.241 | 1.38e507 0.248 712 7 28
1024 | 2.90e506 0.352 | 4.35e508 0.245 | 3.44e508 0.249 712 8 32
2048 | 1.02eS06 0.351 | 1.08e508 0.247 | 8.59e509 0.250 712 9 36

Table 4.3: Three di erent FMG schemes applied to the two-dimensional problem

on square grids with up ton = 2048 points in each direction. The FMG( 1, »2)

scheme uses; red-black Gauss...Seidel relaxation sweeps on the descent phase and
» relaxation sweeps on the ascent phase of eathcycle. The discreteL? norm

of the error and the ratio of errors at each grid level are shown. Solution to the
level of discretization error is indicated when theratio column shows a reduction

of at least 0.25 in the error norm. For comparison, the V-cycles column shows the
number of V(2,1)-cycles needed to converge to the level of discretization error, while
the V-cycle WU column shows the number of work units needed to converge to the
level of discretization error.

A useful question is whether an FMG(1,1) scheme is more e cient than, say,
the V(2,1) scheme in achieving a solution accurate to the level of discretization
error. We answer this question by performing the V(2,1) method (as in Table 4.1)
for all grid sizes fromn =4 through n = 2048 (over 4 million “ne-grid points!) and
recording the number of V-cycles required to converge to the level of discretization
error. These results are presented in the second-to-last column of Table 4.3. It is
apparent that the number of cycles required to solve to the level of discretization
error increases with the problem size.

We can now make some comparisons. Recall our discussion of computational
costs earlier in the chapter. We determined that a (1,1) V-cycle ind = 2 dimensions
costs about% WUs (Exercise 3); therefore, a (2,1) V-cycle costs half again as much,
or 4 WU. The last column of Table 4.3 shows the costs in WUs of solving to the
level of discretization error with the V(2,1) scheme on various grids. We also saw
(Exercise 4) that the FMG(1,0) scheme, which did not converge to the level of
discretization error in this case, requires just under 2 WUs, while the FMG(1,1) and
FMG(2,1) schemes, which did achieve the desired accuracy, require approximately
% and 13—6 WUSs, respectively; these costs are the same for all grid sizes. Thus, on all
of the grids shown in Table 4.3, the FMG(1,1) scheme is signi“cantly less expensive
in WUs than the V(2,1) scheme. This con“rms the observation that for converging
to the level of discretization error, full multigrid methods are generally preferable
to simple V-cycles.

Exercises
Data Structures and Complexity

1. Data structures.  Work out the details of the data structures given in Fig.
4.1. Assume that for a one-dimensional problem, the “nest grid hasm S 1 =
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2- S 1 interior points. Let h = % be the grid spacing on ". Let level |

have grid spacing 2°'h. As suggested in the text, store the approximations
vh, v2" .. contiguously in a single arrayv, with the level L values stored in
V1, V2, Va; the level L S 1 values invy, ..., Vs; etc. Use a similar arrangement
for the right-side values ", 2", .... How many values are stored on level,

where 1 | L? What is the starting index in the v array for the level |

values, where 1 | L?

2. Data structure for two dimensions. Now consider the two-dimensional
model problem. The one-dimensional data structure may be retained in the
main program. However, the initial index for each grid will now be di erent.
Compute these indices, assuming that on the “nest grid " there are (n S 1)?
interior points, wheren S 1 =2t S 1.

3. Storage requirements. Verify the statement in the text that for a one-
dimensional problem d = 1), the storage requirement is less than twice that
of the “ne-grid problem alone. Show that for problems in two or more dimen-
sions, the requirement drops to less than;1 of the “ne-grid problem alone.

4. V-cycle computation cost. Verify the statement in the text that a single
V-cycle costs about 4 WUs for a one-dimensionald = 1) problem, about %
WUs for d = 2, and £ WUs for d = 3.

5. FMG computation cost. Verify the statement in the text that an FMG
cycle costs 8 WUs for a one-dimensional problem; the cost is abo@ WUs
for d=2 and 3 WUs for d = 3.

Local Mode Analysis
6. One-dimensional weighted Jacobi.

(a) Verify the Jacobi updating zep (4.2).
(b) Show that the error g = u J-Té v; satis“es (4.3). & U,&
(c) Verify that the ampli“cation factor for the method is given by

G()=1S2 sin? 5
7. One-dimensional Gauss...Seidel.  Verify the error updating step (4.4).
Then show that the ampli“cation factor for the method is given by
e
GO)= sg i
8. Two-dimensional weighted Jacobi.

(a) Verify the error updating step (4.6).
(b) Show that the ampli“cation factor for the method is given by

G(1, 2)=1S sin? 71 +sin? 2
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(c) Show that the optimal smoothing factor is obtained with = % and
that its value is 4 = |[G(x , £ )| = 0.6. Hint: Note that p( ) =
max|G( 1, 2)| is a function of . The optimal value of is that which
minimizes Y, viewed as a function of . The substitutions = sinz(?l),

= sin?(-%) may be helpful.
9. Two-dimensional Gauss...Seidel.

(a) Verify the error updating step (4.7).

(b) Show that the ampli“cation factor for the method is given by
et+e?

455 1SS 2

(c) Show that the smoothing factor is given by

G(1, 2)=

_ 51 4 1
u=G 2,cosS E T
10. Nine-point stencil.  Consider the nine-point stencil for the operatorSuy, S
Uyy given by . 5 .
1 §1 S1 §1
3z §l V8 §1
S1 S1 S1

Find the ampli“cation factors for the weighted Jacobi method and Gauss...
Seidel relaxation applied to this system.

11. Anisotropic operator. Consider the “ve-point stencil for the operator
S ux S uyy given by
1 0 S1 0
— S 21+ ) S
h2 <
0 S1 0

Find the ampli“cation factors for weighted Jacobi and Gauss...Seidel applied
to this system. Discuss the e ect of the parameter in the case that << 1.

12. Eigenvalue calculation in two dimensions. Consider the weighted Jacobi
method applied to the model Poisson equation in two dimensions on the unit
square. Assume a uniform grid ofh = % in each direction.

(a) Let v; be the approximation to the solution at the grid point ( Xi,Y;).
Write the (i,j )th equation of the corresponding discrete problem, where
1 i,j nSi1
(b) Letting A be the matrix of coe cients for the discrete system, write the
(i,j )th equation for the eigenvalue problemAv = v.
(c) Assume an eigenvector solution of the form
. ik ] =
Vij = sin K sin I , 1 Kk, nsS 1
n n

Using sine addition rules, simplify this eigenvalue equation, cancel com-
mon terms, and show that the eigenvalues are

Kk =4 sir? I;—n + sin® o 1 Kk, nS1
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(d) As in the one-dimensional case, note that the iteration matrix of the
weighted Jacobi method is given byP = | S D S'A, where D corre-
sponds to the diagonal terms ofA. Find the eigenvalues ofP .

(e) Using a graphing utility, “nd a suitable way to present the two-dimensional
set of eigenvalues (either a surface plot or multiple curves). Plot the
eigenvalues for = 2,21, andn = 16.

(f) In each case, discuss the e ect of the weighted Jacobi method on low-
and high-frequency modes. Be sure to note that modes can have a high

frequencies in one direction and low frequencies in the other direction.

(g) What do you conclude about the optimal value of for the two-dimensional
problem?

Implementation

13. V-Cycle program. Develop a V-cycle program for the one-dimensional
model problem. Write a subroutine for each individual component of the
algorithm as follows.

(a) Given an approximation array v, aright-side array f, and a level number

1 1 L, write a subroutine that will carry out  weighted Jacobi
sweeps on level.

(b) Given an array f and a level number 1 | L S 1, write a subroutine
that will carry out full weighting between level | and levell + 1.

(c) Given an array v and a level number 2 | L, write a subroutine that

will carry out linear interpolation between level | and level | S 1.

(d) Write a driver program that initializes the data arrays and carries out a
V-cycle by calling the three preceding subroutines. The program should
be tested on simple problems for which the exact solution is known. For
example, for “xed k, take f (x) = Csin(k x ) on the interval 0 x 1,
where C is a constant. Then

C .
u(x) = T sin(k x )

is an exact solution to model problem (1.1). Another subroutine that

computes norms of errors and residuals will be useful.

14. Modi“cation of V-cycle code. It is now easy to modify this program and
make comparisons.

(@) Vary and vary the number of V-cycles.

(b) Replace the weighted Jacobi subroutine, “rst by a Gauss...Seidel subrou-
tine, then by a red-black Gauss...Seidel subroutine.

(c) Replace the full weighting subroutine by an injection subroutine. Ob-
serve that using red-black Gauss...Seidel and injection impairs conver-
gence. Try to remedy this by using half-injection. In all cases, determine
experimentally how these changes a ect convergence rates and compu-
tation time.

(d) Explain the result of using black-red (rather than red-black) Gauss...
Seidel with injection.
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15. Two-dimensional program. For the two-dimensional problem, proceed
again in a modular way.

(a) Write a subroutine that performs weighted Jacobi on a two-dimensional
grid. Within the subroutine, it is easiest to refer to v and f as two-
dimensional arrays.

(b) Make the appropriate modi“cations to the one-dimensional code to im-
plement bilinear interpolation and full weighting on a two-dimensional
grid.

(c) Make the (minor) changes required in the main program to create a
two-dimensional V-cycle program. Test this program on problems with
known exact solutions. For example, for “xedk and , take f (x,y) =
Csin(k x )sin( y ) on the unit square (0 X,y 1), where C is a
constant. Then

C . :
U(X,y) = 2k2+—22+ S|n(k X )S|n( y )
is an exact soultion to model problem (1.4).

16. FMG programs.  Modify the one- and two-dimensional V-cycle programs
to carry out the FMG scheme.

17. A convection-di usion problem. Consider the following convection-di usion
problem on the unit square = {(x,y):0<x< 1,0<y< 1}:

S (Uxx + Uyy) + auy Asin( y )(Cox?+ Cix+ Cg) on

u =0 on ,

where > 00A R,a R, isaninteger,C, =S 22 C;= 2 2S2a,
and Co = a+2 . It has the exact solutionu(x,y) = Ax(1Sx)sin( y ). Apply
the multigrid algorithms discussed in this chapter to this problem. Compare
the algorithms and explore how their performance changes for=0.01,0.1, 1;
a=0.1,1,10;n=32,64,128;1 =1, 3, 16.

18. Discrete L2 norm. Let u(x) = x™ 2, wherem > S1 is an integer, on
= [0 , 1], with grid spacing h = *. Let uf = x™ 2 = (ih)™ 2, Show that
the continuous L? norm is

m/ 2 - 1
0 m+1’
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Some Theory

In the previous chapter, we considered some practical questions concerning the
implementation, cost, and performance of multigrid methods. The arguments and
experiments of that chapter o er good reason to believe that multigrid methods can
be extremely e ective. Now we must confront some questions on the theoretical
side. The goal of this chapter is to present multigrid in a more formal setting
and o er an explanation of why these methods work so well. In the “rst part of
this chapter, we sketch the ideas that underlie the convergence theory of multigrid.
In the second section, we present what might be called the subspace picture of
multigrid. While the terrain in this chapter may seem a bit more rugged than in
previous chapters, the reward is an understanding of why multigrid methods are so
remarkably e ective.

Variational Properties

We “rst return to a question left unanswered in previous chapters. In expressing the
coarse-grid problem, we wroteA?"u?" = 2" and said that A" is the 2" version
of the original operator A". Our “rst goal is to de“ne the coarse-grid operator A2
precisely.

The argument that follows assumes we are working with the model problem,
Su (x) = f (x), and the corresponding discrete operatoA". We adopt the notation
that P" represents not only the grid with grid spacing ph, but also the space
of vectors de“ned on that grid. In keeping with our former notation, we let v"
be a computed approximation to the exact solution u". For the purpose of this
argument, assume that the error in this approximation, e" = u" S v, lies entirely
in the range of interpolation, which will be denoted R(1},). This means that for
some vectoru" 2" eh = | f u2'. Therefore, the residual equation on " may
be written

Aheh = AMIB u2h = i, (5.1)

In this equation, A" acts on a vector that lies entirely in the range of interpolation.
How doesA" act on R(1},)? Figure 5.1 gives the answer. An arbitrary vector
u2h 2h is shown in Fig. 5.1(a); I 5,u2", which is the interpolation of u?" up
to ", isshown in Fig. 5.1(b); and the e ect of A" acting pointwise on |5, u?"
is shown in Fig. 5.1(c). We see thatA"15 u?" is zero at the odd grid points of

73
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Figure 5.1: The action of A" on the range of interpolation R(15,): (a) an arbitrary
vector u2" 2h: (b) the linear interpolant 15, u?"; and (c) A5 u?", which is
zero at the odd grid points on ".

h. The e ect is analogous to taking the second derivative of a piecewise linear
function.

We may conclude that the odd rows of A"} in (5.1) are zero. On the other
hand, the even rows of (5.1) correspond to the coarse-grid points of2". Therefore,
we can “nd a coarse-grid form of the residual equation by dropping the odd rows
of (5.1). We do this formally by applying the restriction operator Iﬁh to both sides
of (5.1). When this is done, the residual equation becomes

L}E“_%LNQTUZ'“ = 15",

Az2h

This observation gives us a plausible de“nition for the coarse-grid operator:
A" = |ZhARR  The terms of A" may be computed explicitly as shown in
Table 5.1. We simply apply | 2"AI , term by term to the jth unit vector e on

2h  This establishes that the j th column of A2" and also, by symmetry, the j th

row of A2" are given by L

2h)? S1 2 S1.

We would get the same result if the original problem were simply discretized on
2h ysing the usual second-order “nite di erences. Therefore, by this de“nition,

A?" really is the 2" version of A",

The preceding argument was based on the assumption that the erroe" lies
entirely in the range of interpolation. This is not the case in general. If it were,
then solving the 2" residual equation exactly and doing the two-grid correction
would give the exact solution. Nevertheless, the argument does give a sensible def-
inition for A2". It also leads us to two important properties called thevariational
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jS1 j j +1
e 0 1 0
15,e o 3 1 % o
AN e Sst&x 0 & 0 S
BANLET S gk Sgk

Table 5.1: Calculation of the ith row of A2" = |ZNAR]

properties; they are given by
AZ = 2hANh (Galerkin condition),
12 = c18)", ¢ R.

The “rst of these, the Galerkin condition, is simply the de“nition of the coarse-grid
operator. The second property is the relationship satis“ed by the interpolation op-
erator and the full weighting operator de“ned in Chapter 3. While these properties
are not desirable for all applications, they are exhibited by many commonly used
operators. They also facilitate the analysis of the two-grid correction scheme. We
see a deeper justi“cation of these properties in Chapter 10.

Toward Convergence Theory

Convergence analysis of multigrid methods is di cult and has occupied researchers
for several decades. We cannot even pretend to address this problem with the rigor
and depth it deserves. Instead, we attempt to give heuristic arguments suggesting
that the standard multigrid schemes, when applied to well-behaved problems (for
example, scalar elliptic problems), not only work, but work very e ectively. Con-
vergence results for these problems have been rigorously proved. For more general
problems, new results appear at a fairly steady pace. Where analytical results are
lacking, a wealth of computational evidence testi“es to the general e ectiveness of
multigrid methods. Between analysis and experimentation, the multigrid territory

is slowly being mapped. However, multigrid convergence analysis is still an open
area of computational mathematics.

We begin with a heuristic argument that captures the spirit of rigorous conver-
gence proofs. As we have seen, the smoothing rate (the convergence factor for the
oscillatory modes) for the standard relaxation schemes is small and independent
of the grid spacing h. Recall that the smooth error modes, which remain after
relaxation on one grid, appear more oscillatory on the coarser grids. Therefore,
by moving to successively coarser grids, all of the error components on the original
“ne grid eventually appear oscillatory and are reduced by relaxation. It then follows
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that the overall convergence factor for a good multigrid scheme should be small
and independent ofh.

Now we can be a bit more precise. Denote the original continuous problem (for
example, one of our model boundary value problems) byAu = f. The associated
discrete problem on the “ne grid " is denoted by A"uM = . As before, we let
vl be an approximation to u" on . The discretization error is de“ned by

EM=ux)Su', 1 i nSL

The discretization error measures how well the exact solution of the discrete problem
approximates the exact solution of the original continuous problem. It may be
bounded in the discreteL? norm in the form

EM , KhP, (5.2)

where K is a positive constant andp is a positive integer. For the model problems
in Chapter 1, in which second-order “nite di erences were used, we havg = 2 (see
Exercise 11 for a careful derivation of this fact).

Unfortunately, we can seldom solve the discrete problem exactly. The quantity
that we have been calling the error,e” = u" S v, will now be called the alge-
braic error to avoid confusion with the discretization error. The algebraic error, as
we have seen, measures how well our approximations (generated by relaxation or
multigrid) agree with the exact discrete solution.

The purpose of a typical calculation is to produce approximationsv" that agree
with the exact solution of the continuous problemu. Let us specify a tolerance
and an error condition such as

uSvh <, (5-3)

where u = (u(x1),...,u(Xn51))" is the vector of exact solution values sampled
at the grid points. This condition can be satis“ed if we guarantee that both the
discretization and algebraic errors are small. Suppose, for example, that

Eh ht eh h<.
Then, using the triangle inequality,
uSvh,  uSu"h+ uPSVh = EM L+ e <.

One way to ensure that E"  + e" , < is to require that E" , < 5 and
el < 5 individually. The “rst condition determines the grid spacing on the

“nest grid. Using (5.2), it suggests that we choose

h<h 1/p
< -
2K

The second condition determines how welly" must approximate the exact dis-
crete solution u". If relaxation or multigrid cycles have been performed until the
condition e" < 5 is met on grid h whereh < h , then we have converged to
the level of discretization error. In summary, the discretization error determines
the critical grid spacing h ; so (5.3) will be satis“ed provided we converge to the
level of discretization error on a grid with h<h .
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Consider “rst a V-cycle scheme applied to ad-dimensional problem with (about)
nd unknowns andh = % We assume (and can generally show rigorously) that with
“xed cycling parameters, 1 and ,, the V-cycle scheme has a convergence factor
bound, , that is independent of h. This V-cycle scheme must reduce the algebraic
error from O(1) (the error in the zero initial guess) to O(hP) = O(nSP) (the order
of the discretization error). Therefore, the number of V-cycles required, , must
satisfy = O(nP) or = O(logn). Because the cost of a single V-cycle i©(nY),
the cost of converging to the level of discretization error with a V-cycle scheme is
O(n9logn). This is comparable to the computational cost of the best fast direct
solvers applied to the model problem.

The FMG scheme costs a little more per cycle than the V-cycle scheme. How-
ever, a properly designed FMG scheme can be much more e ective overall because
it supplies a very good initial guess to the “nal V-cycles on ". The key obser-
vation in the FMG argument is that before the " problem is even touched, the

2h problem has already been solved to the level of discretization error. This is
because of nested iteration, which is designed to provide a good initial guess for
the next “ner grid. Our goal is to determine how much the algebraic error needs
to be reduced by V-cycles on ". The argument is brief and worthwhile; however,
it requires a new tool.

Energy Norms, Inner Products, and Orthogonality. Energy norms and
inner products are useful tools in the analysis of multigrid methods. They
involve a slight modi“cation of the inner product and norms that we have
already encountered. Suppos@ is annx n symmetric positive de“nite matrix.
De“ne the A-inner product of two vectorsu,v. R" by

(U!V)A (AU,V),

where (-, -) is the usual Euclidean inner product on R". The A-norm now
follows in a natural way. Justas u =(u, u)%, the A-norm is given by

1
ua=(u,u)ji.

The A-norm and A-inner product are sometimes called theenergy norm and
inner product. We can also use theA-inner product to de“ne a new orthogo-
nality relationship. Extending the usual notion of vectors and subspaces, two
vectors u and v are A-orthogonal if (u,v)a = 0, and we writeu o v. We
then say that two subspacesU and V are A-orthogonal if, for all u U and
vV, we haveu A V. Inthis case, we writeU A V.

Our FMG argument can be made in any norm, but it is simplest in the A"-
norm. The goal is to show that one properly designed FMG cycle is enough to
ensure that the “nal algebraic error on " is below the level of discretization error;

that is,
eh Ah th, (54)

whereK is a positive constant that depends on the smoothness of the solution and
p is a positive integer. The values ofK and p also depend on the norm used to
measure the error, so they will generally be di erent from the constants in (5.2).
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The argument is inductive in nature. If " is the coarsest grid, then FMG is
exact and (5.4) is clearly satis“ed. Assume now that the 2" problem has been
solved to the level of discretization error, so that

e i K (2h)P. (5.5)

We now use (5.5) to prove (5.4).

The initial algebraic error on ", before the V-cycles begin, is the dierence
between the exact “ne-grid solution, u", and the coarse-grid approximation inter-
polated to the “ne grid:

e) = u" S v,

To estimate the size of this initial error, we must account for the error that might
be introduced by interpolation from 2" to ". To do this, we assume that the
error in interpolation has the same order (same value ofp) as the discretization
error and satis“es

u S5 u? o Kh P, (5.6)
where is a positive constant. (This sort of bound can be determined rigorously;
in fact, is typically 1+2P.) A bound for the initial error now follows from the
triangle inequality:

el an =  u"SiIfva an
un S1hu an+ 15U S5 v 4w (triangle inequality)
= uhSihu? 0+ p?h Sy Galerkin conditions
O)nl 2 A'z O/H P AZ? ( )-

Kh » K (2h)P

As indicated, we use (5.5), (5.6), and Exercise 2 to form the following estimate for
the norm of the initial error:

el v Kh P+ K(@2hP=K( +2P)hP,

To satisfy (5.4), the algebraic error must be reduced from roughlyK ( +2P)hP to
KhP. This means we should use enough V-cycles on" to reduce the algebraic
error by a factor of

= +2P,

This reduction requires V-cycles, where . Because is O(1), it follows that
is alsoO(1). (Typically, =5o0r9 and 0.1 for a V(2,1)-cycle, so = 1.) In
other words, the preliminary cycling through coarser grids gives such a good initial
guess that only O(1) V-cycles are needed on the “nest grid. This means that the

total computational cost of FMG is O(nY), which is optimal.

This discussion is meant to give some feeling for the rigorous arguments that can
be used to establish the convergence properties of the basic multigrid algorithms.
These results cannot be pursued much further at this point and must be left to the
multigrid literature. Instead, we turn to a di erent perspective on why multigrid
works.

Spectral and Algebraic Pictures

Much of this section is devoted to an analysis of the two-grid correction scheme,
which lies at the heart of multigrid. Recall that the V-cycle is just nested ap-
plications of the two-grid correction scheme and that the FMG method is just
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Figure 5.2: The full weighting operator 12" acting on (a) a smooth mode of "
(k=2 and n = 8) and (b) an oscillatory mode of " (k =6 and n = 8). In the
“rst case, the result is a multiple of thek = 2 mode on 2". In the second case,
the result is a multiple of then S k =2 mode on 2",

repeated applications of the V-cycle on various grids. Therefore, an understanding
of the two-grid correction scheme is essential for a complete explanation of the basic
multigrid methods.

We begin with a detailed look at the intergrid transfer operators. Consider
“rst the full weighting (restriction) operator, 12". Recall that 12" maps R"S?!
RS It has rank 2 S 1 and null spaceN (12") of dimension §. It is important
to understand what we call the spectral properties ofl 2. In particular, how does
| 2 act upon the modes of the original operatorA"?

Recall that the modes of A" for the one-dimensional model problem are given
by
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Figure 5.3: A pair of complementary modes on a grid withn = 8 points. The solid
line shows thek = 2 mode. The dashed line shows thke = n S k =6 mode.

The full weighting operator may be applied directly to these vectors. The result of
| 21 acting on the smooth modes is (Exercise 4)

k
12"wl = cog o w1 k.

This says that 12" acting on the kth (smooth) mode of A" produces a constant
times the kth mode of A%" when 1 k 5. This property is illustrated in Fig.
5.2(a). For the oscillatory modes, with 3 <k <n S 1, we have (Exercise 5)

< . k
12w = §sin? o w1 k<

n

5

wherek = nSk. This says that | 2" acting on the (n S k)th mode of A" produces a
constant multiple of the kth mode of A2". This property, illustrated in Fig. 5.2(b),
is similar to the aliasing phenomenon discussed earlier. The oscillatory modes or!
cannot be represented on 2". As aresult, the full weighting operator transforms
these modes into relatively smooth modes on 2".

In summary, we see that both thekth and (n S k)th modes on " become the
kth mode on 2" under the action of full weighting. We refer to this pair of “ne-grid
modes{w},w<,} ascomplementary modes Letting W, = span{w},w's,}, we
have that

127w span{wg"}.

In passing, it is interesting to note the relationship between two complementary
modes. It may be shown (Exercise 6) thatwjs,; = (S1)**wy;. Figure 5.3
illustrates the smooth and oscillatory nature of a pair of complementary modes.
As noted earlier, the full weighting operator has a nontrivial null space, N (I ﬁh).
It may be veri“ed (Exercise 7) that this subspace is spanned by the vectorsy; =
ANMell, wherej is odd and €] is the jth unit vector on ". Asshown in Fig. 5.4,
the basis vectorsn; appear oscillatory. However, they do not coincide with the
oscillatory modes of A". In fact, an expansion ofn; in terms of the modes of Al
requires all of the modes. Thus, the null space ofﬁh possesses both smooth and
oscillatory modes ofAM.
Having established the necessary properties of the full weighting operator, we
now examine the interpolation operator | £, in the same way. Recall thatl ), maps
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Figure 5.4: A typical basis vector of the null space of the full weighting operator
N(IE").

Figure 5.5: A typical basis vector of the range of interpolationR (15,).

R2S1 R"S1 and has full rank. In order to establish the spectral properties of
15, we ask howl, acts on the modes ofA2". Letting
.k n .
= - < —
sin 5 1 kK 5 0 j

n
2h

Wk,j E;

bethe 2" modes, we can show (Exercise 8) that}}, does not preserve these modes.
The calculation shows that

n -

Sswl, 1 k<5, k=nSk,

h \,2h _ h
Wi = CWy

where ¢, = cog g—n and s, = sin? lé_n . We see thatlg‘h acting on the kth mode
of 2" produces not only the kth mode of " but also the complementary mode
WL‘ . This fact exposes the interesting property that interpolation of smooth modes
on 2" excites (to some degree) oscillatory modes on". It should be noted that
for a very smooth mode on " with k  n/ 2,

k2
n2

h 2h _— - h h
Iohwg'= 1S 0O w, + O 2 Wy .
In this case, the result of interpolation is largely the corresponding smooth mode
on M with very little contamination from the complementary oscillatory mode.

As it has been de“ned, |}, is a second-orderinterpolation operator because the
magnitude of the spurious oscillatory mode isO(r'j—i).

We have already anticipated the importance of the range of interpolation,R (15, ).
A basis forR (14, is given by the columns ofl §},. While these basis vectors appear
smooth, as Fig. 5.5 shows, they do not coincide with the smooth modes @". In
fact, it may be shown that any one of these basis vectors requires all modes 8"
for a full representation. In other words, the range of interpolation contains both
smooth and oscillatory modes ofA".
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With this investigation of the intergrid transfer operators, we now return to the
two-grid correction scheme. We begin with an observation made in Chapter 2 that
a stationary linear iteration may be expressed in the form

v = (1 $BA)VO® + Bf = Rv©® + Bf,

where B is a speci‘ed matrix and R = | S BA is the iteration matrix for the
method. It follows that m sweeps of the iteration can be represented by

vim = R™MyO + c(f),

where C(f) represents a series of operations ofh.
We can now turn to the two-grid correction scheme. The steps of this scheme,
with an exact solution on the coarse grid, are given by the following procedure:

€ Relax times on " with schemeR: v R v + C(f).
€ Full weight r" to 2 f20 j20h(fh S ANyN),
€ Solve the residual equation exactly:v2" = (A2h)S1f2h,

€ Correct the approximation on  ": v vh + 15 v2h,
If we now take this process one step at a time, it may be represented in terms

of a single replacement operation:
v R VI C(f)+ 15 (ATSL 2 (fh S ANR v + C(F))).

The exact solution u™ is unchanged by the two-grid correction scheme. Therefore,
uh = R uM + C(f)+ 15 (AT)SL 2 (th § ANR uM + C(f))).

By subtracting these last two expressions, we can see how the two-grid correction
operator, which we now denoteT G, acts upon the error,e” = u" S v, We “nd
that . |
e 1S (ATSHZANR e TGe". (5.7)
As in Chapter 2, we imagine that the error can be expressed as a linear combi-
nation of the modes of A". This leads us to ask howT G acts upon the modes of
AM. However, TG consists ofR, A", (A2")S1 2" and I}, , and we now know how
each of these operators acts upon the modes &". For the moment, consider the
two-grid correction schemeT G with no relaxation (= 0). Using all of the spectral
properties we have just discovered, it may be shown (Exercise 9) that the coarse-
grid correction operator, TG, is invariant on the subspacesW,! = span{w[,wl };
that is,

TGwy
T Gwy

SkWk + SkWg , (5.8)

Wi + Wi, 1 k k = nSKk, (5.9)

n
2 i)

wherec, = cog £ and s, = sin® £ .
This implies that when T G is applied to a smooth or oscillatory mode, the same

mode and its complement result. But it is important to look at the amplitudes of
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Figure 5.6: Damping factor for the two-grid correction operator TG, without relax-
ation, acting on the oscillatory modes with wavenumbers S k (upper curve) and

on the smooth modes with wavenumbets (lower curve) for 1k 7.

the resulting modes. Consider the case of G acting on very smooth modes and
very oscillatory modes withk  n. Then (5.8) and (5.9) become

K2 K2
TGwy = O p wg + O F Wk ,
Towe = 150 X w150 X w1 k" k=nsk
k - nz k nz k 2! - .

T G acting on smooth modes produces smooth and oscillatory modes with very
small amplitudes. Therefore, the two-grid correction scheme is e ective at elim-
inating smooth components of the error. However, whenT G acts upon highly
oscillatory modes, it produces smooth and oscillatory modes withO(1) ampli-
tudes. Therefore, two-grid correction, without relaxation, does not damp oscil-
latory modes. Figure 5.6 illustrates this behavior of the two-grid correction scheme
with no relaxation by showing the damping factors, ¢x and s, for the smooth and
oscillatory components of the error.

We now bring relaxation into the picture. Knowing its spectral properties,
we can anticipate that relaxation will balance perfectly the action of TG without
relaxation. We now include steps of a relaxation methodR and assume for
simplicity that R does not mix the modes ofA". Many other relaxation methods
can be analyzed without this assumption. As before, let ¢ be the eigenvalue ofR
associated with thekth mode wy. Combining all of these observations with (5.7),
the action of TG with relaxation is given by (Exercise 10)

TGwWg = (SkWk + | SkWk, (5.10)

TGWK =  ,GWk+ GawWx, 1 k =, k=nSk. (5.11)

We know that the smoothing property of relaxation has the strongest e ect on
the oscillatory modes. This is re"ected in the term | , which is small. At the
same time, the two-grid correction scheme alone (without relaxation) eliminates
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the smooth modes. This is re”ected in thesy terms. Thus, all terms of (5.10) and
(5.11) are small, particularly for k % oras becomes large. The result is a
complete process in that both smooth and oscillatory modes of the error are well
damped.

We have now completed what we call the spectral picture of multigrid. By
examining how various operators act on the modes oA", we have determined
the e ect of the entire two-grid correction operator on those modes. This analy-
sis explains how the two-grid correction process eliminates both the smooth and
oscillatory components of the error.

Solvability and the Fundamental Theorem of Linear Algebra. Suppose
we have a matrix A R™*", The fundamental theorem of linear algebra states
that the range (column space) of the matrix, R (A), is equal to the orthogonal
complement of N (AT), the null space of AT. Thus, spaceR™ and R" can be
orthogonally decomposed as follows:

RM R(A) N (AT),
R" = R(AT) N (A).

For the equation Ax = f to have a solution, it is necessary that the vectorf
lie in R(A). Thus, an equivalent condition is that f be orthogonal to every
vector in N (AT). For the equation Ax = f to have a unique solution, it is
necessary thatN (A) = {0}. Otherwise, if X is a solution andy N (A), then
A(x+y)= Ax+ Ay = f + 0= f, so the solution x is not unigue.

There is another vantage point from which to view the coarse-grid correction
scheme. This perspective will lead to what we will call the algebraic picture of
multigrid. With both the spectral and the algebraic picture before us, it will be
possible to give a good qualitative explanation of multigrid. Let us now look at the
algebraic structure of the two-grid correction scheme.

The variational properties introduced earlier now become important. Recall
that these properties are given by

A2h
I 2h
h

I2hARS (Galerkin property) ,
c(18)", ¢ R.

The two-grid correction scheme involves transformations between the space of “ne-
grid vectors, ", and the space of coarse-grid vectors, 2". Figure 5.7 diagrams
these two spaces and the action of the full weighting and interpolation operators.

As we have already seen, the range of interpolationR (I Qh), and the null space
of full weighting, N (12"), both reside in " and have dimensions of roughly?%.
From the orthogonality relationships between the subspaces of a linear operator
(Fundamental Theorem of Linear Algebra), we know that

NI R[]
By the second variational property, it then follows that

N R (15).
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Figure 5.7: Schematic drawing of the space of “ne-grid vectors, "; the space of
coarse-grid vectors, 2"; and their subspaces and the intergrid transfer operators,
15, and 12",

The fact that the range of interpolation is orthogonal to the null space of full
weighting is signi“cant.

We will now use the notion of A-orthogonality to rewrite the above orthogonality
relationship. The fact that N(12") R (15,) means that (", u") = 0 whenever
g" R (I5,)andI2"uM = 0. Thisis equivalent to the condition that (", AhuM) =0
wheneverg" R (15,) and 12"AhuM = 0. This last condition may be written as

N(Z2AM)  an ROS):;

that is, the null space of I 2"AM is A"-orthogonal to the range of interpolation.
This orthogonality property allows the space " to be decomposed in the form

"=R(I5) N(@F"A").
This means that if e" is a vector in ", then it may always be expressed as
e = s"+t",

wheres" R (15)andt" N(2"AM).

It will be helpful to interpret the vectors s" and t". Sinces" is an element of
R(I5,), it must satisfy s" = 15 2", where 2" is some vector of 2". We observed
the smoothing e ect of interpolation and noted the smooth appearance of the basis
vectors of R(15,). For this reason, we associates" with the smooth components of
the error. We also noted the oscillatory appearance of the basis vectors of (I 2").
For this reason, we associateé" with the oscillatory components of the error.

We may now consider the two-grid correction operator in light of these subspace
properties. The two-grid correction operator without relaxation is

TG= 1815, (A?)SY AN,


























































































































































































































































































































