
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/220690328

A	Multigrid	Tutorial,	2nd	Edition

Book	·	January	2000

Source:	DBLP

CITATIONS

44

READS

5,228

3	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

FOSLS/LL*	View	project

Adaptive	Algebraic	Multigrid	Methods	View	project

William	L.	Briggs

University	of	Colorado

27	PUBLICATIONS			2,217	CITATIONS			

SEE	PROFILE

Van	Emden	Henson

Lawrence	Livermore	National	Laboratory

43	PUBLICATIONS			2,237	CITATIONS			

SEE	PROFILE

Steve	F	McCormick

University	of	Colorado	Boulder

238	PUBLICATIONS			6,683	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Steve	F	McCormick	on	12	February	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/220690328_A_Multigrid_Tutorial_2nd_Edition?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220690328_A_Multigrid_Tutorial_2nd_Edition?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/FOSLS-LL?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Adaptive-Algebraic-Multigrid-Methods?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William_Briggs?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William_Briggs?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Colorado?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/William_Briggs?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Van_Henson?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Van_Henson?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lawrence_Livermore_National_Laboratory?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Van_Henson?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steve_McCormick?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steve_McCormick?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Colorado_Boulder?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steve_McCormick?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Steve_McCormick?enrichId=rgreq-a53d8a1a8a7b69ff26cd27bdeb3f30de-XXX&enrichSource=Y292ZXJQYWdlOzIyMDY5MDMyODtBUzoxOTU5NzkzMzM2NDAyMDdAMTQyMzczNjUyMjg0Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Contents

Preface to the Second Edition ix
Preface to the First Edition xi

1 Model Problems 1
Exercises . 4

2 Basic Iterative Methods 7
Exercises . 27

3 Elements of Multigrid 31
Exercises . 43

4 Implementation 45
Exercises . 68

5 Some Theory 73
Exercises . 91

6 Nonlinear Problems 95
Exercises . 109

7 Selected Applications 113
Exercises . 133

8 Algebraic Multigrid (AMG) 137
Exercises . 159

9 Multilevel Adaptive Methods 163
Exercises . 174

10 Finite Elements 177
Exercises . 186

Bibliography 189

Index 191

vii

Preface to the Second
Edition

Twelve years have passed since the publication of the first edition of A Multigrid
Tutorial. During those years, the field of multigrid and multilevel methods has
expanded at a tremendous rate, reflecting progress in the development and analysis
of algorithms and in the evolution of computing environments. Because of these
changes, the first edition of the book has become increasingly outdated and the
need for a new edition has become quite apparent.

With the overwhelming growth in the subject, an area in which I have never
done serious research, I felt remarkably unqualified to attempt a new edition. Re-
alizing that I needed some help, I recruited two experts to assist with the project.
Steve McCormick (Department of Applied Mathematics, University of Colorado at
Boulder) is one of the original researchers in the field of multigrid methods and the
real instigator of the first edition. There could be no better collaborator on the
subject. Van Emden Henson (Center for Applied Scientific Computing, Lawrence
Livermore National Laboratory) has specialized in applications of multigrid meth-
ods, with a particular emphasis on algebraic multigrid methods. Our collaboration
on a previous SIAM monograph made him an obvious choice as a co-author.

With the team in place, we began deliberating on the content of the new edi-
tion. It was agreed that the first edition should remain largely intact with little
more than some necessary updating. Our aim was to add a roughly equal amount
of new material that reflects important core developments in the field. A topic
that probably should have been in the first edition comprises Chapter 6: FAS
(Full Approximation Scheme), which is used for nonlinear problems. Chapter 7 is
a collection of methods for four special situations that arise frequently in solving
boundary value problems: Neumann boundary conditions, anisotropic problems,
variable-mesh problems, and variable-coefficient problems. One of the chief moti-
vations for writing a second edition was the recent surge of interest in algebraic
multigrid methods, which is the subject of Chapter 8. In Chapter 9, we attempt
to explain the complex subject of adaptive grid methods, as it appears in the FAC
(Fast Adaptive Composite) Grid Method. Finally, in Chapter 10, we depart from
the predominantly finite difference approach of the book and show how finite ele-
ment formulations arise. This chapter provides a natural closing because it ties a
knot in the thread of variational principles that runs through much of the book.

There is no question that the new material in the second half of this edition is
more advanced than that presented in the first edition. However, we have tried to
create a safe passage between the two halves, to present many motivating examples,

ix

x Preface

and to maintain a tutorial spirit in much of the discourse. While the first half of
the book remains highly sequential, the order of topics in the second half is largely
arbitrary.

The FAC examples in Chapter 9 were developed by Bobby Philip and Dan Quin-
lan, of the Center for Applied Scientific Computing at Lawrence Livermore National
Laboratory, using AMR++ within the Overture framework. Overture is a parallel
object-oriented framework for the solution of PDEs in complex and moving geome-
tries. More information on Overture can be found at http://www.llnl.gov/casc/
Overture.

We thank Irad Yavneh for a thorough reading of the book, for his technical
insight, and for his suggestion that we enlarge Chapter 4. We are also grateful
to John Ruge who gave Chapter 8 a careful reading in light of his considerable
knowledge of AMG. Their suggestions led to many improvements in the book.

Deborah Poulson, Lisa Briggeman, Donna Witzleben, Mary Rose Muccie, Kelly
Thomas, Lois Sellers, and Vickie Kearn of the editorial staff at SIAM deserve
thanks for coaxing us to write a second edition and for supporting the project from
beginning to end. Finally, I am grateful for the willingness of my co-authors to
collaborate on this book. They should be credited with improvements in the book
and held responsible for none of its shortcomings.

Bill Briggs
November 15, 1999
Boulder, Colorado

Preface to the First Edition

Assuming no acquaintance with the subject, this monograph presents the essential
ideas that underlie multigrid methods and make them work. It has its origins in a
tutorial given at the Third Copper Mountain Conference on Multigrid Methods in
April, 1987. The goal of that tutorial was to give participants enough familiarity
with multigrid methods so that they could understand the following talks of the
conference. This monograph has been written in the same spirit and with a similar
purpose, although it does allow for a more realistic, self-paced approach.

It should be clear from the outset that this book is meant to provide a basic
grounding in the subject. The discussion is informal, with an emphasis on moti-
vation before rigor. The path of the text remains in the lowlands where all of the
central ideas and arguments lie. Crossroads leading to higher ground and more
exotic topics are clearly marked, but those paths must be followed in the Suggested
Reading and the Exercises that follow each chapter. We hope that this approach
will give a good perspective of the entire multigrid landscape.

Although we will frequently refer to the multigrid method, it has become clear
that multigrid is not a single method or even a family of methods. Rather, it
is an entire approach to computational problem solving, a collection of ideas and
attitudes, referred to by its chief developer Achi Brandt as multilevel methods.

Originally, multigrid methods were developed to solve boundary value problems
posed on spatial domains. Such problems are made discrete by choosing a set of grid
points in the domain of the problem. The resulting discrete problem is a system of
algebraic equations associated with the chosen grid points. In this way, a physical
grid arises very naturally in the formulation of these boundary value problems.

More recently, these same ideas have been applied to a broad spectrum of prob-
lems, many of which have no association with any kind of physical grid. The original
multigrid approach has now been abstracted to problems in which the grids have
been replaced by more general levels of organization. This wider interpretation of
the original multigrid ideas has led to powerful new techniques with a remarkable
range of applicability.

Chapter 1 of the monograph presents the model problems to which multigrid
methods were first applied. Chapter 2 reviews the classical iterative (relaxation)
methods, a firm understanding of which is essential to the development of multigrid
concepts. With an appreciation of how the conventional methods work and why
they fail, multigrid methods can be introduced as a natural remedy for restoring
and improving the performance of the basic relaxation schemes. Chapters 3 and
4 develop the fundamental multigrid cycling schemes and discuss issues of imple-
mentation, complexity, and performance. Only in Chapter 5 do we turn to some
theoretical questions. By looking at multigrid from a spectral (Fourier mode) point

xi

xii Preface

of view and from an algebraic (subspace) point of view, it is possible to give an
explanation of why the basic multigrid cycling scheme works so effectively.

Not surprisingly, the body of multigrid literature is vast and continues to grow at
an astonishing rate. The Suggested Reading list at the end of this tutorial [see the
bibliography in the Second Edition] contains some of the more useful introductions,
surveys, and classical papers currently available. This list is hardly exhaustive. A
complete and cumulative review of the technical literature may be found in the
Multigrid Bibliography (see Suggested Reading), which is periodically updated. It
seems unnecessary to include citations in the text of the monograph. The ideas
presented are elementary enough to be found in some form in many of the listed
references.

Finally, it should be said that this monograph has been written by one who
has only recently worked through the basic ideas of multigrid. A beginner cannot
have mastered the subtleties of a subject, but often has a better appreciation of
its difficulties. However, technical advice was frequently necessary. For this, I
greatly appreciate the guidance and numerous suggestions of Steve McCormick,
who has mastered the subtleties of multigrid. I am grateful to John Bolstad for
making several valuable suggestions and an index for the second printing. For
the fourth printing the Suggested Reading section has been enlarged to include six
recently published books devoted to multigrid and multilevel methods. A genuinely
new development is the creation of mg-net, a bulletin board/newsgroup service
which is accessible by sending electronic mail to mgnet@cs.yale.edu. For the real
production of this monograph, I am grateful for the typing skills of Anne Van
Leeuwen and for the editorial assistance of Tricia Manning and Anne-Adele Wight
at SIAM.

Chapter 1

Model Problems

Multigrid methods were originally applied to simple boundary value problems that
arise in many physical applications. For simplicity and for historical reasons, these
problems provide a natural introduction to multigrid methods. As an example,
consider the two-point boundary value problem that describes the steady-state
temperature distribution in a long uniform rod. It is given by the second-order
boundary value problem

−u′′(x) + σu(x) = f(x), 0 < x < 1, σ ≥ 0, (1.1)
u(0) = u(1) = 0. (1.2)

While this problem can be handled analytically, our present aim is to consider
numerical methods. Many such approaches are possible, the simplest of which is a
finite difference method (finite element formulations will be considered in Chapter
10). The domain of the problem {x : 0 ≤ x ≤ 1} is partitioned into n subintervals
by introducing the grid points xj = jh, where h = 1/n is the constant width of the
subintervals. This establishes the grid shown in Fig. 1.1, which we denote Ωh.

At each of the n−1 interior grid points, the original differential equation (1.1) is
replaced by a second-order finite difference approximation. In making this replace-
ment, we also introduce vj as an approximation to the exact solution u(xj). This
approximate solution may now be represented by a vector v = (v1, . . . , vn−1)T ,
whose components satisfy the n − 1 linear equations

−vj−1 + 2vj − vj+1

h2
+ σvj = f(xj), 1 ≤ j ≤ n − 1, (1.3)

v0 = vn = 0.

Defining f = (f(x1), . . . , f(xn−1))T = (f1, . . . , fn−1)T , the vector of right-side
values, we may also represent this system of linear equations in matrix form as

1
h2

2 + σh2 −1
−1 2 + σh2 −1

· · ·
· · ·

· · −1
−1 2 + σh2

v1

·
·
·
·

vn−1

 =

f1

·
·
·
·

fn−1

1

2 Chapter 1

Ωh:
x0 x1 x2 xj xn−1 xn

x = 0 x = 1

Figure 1.1: One-dimensional grid on the interval 0 ≤ x ≤ 1. The grid spacing is
h = 1

n and the jth grid point is xj = jh for 0 ≤ j ≤ n.

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

y

x

�� �

�

�

Figure 1.2: Two-dimensional grid on the unit square. The solid dots indicate the
unknowns that are related at a typical grid point by the discrete equations (1.5).

or even more compactly as Av = f . The matrix A is (n− 1)× (n− 1), tridiagonal,
symmetric, and positive definite.

Analogously, it is possible to formulate a two-dimensional version of this prob-
lem. Consider the second-order partial differential equation (PDE)

−uxx − uyy + σu = f(x, y), 0 < x < 1, 0 < y < 1, σ > 0. (1.4)

With σ = 0, this is the Poisson equation; with σ �= 0, it is the Helmholtz equation.
We consider this equation subject to the condition that u = 0 on the boundary of
the unit square.

As before, this problem may be cast in a discrete form by defining the grid
points (xi, yi) = (ihx, jhy), where hx = 1

m and hy = 1
n . This two-dimensional grid

is also denoted Ωh and is shown in Fig. 1.2. Replacing the derivatives of (1.4) by
second-order finite differences leads to the system of linear equations

−vi−1,j + 2vij − vi+1,j

h2
x

+
−vi,j−1 + 2vij − vi,j+1

h2
y

+ σvij = fij ,

(1.5)
vi0 = vin = v0j = vmj = 0, 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1.

As before, vij is an approximation to the exact solution u(xi, yj) and fij = f(xi, yj).
There are now (m − 1)(n − 1) interior grid points and the same number of

unknowns in the problem. We can choose from many different orderings of the
unknowns. For the moment, consider the lexicographic ordering by lines of constant
i. The unknowns of the ith row of the grid may be collected in the vector vi =

stevem
Pencil

A Multigrid Tutorial 3

(vi1, . . . , vi,n−1)T for 1 ≤ i ≤ m − 1. Similarly, let fi = (fi1, . . . , fi,n−1)T . The
system of equations (1.5) may then be given in block matrix form as

B −aI

−aI B −aI
· · ·

· · −aI
−aI B

v1

·
·
·

vm−1

 =

f1
·
·
·

fm−1

 .

This system is symmetric, block tridiagonal, and sparse. It has block dimension
(m−1)× (m−1). Each diagonal block, B, is an (n−1)× (n−1) tridiagonal matrix
that looks much like the matrix for the one-dimensional problem. Each off-diagonal
block is a multiple, a = 1

h2
x
, of the (n − 1) × (n − 1) identity matrix I.

Matrix Properties. The matrices produced by the discretization of self-
adjoint boundary value problems have some special properties that are desirable
for many numerical methods. Let A with elements aij be such a matrix. It is
generally symmetric (A = AT) and sparse (a large percentage of the elements
are zero). These matrices are also often weakly diagonally dominant, which
means that, in magnitude, the diagonal element is at least as large as the sum
of the off-diagonal elements in the same row:

n∑
j �=i

|aij | ≤ |aii| for 1 ≤ i ≤ n.

These matrices are also positive definite, which means that, for all vectors u �= 0,
we have uT Au > 0. This property is difficult to interpret, but there are several
alternate characterizations. For example, a symmetric positive definite matrix
has real and positive eigenvalues. It can also be shown that if A is symmetric and
diagonally dominant with positive diagonal elements, then A is positive definite.
One other matrix property arises in the course of our work: a symmetric positive
definite matrix with positive entries on the diagonal and nonpositive off-diagonal
entries is called an M-matrix.

We occasionally appeal to stencils associated with discrete equations. For the
one-dimensional model problem, the stencil representation of the matrix is

A =
1
h2

(−1 2 + σh2 − 1).

The two-dimensional stencil for hx = hy = h is

A =
1
h2

 −1

−1 4 + σh2 −1
−1

 .

Stencils are useful for representing operators that interact locally on a grid. How-
ever, they must be used with care near boundaries.

The two model linear systems (1.3) and (1.5) provide the testing ground for
many of the methods discussed in the following chapters. Before we proceed, how-
ever, it is useful to give a brief summary of existing methods for solving such
systems.

4 Chapter 1

During the past 50 years, a tremendous amount of work was devoted to the
numerical solution of sparse systems of linear equations. Much of this attention
was given to structured systems such as (1.3) and (1.5) that arise from boundary
value problems. Existing methods of solution fall into two large categories: direct
methods and iterative (or relaxation) methods. This tutorial is devoted to the latter
category.

Direct methods, of which Gaussian elimination is the prototype, determine a
solution exactly (up to machine precision) in a finite number of arithmetic steps.
For systems such as (1.5) that arise from a two-dimensional elliptic equation, very
efficient direct methods have been developed. They are usually based on the fast
Fourier transform or the method of cyclic reduction. When applied to problems on
an n × n grid, these methods require O(n2 log n) arithmetic operations. Because
they approach the minimum operation count of O(n2) operations, these methods are
nearly optimal. However, they are also rather specialized and restricted primarily
to systems that arise from separable self-adjoint boundary value problems.

Relaxation methods, as represented by the Jacobi and Gauss–Seidel iterations,
begin with an initial guess at a solution. Their goal is to improve the current
approximation through a succession of simple updating steps or iterations. The se-
quence of approximations that is generated (ideally) converges to the exact solution
of the linear system. Classical relaxation methods are easy to implement and may
be successfully applied to more general linear systems than most direct methods
[23, 24, 26].

As we see in the next chapter, relaxation schemes suffer from some disabling lim-
itations. Multigrid methods evolved from attempts to overcome these limitations.
These attempts have been largely successful: used in a multigrid setting, relaxation
methods are competitive with the fast direct methods when applied to the model
problems, and they have more generality and a wider range of application.

In Chapters 1–5 of this tutorial, we focus on the two model problems. In Chap-
ters 6–10, we extend the basic multigrid methods to treat more general boundary
conditions, operators, and geometries. The basic methods can be applied to many
elliptic and other types of problems without significant modification. Still more
problems can be treated with more sophisticated multigrid methods.

Finally, the original multigrid ideas have been extended to what are more ap-
propriately called multilevel methods. Purely algebraic problems (for example, net-
work and structural problems) have led to the development of algebraic multigrid or
AMG, which is the subject of Chapter 8. Beyond the boundaries of this book, mul-
tilevel methods have been applied to time-dependent problems and problems in im-
age processing, control theory, combinatorial optimization (the traveling salesman
problem), statistical mechanics (the Ising model), and quantum electrodynamics.
The list of problems amenable to multilevel methods is long and growing. But first
we must begin with the basics.

Exercises

1. Derivative (Neumann) boundary conditions. Consider model problem
(1.1) subject to the Neumann boundary conditions u′(0) = u′(1) = 0. Find
the system of linear equations that results when second-order finite differences
are used to discretize this problem at the grid points x0, . . . , xn. At the end

A Multigrid Tutorial 5

points, x0 and xn, one of many ways to incorporate the boundary conditions
is to let v1 = v0 and vn−1 = vn. (We return to this problem in Chapter
7.) How many equations and how many unknowns are there in this problem?
Give the matrix that corresponds to this boundary value problem.

2. Ordering unknowns. Suppose the unknowns of system (1.5) are ordered
by lines of constant j (or y). Give the block structure of the resulting matrix
and specify the dimensions of the blocks.

3. Periodic boundary conditions. Consider model problem (1.1) subject
to the periodic boundary conditions u(0) = u(1) and u′(0) = u′(1). Find the
system of linear equations that results when second-order finite differences are
used to discretize this problem at the grid points x0, . . . , xn−1. How many
equations and unknowns are there in this problem?

4. Convection terms in two dimensions. A convection term can be added
to the two-dimensional model problem in the form

−ε(uxx + uyy) + aux = f(x).

Using the grid described in the text and second-order central finite difference
approximations, find the system of linear equations associated with this prob-
lem. What conditions must be met by a and ε for the associated matrix to
be diagonally dominant?

5. Three-dimensional problem. Consider the three-dimensional Poisson equa-
tion

−uxx − uyy − uzz = f(x, y, z).

Write out the discrete equation obtained by using second-order central finite
difference approximations at the grid point (xi, yj , zk). Assuming that the
unknowns are ordered first by lines of constant x, then lines of constant y,
describe the block structure of the resulting matrix.

stevem
Pencil

Chapter 2

Basic Iterative Methods

We now consider how model problems (1.3) and (1.5) might be treated using con-
ventional iterative or relaxation methods. We first establish the notation for this
and all remaining chapters. Let

Au = f

denote a system of linear equations such as (1.3) or (1.6). We always use u to
denote the exact solution of this system and v to denote an approximation to the
exact solution, perhaps generated by some iterative method. Bold symbols, such as
u and v, represent vectors, while the jth components of these vectors are denoted
by uj and vj . In later chapters, we need to associate u and v with a particular
grid, say Ωh. In this case, the notation uh and vh is used.

Suppose that the system Au = f has a unique solution and that v is a computed
approximation to u. There are two important measures of v as an approximation
to u. One is the error (or algebraic error) and is given simply by

e = u − v.

The error is also a vector and its magnitude may be measured by any of the standard
vector norms. The most commonly used norms for this purpose are the maximum
(or infinity) norm and the Euclidean or 2-norm, defined, respectively, by

‖e‖∞ = max
1≤j≤n

|ej | and ‖e‖2 =

n∑
j=1

e2
j

1/2

.

Unfortunately, the error is just as inaccessible as the exact solution itself. How-
ever, a computable measure of how well v approximates u is the residual, given
by

r = f − Av.

The residual is simply the amount by which the approximation v fails to satisfy
the original problem Au = f . It is also a vector and its size may be measured by
the same norm used for the error. By the uniqueness of the solution, r = 0 if and
only if e = 0. However, it may not be true that when r is small in norm, e is also
small in norm.

7

8 Chapter 2

Residuals and Errors. A residual may be defined for any numerical approx-
imation and, in many cases, a small residual does not necessarily imply a small
error. This is certainly true for systems of linear equations, as shown by the
following two problems:(

1 −1
21 −20

) (
u1

u2

)
=

(
−1
−19

)
and

(
1 −1
3 −1

) (
u1

u2

)
=

(
−1
1

)
.

Both systems have the exact solution u = (1, 2)T . Suppose we have computed
the approximation v = (1.95, 3)T . The error in this approximation is e =
(−0.95,−1)T , for which ‖e‖2 = 1.379. The norm of the residual in v for the
first system is ‖r1‖2 = 0.071, while the residual norm for the second system is
‖r2‖2 = 1.851. Clearly, the relatively small residual for the first system does
not reflect the rather large error. See Exercise 18 for an important relationship
between error and residual norms.

Remembering that Au = f and using the definitions of r and e, we can derive
an extremely important relationship between the error and the residual (Exercise
2):

Ae = r.

We call this relationship the residual equation. It says that the error satisfies the
same set of equations as the unknown u when f is replaced by the residual r. The
residual equation plays a vital role in multigrid methods and it is used repeatedly
throughout this tutorial.

We can now anticipate, in an imprecise way, how the residual equation can be
used to great advantage. Suppose that an approximation v has been computed
by some method. It is easy to compute the residual r = f − Av. To improve the
approximation v, we might solve the residual equation for e and then compute a
new approximation using the definition of the error

u = v + e.

In practice, this method must be applied more carefully than we have indicated.
Nevertheless, this idea of residual correction is very important in all that follows.

We now turn to relaxation methods for our first model problem (1.3) with σ = 0.
Multiplying that equation by h2 for convenience, the discrete problem becomes

−uj−1 + 2uj − uj+1 = h2fj , 1 ≤ j ≤ n − 1,

u0 = un = 0. (2.1)

One of the simplest schemes is the Jacobi (or simultaneous displacement) method.
It is produced by solving the jth equation of (2.1) for the jth unknown and using
the current approximation for the (j−1)st and (j +1)st unknowns. Applied to the
vector of current approximations, this produces an iteration scheme that may be
written in component form as

v
(1)
j =

1
2
(
v
(0)
j−1 + v

(0)
j+1 + h2fj

)
, 1 ≤ j ≤ n − 1.

A Multigrid Tutorial 9

To keep the notation as simple as possible, the current approximation (or the
initial guess on the first iteration) is denoted v(0), while the new, updated approx-
imation is denoted v(1). In practice, once all of the v(1) components have been
computed, the procedure is repeated, with v(1) playing the role of v(0). These iter-
ation sweeps are continued until (ideally) convergence to the solution is obtained.

It is important to express these relaxation schemes in matrix form, as well as
component form. We split the matrix A in the form

A = D − L − U,

where D is the diagonal of A, and −L and −U are the strictly lower and upper
triangular parts of A, respectively. Including the h2 term in the vector f, then
Au = f becomes

(D − L − U)u = f .

Isolating the diagonal terms of A, we have

Du = (L + U)u + f

or
u = D−1(L + U)u + D−1f .

Multiplying by D−1 corresponds exactly to solving the jth equation for uj , for
1 ≤ j ≤ n − 1. If we define the Jacobi iteration matrix by

RJ = D−1(L + U),

then the Jacobi method appears in matrix form as

v(1) = RJv(0) + D−1f .

There is a simple but important modification that can be made to the Jacobi
iteration. As before, we compute the new Jacobi iterates using

v∗j =
1
2
(
v
(0)
j−1 + v

(0)
j+1 + h2fj

)
, 1 ≤ j ≤ n − 1.

However, v∗j is now only an intermediate value. The new iterate is given by the
weighted average

v
(1)
j = (1 − ω)v(0)

j + ωv∗
j = v

(0)
j + ω(v∗j − v

(0)
j), 1 ≤ j ≤ n − 1,

where ω ∈ R is a weighting factor that may be chosen. This generates an entire
family of iterations called the weighted or damped Jacobi method. Notice that ω = 1
yields the original Jacobi iteration.

In matrix form, the weighted Jacobi method is given by (Exercise 3)

v(1) = [(1 − ω)I + ωRJ]v(0) + ωD−1f .

If we define the weighted Jacobi iteration matrix by

Rω = (1 − ω)I + ωRJ ,

10 Chapter 2

then the method may be expressed as (Exercise 3)

v(1) = Rωv(0) + ωD−1f .

We should note in passing that the weighted Jacobi iteration can also be written
in the form (Exercise 3)

v(1) = v(0) + ωD−1r(0).

This says that the new approximation is obtained from the current one by adding
an appropriate weighting of the residual.

This is just one example of a stationary linear iteration. This term refers to the
fact that the update rule is linear in the unknown v and does not change from one
iteration to the next. We can say more about such iterations in general. Recalling
that e = u − v and Ae = r, we have

u − v = A−1r.

Identifying v with the current approximation v(0) and u with the new approxima-
tion v(1), an iteration may be formed by taking

v(1) = v(0) + Br(0), (2.2)

where B is an approximation to A−1. If B can be chosen “close” to A−1, then the
iteration should be effective.

It is useful to examine this general form of iteration a bit further. Rewriting
expression (2.2), we see that

v(1) = v(0) + Br(0) = v(0) + B(f − Av(0))
= (I − BA)v(0) + Bf

≡ Rv(0) + Bf ,

where we have defined the general iteration matrix as R = I − BA. It can also be
shown (Exercise 4) that m sweeps of this iteration result in

v(m) = Rmv(0) + C(f),

where C(f) represents a series of operations on f . We return to this general form
in Chapter 5.

Before analyzing or implementing these methods, we present a few more of
the basic iterative schemes. Weighted Jacobi computes all components of the new
approximation before using any of them. This requires 2n storage locations for the
approximation vector. It also means that new information cannot be used as soon
as it is available.

The Gauss–Seidel method incorporates a simple change: components of the new
approximation are used as soon as they are computed. This means that components
of the approximation vector v are overwritten as soon as they are updated. This
small change reduces the storage requirement for the approximation vector to only
n locations. The Gauss–Seidel method is also equivalent to successively setting
each component of the residual vector to zero and solving for the corresponding
component of the solution (Exercise 5). When applied to the model problem, this
method may be expressed in component form as

vj ←− 1
2
(
vj−1 + vj+1 + h2fj

)
, 1 ≤ j ≤ n − 1,

where the arrow notation stands for replacement or overwriting.

A Multigrid Tutorial 11

Once again it is useful to express this method in matrix form. Splitting the
matrix A in the form A = D − L − U , we can now write the original system of
equations as

(D − L)u = Uu + f

or
u = (D − L)−1Uu + (D − L)−1f .

This representation corresponds to solving the jth equation for uj and using new
approximations for components 1, 2, . . . , j − 1. Defining the Gauss–Seidel iteration
matrix by

RG = (D − L)−1U,

we can express the method as

v ←− RGv + (D − L)−1f .

Finally, we look at one important variation on the Gauss–Seidel iteration. For
weighted Jacobi, the order in which the components of v are updated is immaterial,
since components are never overwritten. However, for Gauss–Seidel, the order of
updating is significant. Instead of sweeping through the components (equivalently,
the grid points) in ascending order, we could sweep through the components in
descending order or we might alternate between ascending and descending orders.
The latter procedure is called the symmetric Gauss–Seidel method.

Another effective alternative is to update all the even components first by the
expression

v2j ←− 1
2
(
v2j−1 + v2j+1 + h2f2j

)
,

and then update all the odd components using

v2j+1 ←− 1
2
(
v2j + v2j+2 + h2f2j+1

)
.

This strategy leads to the red-black Gauss–Seidel method, which is illustrated in
Fig. 2.1 for both one-dimensional and two-dimensional grids. Notice that the red
points correspond to even-indexed points in one dimension and to points whose
index sum is even in two dimensions (assuming that i = 0 and j = 0 corresponds
to a boundary). The red points also correspond to what we soon call coarse-grid
points.

The advantages of red-black over regular Gauss–Seidel are not immediately
apparent; the issue is often problem-dependent. However, red-black Gauss–Seidel
does have a clear advantage in terms of parallel computation. The red points need
only the black points for their updating and may therefore be updated in any order.
This work represents n

2 (or n2

2 in two dimensions) independent tasks that can be
distributed among several independent processors. In a similar way, the black sweep
can also be done by several independent processors. (The Jacobi iteration is also
well-suited to parallel computation.)

There are many more basic iterative methods. However, we have seen enough
of the essential methods to move ahead toward multigrid. First, it is important to
gain some understanding of how these basic iterations perform. We proceed both
by analysis and by experimentation.

When studying stationary linear iterations, it is sufficient to work with the
homogeneous linear system Au = 0 and use arbitrary initial guesses to start the

12 Chapter 2

� � � � � � �� � � � � �

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

y

x

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

Figure 2.1: A one-dimensional grid (top) and a two-dimensional grid (bottom),
showing the red points (◦) and the black points (•) for red-black relaxation.

relaxation scheme (Exercise 6). One reason for doing this is that the exact solution
is known (u = 0) and the error in an approximation v is simply −v. Therefore, we
return to the one-dimensional model problem with f = 0. It appears as

−uj−1 + 2uj − uj+1 = 0, 1 ≤ j ≤ n − 1,

u0 = un = 0. (2.3)

We obtain some valuable insight by applying various iterations to this system
of equations with an initial guess consisting of the vectors (or Fourier modes)

vj = sin
(

jkπ

n

)
, 0 ≤ j ≤ n, 1 ≤ k ≤ n − 1.

Recall that j denotes the component (or associated grid point) of the vector v. The
integer k now makes its first appearance. It is called the wavenumber (or frequency)
and it indicates the number of half sine waves that constitute v on the domain of
the problem. We use vk to designate the entire vector v with wavenumber k.
Figure 2.2 illustrates initial guesses v1, v3, and v6. Notice that small values of
k correspond to long, smooth waves, while large values of k correspond to highly
oscillatory waves. We now explore how Fourier modes behave under iteration.

We first apply the weighted Jacobi iteration with ω = 2
3 to problem (2.3) on

a grid with n = 64 points. Beginning with initial guesses of v1, v3, and v6, the
iteration is applied 100 times. Recall that the error is just −v. Figure 2.3(a) shows
a plot of the maximum norm of the error versus the iteration number.

For the moment, only the qualitative behavior of the iteration is important. The
error clearly decreases with each relaxation sweep and the rate of decrease is larger
for the higher wavenumbers. Figures 2.3(b, c) show analogous plots for the regular
and red-black Gauss–Seidel iterations, where we see a similar relationship among
the error, the number of iterations, and the wavenumber. (The complete situation
is not quite so simple with red-black Gauss–Seidel, as illustrated in Exercise 20.)

A Multigrid Tutorial 13

Figure 2.2: The modes vj = sin
(

jkπ
n

)
, 0 ≤ j ≤ n, with wavenumbers k = 1, 3, 6.

The kth mode consists of k
2 full sine waves on the interval.

The experiment of Fig. 2.3(a) is presented in a slightly different light in Fig.
2.4. In this figure, the log of the maximum norm of the error for the weighted
Jacobi method is plotted against the iteration number for various wavenumbers.
This plot clearly shows a linear decrease in the log of the error norm, indicating
that the error itself decreases geometrically with each iteration. If we let e(0) be the
error in the initial guess and e(m) be the error in the mth iterate, then we might
expect to describe the error by a relationship of the form

‖e(m)‖∞ = cm
k ‖e(0)‖∞,

where ck is a constant that depends on the wavenumber. We will see that the
theory confirms this conjecture.

In general, most initial guesses (or, equivalently, most right-side vectors f) would
not consist of a single mode. Consider a slightly more realistic situation in which
the initial guess (hence, the error) consists of three modes: a low-frequency wave
(k = 1), a medium-frequency wave (k = 6), and a high-frequency wave (k = 32) on
a grid with n = 64 points; it is given by

vj =
1
3

[
sin

(
jπ

n

)
+ sin

(
6jπ

n

)
+ sin

(
32jπ

n

)]
.

Figure 2.5 shows the maximum norm of the error plotted against the number of
iterations. The error decreases rapidly within the first five iterations, after which
it decreases much more slowly. The initial decrease corresponds to the quick elim-
ination of the high-frequency modes of the error. The slow decrease is due to the
presence of persistent low-frequency modes. The important observation is that the
standard iterations converge very quickly as long as the error has high-frequency
components. However, the slower elimination of the low-frequency components
degrades the performance of these methods.

With some experimental evidence in hand, we now turn to a more analytical
approach. Each of the methods discussed so far may be represented in the form

v(1) = Rv(0) + g,

14 Chapter 2

Figure 2.3: (a) Weighted Jacobi iteration with ω = 2
3 , (b) regular Gauss–Seidel

iteration, and (c) red-black Gauss–Seidel iteration applied to the one-dimensional
model problem with n = 64 points and with initial guesses v1, v3, and v6. The
maximum norm of the error, ‖e‖∞, is plotted against the iteration number for 100
iterations.

A Multigrid Tutorial 15

Figure 2.4: Weighted Jacobi iteration with ω = 2
3 applied to the one-dimensional

model problem with n = 64 points and with initial guesses v1, v3, and v6. The log
of ‖e‖∞ is plotted against the iteration number for 100 iterations.

Figure 2.5: Weighted Jacobi method with ω = 2
3 applied to the one-dimensional

model problem with n = 64 points and an initial guess (v1 + v6 + v32)/3. The
maximum norm of the error, ‖e‖∞, is plotted against the iteration number for 100
iterations.

16 Chapter 2

where R is one of the iteration matrices derived earlier. Furthermore, all of these
methods are designed such that the exact solution, u, is a fixed point of the iteration
(Exercise 4). This means that iteration does not change the exact solution:

u = Ru + g.

Subtracting these last two expressions, we find that

e(1) = Re(0).

Repeating this argument, it follows that after m relaxation sweeps, the error in
the mth approximation is given by

e(m) = Rme(0).

Matrix Norms. Matrix norms can be defined in terms of the commonly used
vector norms. Let A be an n×n matrix with elements aij . Consider the vector
norm ‖x‖p defined by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

, 1 ≤ p < ∞,

‖x‖∞ = sup
1≤i≤n

|xi|.

The matrix norm induced by the vector norm ‖ · ‖p is defined by

‖A‖p = sup
x�=0

‖Ax‖p

‖x‖p
.

While not obvious without some computation, this definition leads to the fol-
lowing matrix norms induced by the vector norms ‖ · ‖1, ‖ · ‖∞, and ‖ · ‖2:

‖A‖1 = maxj

∑n
i=1 |aij | (maximum column sum),

‖A‖∞ = maxi

∑n
j=1 |aij | (maximum row sum),

‖A‖2 =
√

spectral radius of AT A.
Recall that the spectral radius of a matrix is given by

ρ(A) = max |λ(A)|,

where λ(A) denotes the eigenvalues of A. For symmetric matrices, the matrix
2-norm is just the spectral radius of A:

‖A‖2 =
√

ρ(AT A) =
√

ρ(A2) = ρ(A).

If we now choose a particular vector norm and its associated matrix norm, it is
possible to bound the error after m iterations by

‖e(m)‖ ≤ ‖R‖m‖e(0)‖.

A Multigrid Tutorial 17

This leads us to conclude that if ‖R‖ < 1, then the error is forced to zero as the
iteration proceeds.

It is shown in many standard texts [9, 20, 24, 26] that

lim
m→∞

Rm = 0 if and only if ρ(R) < 1.

Therefore, it follows that the iteration associated with the matrix R converges for
all initial guesses if and only if ρ(R) < 1.

The spectral radius ρ(R) is also called the asymptotic convergence factor when
it appears in the context of iterative methods. It has some useful interpretations.
First, it is roughly the worst factor by which the error is reduced with each relax-
ation sweep. By the following argument, it also tells us approximately how many
iterations are required to reduce the error by a factor of 10−d. Let m be the smallest
integer that satisfies

‖e(m)‖
‖e(0)‖ ≤ 10−d.

This condition will be approximately satisfied if

[ρ(R)]m ≤ 10−d.

Solving for m, we have

m ≥ − d

log10[ρ(R)]
.

The quantity − log10(ρ(R)) is called the asymptotic convergence rate. Its reciprocal
gives the approximate number of iterations required to reduce the error by one
decimal digit. We see that as ρ(R) approaches 1, the convergence rate decreases.
Small values of ρ(R) (that is, ρ(R) positive and near zero) give a high convergence
rate.

We have established the importance of the spectral radius of the iteration matrix
in analyzing the convergence properties of relaxation methods. Now it is time to
compute some spectral radii. Consider the weighted Jacobi iteration applied to the
one-dimensional model problem. Recalling that Rω = (1 − ω)I + ωRJ , we have
(Exercise 3)

Rω = I − ω

2

2 −1
−1 2 −1

· · ·
· · ·

· · −1
−1 2

 .

Written in this form, it follows that the eigenvalues of Rω and A are related by

λ(Rω) = 1 − ω

2
λ(A).

The problem becomes one of finding the eigenvalues of the original matrix A. This
useful exercise (Exercise 8) may be done in several different ways. The result is

18 Chapter 2

Interpreting the Spectral Radius. The spectral radius is considered to be
an asymptotic measure of convergence because it predicts the worst-case error
reduction over many iterations. It can be shown [9, 20] that, in any vector
norm,

ρ(R) = lim
m→∞

‖Rm‖1/m.

Therefore, in terms of error reduction, we have

ρ(R) = lim
m→∞

sup
e(0)

(‖e(m)‖
‖e(0)‖

)1/m

.

However, the spectral radius does not, in general, predict the behavior of the
error norm for a single iteration. For example, consider the matrix

R =
(

0 100
0 0

)
.

Clearly, ρ(R) = 0. But if we start with e(0) = (0, 1)T and compute e(1) = Re(0),
then the convergence factor is

‖e(1)‖2

‖e(0)‖2
= 100.

The next iterate achieves the asymptotic estimate, ρ(R) = 0, because e(2) = 0.
A better worst-case estimate of error reduction for one or a few iterations is
given by the matrix norm ‖R‖2. For the above example, we have ‖R‖2 =
100. The discrepancy between the asymptotic convergence factor, ρ(R), and
the worst-case estimate, ‖R‖2, disappears when R is symmetric because then
ρ(R) = ‖R‖2.

that the eigenvalues of A are

λk(A) = 4 sin2

(
kπ

2n

)
, 1 ≤ k ≤ n − 1.

Also of interest are the corresponding eigenvectors of A. In all that follows, we
let wk,j be the jth component of the kth eigenvector, wk. The eigenvectors of A
are then given by (Exercise 9)

wk,j = sin
(

jkπ

n

)
, 1 ≤ k ≤ n − 1, 0 ≤ j ≤ n.

We see that the eigenvectors of A are simply the Fourier modes discussed earlier.
With these results, we find that the eigenvalues of Rω are

λk(Rω) = 1 − 2ω sin2

(
kπ

2n

)
, 1 ≤ k ≤ n − 1,

while the eigenvectors of Rω are the same as the eigenvectors of A (Exercise 10). It
is important to note that if 0 < ω ≤ 1, then |λk(Rω)| < 1 and the weighted Jacobi

A Multigrid Tutorial 19

iteration converges. We return to these convergence properties in more detail after
a small detour.

The eigenvectors of the matrix A are important in much of the following discus-
sion. They correspond very closely to the eigenfunctions of the continuous model
problem. Just as we can expand fairly arbitrary functions using this set of eigenfunc-
tions, it is also possible to expand arbitrary vectors in terms of a set of eigenvectors.
Let e(0) be the error in an initial guess used in the weighted Jacobi method. Then
it is possible to represent e(0) using the eigenvectors of A in the form

e(0) =
n−1∑
k=1

ckwk,

where the coefficients ck ∈ R give the “amount” of each mode in the error. We
have seen that after m sweeps of the iteration, the error is given by

e(m) = Rm
ω e(0).

Using the eigenvector expansion for e(0), we have

e(m) = Rm
ω e(0) =

n−1∑
k=1

ckRm
ω wk =

n−1∑
k=1

ckλm
k (Rω)wk.

The last equality follows because the eigenvectors of A and Rω are the same; there-
fore, Rωwk = λk(Rω)wk.

This expansion for e(m) shows that after m iterations, the kth mode of the
initial error has been reduced by a factor of λm

k (Rω). It should also be noted that
the weighted Jacobi method does not mix modes: when applied to a single mode,
the iteration can change the amplitude of that mode, but it cannot convert that
mode into different modes. In other words, the Fourier modes are also eigenvectors
of the iteration matrix. As we will see, this property is not shared by all stationary
iterations.

To develop some familiarity with these Fourier modes, Fig. 2.6 shows them on
a grid with n = 12 points. Notice that the kth mode consists of k

2 full sine waves
and has a wavelength of � = 24h

k = 2
k (the entire interval has length 1). The k = n

2
mode has a wavelength of � = 4h and the k = n − 1 mode has a wavelength of
almost � = 2h. Waves with wavenumbers greater than n (wavelengths less than 2h)
cannot be represented on the grid. In fact (Exercise 12), through the phenomenon
of aliasing, a wave with a wavelength less than 2h actually appears on the grid with
a wavelength greater than 2h.

At this point, it is important to establish some terminology that is used through-
out the remainder of the tutorial. We need some qualitative terms for the various
Fourier modes that have been discussed. The modes in the lower half of the spec-
trum, with wavenumbers in the range 1 ≤ k < n

2 , are called low-frequency or smooth
modes. The modes in the upper half of the spectrum, with n

2 ≤ k ≤ n − 1, are
called high-frequency or oscillatory modes.

Having taken this excursion through Fourier modes, we now return to the anal-
ysis of the weighted Jacobi method. We established that the eigenvalues of the
iteration matrix are given by

λk(Rω) = 1 − 2ω sin2

(
kπ

2n

)
, 1 ≤ k ≤ n − 1.

What choice of ω gives the best iterative scheme?

20 Chapter 2

Figure 2.6: Graphs of the Fourier modes of A on a grid with n = 12 points. Modes
with wavenumbers k = 1, 2, 3, 4, 6, 8, 9 are shown. The wavelength of the kth mode
is � = 24h

k .

A Multigrid Tutorial 21

Figure 2.7: Eigenvalues of the iteration matrix Rω for ω = 1
3 , 1

2 , 2
3 , 1. The

eigenvalues λk = 1− 2ω sin2
(

kπ
2n

)
are plotted as if k were a continuous variable on

the interval 0 ≤ k ≤ n. In fact, 1 ≤ k ≤ n − 1 takes only integer values.

Recall that for 0 < ω ≤ 1, we have |λk(Rω)| < 1. We would like to find the
value of ω that makes |λk(Rω)| as small as possible for all 1 ≤ k ≤ n − 1. Figure
2.7 is a plot of the eigenvalues λk for four different values of ω. Notice that for all
values of ω satisfying 0 < ω ≤ 1,

λ1 = 1 − 2ω sin2
(π

2n

)
= 1 − 2ω sin2

(
πh

2

)
≈ 1 − ωπ2h2

2
.

This fact implies that λ1, the eigenvalue associated with the smoothest mode, will
always be close to 1. Therefore, no value of ω will reduce the smooth components
of the error effectively. Furthermore, the smaller the grid spacing h, the closer λ1 is
to 1. Any attempt to improve the accuracy of the solution (by decreasing the grid
spacing) will only worsen the convergence of the smooth components of the error.
Most basic relaxation schemes share this ironic limitation.

Having accepted the fact that no value of ω damps the smooth components
satisfactorily, we ask what value of ω provides the best damping of the oscillatory
components (those with n

2 ≤ k ≤ n − 1). We could impose this condition by
requiring that

λn/2(Rω) = −λn(Rω).

Solving this equation for ω leads to the optimal value ω = 2
3 .

We also find (Exercise 13) that with ω = 2
3 , |λk| < 1

3 for all n
2 ≤ k ≤ n − 1.

This says that the oscillatory components are reduced at least by a factor of three
with each relaxation. This damping factor for the oscillatory modes is an important

stevem
Pencil

stevem
Pencil

stevem
Pencil

22 Chapter 2

property of any relaxation scheme and is called the smoothing factor of the scheme.
An important property of the basic relaxation scheme that underlies much of the
power of multigrid methods is that the smoothing factor is not only small, but also
independent of the grid spacing h.

We now turn to some numerical experiments to illustrate the analytical results
that have just been obtained. Once again, the weighted Jacobi method is applied
to the one-dimensional model problem Au = 0 on a grid with n = 64 points. We
use initial guesses (which are also initial errors) consisting of single modes with
wavenumbers 1 ≤ k ≤ n − 1. Figure 2.8 shows how the method performs in terms
of different wavenumbers. Specifically, the wavenumber of the initial error is plotted
against the number of iterations required to reduce the norm of the initial error by
a factor of 100. This experiment is done for weighting factors of ω = 1 and ω = 2

3 .
With ω = 1, both the high- and low-frequency components of the error are

damped very slowly. Components with wavenumbers near n
2 are damped rapidly.

This behavior is consistent with the eigenvalue curves of Fig. 2.7. We see a quite
different behavior in Fig. 2.8(b) with ω = 2

3 . Recall that ω = 2
3 was chosen to

give preferential damping to the oscillatory components. Indeed, the smooth waves
are damped very slowly, while the upper half of the spectrum (k ≥ n

2) shows rapid
convergence. Again, this is consistent with Fig. 2.7.

Another perspective on these convergence properties is provided in Figure 2.9.
This time the actual approximations are plotted. The weighted Jacobi method
with ω = 2

3 is applied to the same model problem on a grid with n = 64 points.
Figure 2.9(a) shows the error with wavenumber k = 3 after one relaxation sweep
(left plot) and after 10 relaxation sweeps (right plot). This smooth component is
damped very slowly. Figure 2.9(b) shows a more oscillatory error (k = 16) after one
and after 10 iterations. The damping is now much more dramatic. Notice also, as
mentioned before, that the weighted Jacobi method preserves modes: once a k = 3
mode, always a k = 3 mode.

Figure 2.9(c) illustrates the selectivity of the damping property. This experi-
ment uses an initial guess consisting of two modes with k = 2 and k = 16. After 10
relaxation sweeps, the high-frequency modulation on the long wave has been nearly
eliminated. However, the original smooth component persists.

We have belabored the discussion of the weighted Jacobi method because it is
easy to analyze and because it shares many properties with other basic relaxation
schemes. In much less detail, let us look at the Gauss–Seidel iteration. We can
show (Exercise 14) that the Gauss–Seidel iteration matrix for the model problem
(matrix A) has eigenvalues

λk(RG) = cos2
(

kπ

n

)
, 1 ≤ k ≤ n − 1.

These eigenvalues, which are plotted in Fig. 2.10, must be interpreted carefully.
We see that when k is close to 1 or n, the corresponding eigenvalues are close to 1
and convergence is slow. However, the eigenvectors of RG are given by (Exercise
14)

wk,j =
[
cos

(
kπ

n

)]j

sin
(

jkπ

n

)
,

where 0 ≤ j ≤ n and 1 ≤ k ≤ n − 1. These eigenvectors do not coincide with the
eigenvectors of A. Therefore, λk(RG) gives the convergence rate, not for the kth
mode of A, but for the kth eigenvector of RG.

A Multigrid Tutorial 23

Figure 2.8: Weighted Jacobi method with (a) ω = 1 and (b) ω = 2
3 applied to the

one-dimensional model problem with n = 64 points. The initial guesses consist of
the modes wk for 1 ≤ k ≤ 63. The graphs show the number of iterations required
to reduce the norm of the initial error by a factor of 100 for each wk. Note that
for ω = 2

3 , the damping is strongest for the oscillatory modes (32 ≤ k ≤ 63).

24 Chapter 2

Figure 2.9: Weighted Jacobi method with ω = 2
3 applied to the one-dimensional

model problem with n = 64 points and with an initial guess consisting of (a) w3,
(b) w16, and (c) (w2 + w16)/2. The figures show the approximation after one
iteration (left side) and after 10 iterations (right side).

This distinction is illustrated in Fig. 2.11. As before, the wavenumber k is
plotted against the number of iterations required to reduce the norm of the initial
error by a factor of 100. In Fig. 2.11(a), the initial guess (and error) consists of
the eigenvectors of RG with wavenumbers 1 ≤ k ≤ 63. The graph looks similar
to the eigenvalue graph of Fig. 2.10. In Fig. 2.11(b), the initial guess consists of
the eigenvectors of the original matrix A. The structure of this graph would be
much more difficult to anticipate analytically. We see that when convergence of the
Gauss–Seidel method is described in terms of the modes of A, then once again the
smooth modes are damped slowly, while the oscillatory modes show rapid decay.

We have looked in detail at the convergence properties of some basic relax-
ation schemes. The experiments we presented reflect the experience of many practi-

A Multigrid Tutorial 25

Figure 2.10: Eigenvalues of the Gauss–Seidel iteration matrix. The eigenvalues
λk = cos2

(
kπ
n

)
are plotted as if k were a continuous variable on the interval 0 ≤

k ≤ n.

tioners. These schemes work very well for the first several iterations. Inevitably,
however, convergence slows and the entire scheme appears to stall. We have found
a simple explanation for this phenomenon: the rapid decrease in error during the
early iterations is due to the efficient elimination of the oscillatory modes of that
error; but once the oscillatory modes have been removed, the iteration is much less
effective in reducing the remaining smooth components.

There is also a good physical explanation for why smooth error modes are so
resistant to relaxation. Recall from (2.2) that stationary linear iterations can be
written in the form

v(1) = v(0) + Br(0).

Subtracting this equation from the exact solution u, the error at the next step is

e(1) = e(0) − Br(0).

We see that changes in the error are made with spatially local corrections expressed
through the residual. If the residual is small relative to the error itself, then changes
in the error will be correspondingly small. At least for the model problems we have
posed, smooth error modes have relatively small residuals (Exercise 19), so the
error decreases slowly. Conversely, oscillatory errors tend to have relatively large
residuals and the corrections to the error with a single relaxation sweep can be
significant.

Many relaxation schemes possess this property of eliminating the oscillatory
modes and leaving the smooth modes. This so-called smoothing property is a serious
limitation of conventional relaxation methods. However, this limitation can be
overcome and the remedy is one of the pathways to multigrid.

In one very brief chapter, we have barely touched upon the wealth of lore and
theory surrounding iterative methods. The subject constitutes a large and impor-
tant domain of classical numerical analysis. It is also filled with very elegant math-
ematics from both linear algebra and analysis. However, esoteric iterative methods
are not required for the development of multigrid. The most effective multigrid
techniques are usually built upon the simple relaxation schemes presented in this
chapter. We now use these few basic schemes and develop them into far more
powerful methods.

26 Chapter 2

Figure 2.11: Gauss–Seidel iteration matrix applied to the model problem with n = 64
points. The initial guesses consist of (a) the eigenvectors of the iteration matrix
RG with wavenumbers 1 ≤ k ≤ 63 and (b) the eigenvectors of A with wavenumbers
1 ≤ k ≤ 63. The figure shows the number of iterations required to reduce the norm
of the initial error by a factor of 100 for each initial guess.

A Multigrid Tutorial 27

Exercises

1. Residual vs. error. Consider the two systems of linear equations given in
the box on residuals and errors in this chapter. Make a sketch showing the
pair of lines represented by each system. Mark the exact solution u and the
approximation v. Explain why, even though the error is the same in both
cases, the residual is small in one case and large in the other.

2. Residual equation. Use the definition of the algebraic error and the residual
to derive the residual equation Ae = r.

3. Weighted Jacobi iteration.

(a) Starting with the component form of the weighted Jacobi method, show
that it can be written in matrix form as v(1) = [(1 − ω)I + ωRJ]v(0) +
ωD−1f .

(b) Show that the weighted Jacobi method may also be written in the form

v(1) = Rωv(0) + ωD−1f .

(c) Show that the weighted Jacobi iteration may also be expressed in the
form

v(1) = v(0) + ωD−1r(0),

where r(0) is the residual associated with the approximation v(0).

(d) Assume that A is the matrix associated with the model problem. Show
that the weighted Jacobi iteration matrix can be expressed as

Rω = I − ω

2
A.

4. General stationary linear iteration. It was shown that a general station-
ary linear iteration can be expressed in the form

v(1) = (I − BA)v(0) + Bf ≡ Rv(0) + Bf .

(a) Show that m sweeps of the iteration has the form

v(1) = Rmv(0) + C(f).

Find an expression for C(f).

(b) Show that the form of the iteration given above is equivalent to

v(1) = v(0) + Br(0),

where r(0) is the initial residual. Use this form to argue that the exact
solution to the linear system, u, is unchanged by (and is therefore a fixed
point of) the iteration.

5. Interpreting Gauss–Seidel. Show that the Gauss–Seidel iteration is equiv-
alent to successively setting each component of the residual to zero.

6. Zero right side. Argue that in analyzing the error in a stationary linear
relaxation scheme applied to Au = f , it is sufficient to consider Au = 0 with
arbitrary initial guesses.

28 Chapter 2

7. Asymptotic convergence rate. Explain why the asymptotic convergence
rate,

− log10 ρ(R),

is positive. Which iteration matrix gives a higher asymptotic convergence
rate: one with ρ(R) = 0.1 or one with ρ(R) = 0.9? Explain.

8. Eigenvalues of the model problem. Compute the eigenvalues of the
matrix A of the one-dimensional model problem. (Hint: Write out a typical
equation of the system Aw = λw with w0 = wn = 0. Notice that vectors of
the form wj = sin

(
jkπ
n

)
, 1 ≤ k ≤ n − 1, 0 ≤ j ≤ n, satisfy the boundary

conditions.) How many distinct eigenvalues are there? Compute λ1, λ2, λn−2,
λn−1 when n = 32.

9. Eigenvectors of the model problem. Using the results of the previous
problem, find the eigenvectors of the one-dimensional model problem matrix
A.

10. Jacobi eigenvalues and eigenvectors. Find the eigenvalues of the weighted
Jacobi iteration matrix when it is applied to the one-dimensional model prob-
lem matrix A. Verify that the eigenvectors of Rω are the same as the eigen-
vectors of A.

11. Fourier modes. Consider the interval 0 ≤ x ≤ 1 with grid points xj = j
n ,

0 ≤ j ≤ n. Show that the kth Fourier mode wk,j = sin
(

jkπ
n

)
has wavelength

� = 2
k . Which mode has wavelength � = 8h? Which mode has wavelength

� = 1
4?

12. Aliasing. On a grid with n − 1 interior points, show that the mode wk,j =

sin
(

jkπ
n

)
with n < k < 2n is actually represented as the mode wk′ where

k′ = 2n − k. How is the mode with wavenumber k = 3n
2 represented on the

grid? How is the mode with wavelength l = 4h
3 represented on the grid? Make

sketches for these two examples.

13. Optimal Jacobi. Show that when the weighted Jacobi method is used with
ω = 2

3 , the smoothing factor is 1
3 . Show that if ω is chosen to damp the

smooth modes effectively, then the oscillatory modes are actually amplified.

14. Gauss–Seidel eigenvalues and eigenvectors.

(a) Show that the eigenvalue problem for the Gauss–Seidel iteration matrix,
RGw = λw, may be expressed in the form Uw = (D − L)λIw, where
U , L, D are defined in the text.

(b) Write out the equations of this system and note the boundary condition
w0 = wn = 0. Look for solutions of this system of equations of the form
wj = µj , where µ ∈ C must be determined. Show that the boundary
conditions can be satisfied only if λ = λk = cos2

(
kπ
n

)
, 1 ≤ k ≤ n − 1.

(c) Show that the eigenvector associated with λk is wk,j = cos(kπ
n) sin

(
jkπ
n

)
.

15. Richardson iteration.

(a) Recall that for real vectors u, v, the inner product is given by (u,v) =
uT v and ‖u‖2

2 = (u,u). Furthermore, if A is symmetric positive definite,

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Text Box
the negative of

A Multigrid Tutorial 29

then ‖A‖2 = ρ(A), the spectral radius of A. Richardson’s iteration is
given by

v(1) = v(0) +
s

‖A‖2
r(0) for 0 < s < 2,

where r(0) = f −Av(0) is the residual. Show that when A has a constant
diagonal, this method reduces to the weighted Jacobi method.

(b) Show that the error after one sweep of Richardson’s method is governed
by

‖e(1)‖2
2 ≤

[
1 − s(2 − s)(Ae(0), e(0))

‖A‖2 (e(0), e(0))

]
‖e(0)‖2

2.

(c) If the eigenvalues of A are ordered 0 < λ1 < λ2 < · · · < λn and
the smallest eigenvalues correspond to the smooth modes, show that
Richardson’s method has the smoothing property. (Use the fact that
the eigenvalues are given by the Rayleigh quotients of the eigenvectors,
λk = (Awk,wk)/(wk,wk), where wk is the eigenvector associated with
λk.)

16. Properties of Gauss–Seidel. Assume A is symmetric, positive definite.

(a) Show that the jth step of a single sweep of the Gauss–Seidel method
applied to Au = f may be expressed as

vj ← vj +
rj

ajj
.

(b) Show that the jth step of a single sweep of the Gauss–Seidel method can
be expressed in vector form as

v ← v +
(r, êj)

(Aêj , êj)
êj , 1 ≤ j ≤ n,

where êj is the jth unit vector.

(c) Show that each sweep of Gauss–Seidel decreases the quantity (Ae, e),
where e = u − v.

(d) Show that Gauss–Seidel is optimal in the sense that the quantity ‖e −
sêj‖A is minimized for each 1 ≤ j ≤ n when s = (r, êj)/(Aêj , êj), which
is precisely a Gauss–Seidel step.

17. Matrix 2-norm. Show that the matrix 2-norm is given by

‖A‖2 =
√

ρ(AT A).

Use the definition of matrix norm and the relations ‖x‖2
2 = (x,x) and ‖Ax‖2

2 =
(Ax, Ax).

18. Error and residual norms. The condition number of a matrix, cond(A) =
‖A‖2‖A−1‖2, gives an idea of how well the residual measures the error. In
the following exercise, use the property of matrix and vector norms that
‖Ax‖ ≤ ‖A‖‖x‖.

stevem
Text Box
unless e is already zero.

stevem
Pencil

30 Chapter 2

(a) Begin with the relations Ae = r and A−1f = u. Taking norms and
combining terms, show that

‖r‖2

‖f‖2
≤ cond(A)

‖e‖2

‖u‖2
.

Knowing that this bound is sharp (that is, equality can be achieved),
interpret this inequality in the case that the condition number is large.

(b) Now begin with the relations Au = f and A−1r = e. Taking norms and
combining terms, show that

‖e‖2

‖u‖2
≤ cond(A)

‖r‖2

‖f‖2
.

Knowing that this bound is sharp (that is, equality can be achieved),
interpret this inequality in the case that the condition number is large.

(c) Combine the above bounds to form the following relations:

1
cond(A)

‖r‖2

‖f‖2
≤ ‖e‖2

‖u‖2
≤ cond(A)

‖r‖2

‖f‖2
.

19. Residuals of smooth errors. Consider the residual equation, Ae = r, at a
single point, where A is the matrix for the model problem in either one or two
dimensions. Show that if e is smooth (for example, nearly constant), then r
is small relative to ‖A‖‖e‖. Conversely, show that if e is oscillatory, then r is
relatively large.

20. Numerical experiments. Write a short program that performs weighted
Jacobi (with variable ω), Gauss–Seidel, and red-black Gauss–Seidel for the
one-dimensional model problem. First reproduce the experiments shown in
Fig. 2.3. Then experiment with initial guesses with different wavenumbers.
Describe how each method performs as the wavenumbers increase and ap-
proach n.

Chapter 3

Elements of Multigrid

Through analysis and experimentation, we have examined some of the basic iter-
ative methods. Our discoveries have formed the beginnings of what we might call
a spectral (or Fourier mode) picture of relaxation schemes. As we proceed, more
essential details of this picture will become clear. So far we have established that
many standard iterative methods possess the smoothing property. This property
makes these methods very effective at eliminating the high-frequency or oscillatory
components of the error, while leaving the low-frequency or smooth components rel-
atively unchanged. The immediate issue is whether these methods can be modified
in some way to make them effective on all error components.

One way to improve a relaxation scheme, at least in its early stages, is to use
a good initial guess. A well-known technique for obtaining an improved initial
guess is to perform some preliminary iterations on a coarse grid. Relaxation on a
coarse grid is less expensive because there are fewer unknowns to be updated. Also,
because the convergence factor behaves like 1 − O(h2), the coarse grid will have a
marginally improved convergence rate. This line of reasoning at least suggests that
coarse grids might be worth considering.

With the coarse grid idea in mind, we can think more carefully about its impli-
cations. Recall that most basic relaxation schemes suffer in the presence of smooth
components of the error. Assume that a particular relaxation scheme has been ap-
plied until only smooth error components remain. We now ask what these smooth
components look like on a coarser grid. Figure 3.1 shows the answer. A smooth
wave with k = 4 on a grid Ωh with n = 12 points has been projected directly to
the grid Ω2h with n = 6 points. On this coarse grid, the original wave still has a
wavenumber of k = 4. We see that a smooth wave on Ωh looks more oscillatory on
Ω2h.

To be more precise, note that the grid points of the coarse grid Ω2h are the
even-numbered grid points of the fine grid Ωh. Consider the kth mode on the fine
grid evaluated at the even-numbered grid points. If 1 ≤ k < n

2 , its components
may be written as

wh
k,2j = sin

(
2jkπ

n

)
= sin

(
jkπ

n/2

)
= w2h

k,j , 1 ≤ k <
n

2
.

Notice that superscripts have been used to indicate the grids on which the vectors
are defined. From this identity, we see that the kth mode on Ωh becomes the kth

31

32 Chapter 3

Figure 3.1: Wave with wavenumber k = 4 on Ωh (n = 12 points) projected onto
Ω2h (n = 6 points). The coarse grid “sees” a wave that is more oscillatory on the
coarse grid than on the fine grid.

mode on Ω2h; this fact is easier to understand by noting that there are half as many
modes on Ω2h as there are on Ωh. The important consequence of this fact is that
in passing from the fine grid to the coarse grid, a mode becomes more oscillatory.
This is true provided that 1 ≤ k < n

2 . It should be verified that the k = n
2 mode

on Ωh becomes the zero vector on Ω2h.
As an aside, it is worth mentioning that fine-grid modes with k > n

2 undergo
a more curious transformation. Through the phenomenon of aliasing mentioned
earlier, the kth mode on Ωh becomes the (n − k)th mode on Ω2h when k > n

2
(Exercise 1). In other words, the oscillatory modes of Ωh are misrepresented as
relatively smooth modes on Ω2h.

The important point is that smooth modes on a fine grid look less smooth on
a coarse grid. This suggests that when relaxation begins to stall, signaling the
predominance of smooth error modes, it is advisable to move to a coarser grid;
there, the smooth error modes appear more oscillatory and relaxation will be more
effective. The question is: how do we move to a coarser grid and relax on the more
oscillatory error modes?

It is at this point that multigrid begins to come together like a jigsaw puzzle.
We must keep all of the related facts in mind. Recall that we have an equation
for the error itself, namely, the residual equation. If v is an approximation to the
exact solution u, then the error e = u − v satisfies

Ae = r = f − Av,

which says that we can relax directly on the error by using the residual equation.
There is another argument that justifies the use of the residual equation:

Relaxation on the original equation Au = f with an arbitrary initial
guess v is equivalent to relaxing on the residual equation Ae = r with
the specific initial guess e = 0.

A Multigrid Tutorial 33

This intimate connection between the original and the residual equations further
motivates the use of the residual equation (Exercise 2).

We must now gather these loosely connected ideas. We know that many re-
laxation schemes possess the smoothing property. This leads us to consider using
coarser grids during the computation to focus the relaxation on the oscillatory
components of the error. In addition, there seems to be good reason to involve
the residual equation in the picture. We now try to give these ideas a little more
definition by proposing two strategies.

We begin by proposing a strategy that uses coarse grids to obtain better initial
guesses.

• Relax on Au = f on a very coarse grid to obtain an initial guess for the next
finer grid.

·
·
·

• Relax on Au = f on Ω4h to obtain an initial guess for Ω2h.

• Relax on Au = f on Ω2h to obtain an initial guess for Ωh.

• Relax on Au = f on Ωh to obtain a final approximation to the solution.

This idea of using coarser grids to generate improved initial guesses is the basis
of a strategy called nested iteration. Although the approach is attractive, it also
leaves some questions. For instance, what does it mean to relax on Au = f on Ω2h?
We must somehow define the original problem on the coarser grids. Also, what
happens if, having once reached the fine grid, there are still smooth components
in the error? We may have obtained some improvement by using the coarse grids,
but the final iteration will stall if smooth components still remain. We return to
these questions and find answers that will allow us to use nested iteration in a very
powerful way.

A second strategy incorporates the idea of using the residual equation to relax
on the error. It can be represented by the following procedure:

• Relax on Au = f on Ωh to obtain an approximation vh.

• Compute the residual r = f − Avh.

Relax on the residual equation Ae = r on Ω2h to obtain

an approximation to the error e2h.

• Correct the approximation obtained on Ωh with the error estimate obtained
on Ω2h : vh ← vh + e2h.

This procedure is the basis of what is called the correction scheme. Having
relaxed on the fine grid until convergence deteriorates, we relax on the residual
equation on a coarser grid to obtain an approximation to the error itself. We then
return to the fine grid to correct the approximation first obtained there.

There is a rationale for using this correction strategy, but it also leaves some
questions to be answered. For instance, what does it mean to relax on Ae = r on
Ω2h? To answer this question, we first need to know how to compute the residual

34 Chapter 3

Figure 3.2: Interpolation of a vector on coarse grid Ω2h to fine grid Ωh.

on Ωh and transfer it to Ω2h. We also need to know how to relax on Ω2h and what
initial guess should be used. Moreover, how do we transfer the error estimate from
Ω2h back to Ωh? These questions suggest that we need mechanisms for transferring
information between the grids. We now turn to this important consideration.

In our discussion of intergrid transfers, we consider only the case in which the
coarse grid has twice the grid spacing of the next finest grid. This is a nearly
universal practice, because there is usually no advantage in using grid spacings
with ratios other than 2. Think for a moment about the step in the correction
scheme that requires transferring the error approximation e2h from the coarse grid
Ω2h to the fine grid Ωh. This is a common procedure in numerical analysis and is
generally called interpolation or prolongation. Many interpolation methods could
be used. Fortunately, for most multigrid purposes, the simplest of these is quite
effective. For this reason, we consider only linear interpolation.

The linear interpolation operator will be denoted Ih
2h. It takes coarse-grid vec-

tors and produces fine-grid vectors according to the rule Ih
2hv

2h = vh, where

vh
2j = v2h

j ,

vh
2j+1 =

1
2

(
v2h

j + v2h
j+1

)
, 0 ≤ j ≤ n

2
− 1.

Figure 3.2 shows graphically the action of Ih
2h. At even-numbered fine-grid points,

the values of the vector are transferred directly from Ω2h to Ωh. At odd-numbered
fine-grid points, the value of vh is the average of the adjacent coarse-grid values.

In anticipation of discussions to come, we note that Ih
2h is a linear operator from

R
n
2 −1 to Rn−1. It has full rank and the trivial null space, N = {0}. For the case

n = 8, this operator has the form

Ih
2hv

2h =
1
2

1
2
1 1

2
1 1

2
1

 v1

v2

v3

2h

=

v1

v2

v3

v4

v5

v6

v7

h

= vh.

How well does this interpolation process work? First assume that the “real”
error (which is not known exactly) is a smooth vector on the fine grid. Assume

A Multigrid Tutorial 35

Figure 3.3: (a) If the exact error on Ωh (indicated by ◦ and •) is smooth, an
interpolant of the coarse-grid error e2h (solid line connecting ◦ points) should give
a good representation of the exact error. (b) If the exact error on Ωh (indicated
by ◦ and •) is oscillatory, an interpolant of the coarse-grid error e2h (solid line
connecting ◦ points) may give a poor representation of the exact error.

also that a coarse-grid approximation to the error has been determined on Ω2h

and that this approximation is exact at the coarse-grid points. When this coarse-
grid approximation is interpolated to the fine grid, the interpolant is also smooth.
Therefore, we expect a relatively good approximation to the fine-grid error, as
shown in Fig. 3.3(a). By contrast, if the “real” error is oscillatory, even a very good
coarse-grid approximation may produce an interpolant that is not very accurate.
This situation is shown in Fig. 3.3(b).

Thus, interpolation is most effective when the error is smooth. Because inter-
polation is necessary for both nested iteration and the correction scheme, we may
conclude that these two processes are most effective when the error is smooth. As
we will see shortly, these processes provide a fortunate complement to relaxation,
which is most effective when the error is oscillatory.

For two-dimensional problems, the interpolation operator may be defined in a
similar way. If we let Ih

2hv
2h = vh, then the components of vh are given by

vh
2i,2j = v2h

ij ,

vh
2i+1,2j =

1
2
(
v2h

ij + v2h
i+1,j

)
,

vh
2i,2j+1 =

1
2
(
v2h

ij + v2h
i,j+1

)
,

vh
2i+1,2j+1 =

1
4
(
v2h

ij + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1

)
, 0 ≤ i, j ≤ n

2
− 1.

The second class of intergrid transfer operations involves moving vectors from
a fine grid to a coarse grid. They are generally called restriction operators and are
denoted by I2h

h . The most obvious restriction operator is injection. It is defined by
I2h
h vh = v2h, where

v2h
j = vh

2j .

36 Chapter 3

Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.

In other words, with injection, the coarse-grid vector simply takes its value directly
from the corresponding fine-grid point.

An alternate restriction operator, called full weighting, is defined by I2h
h vh =

v2h, where

v2h
j =

1
4
(
vh
2j−1 + 2vh

2j + vh
2j+1

)
, 1 ≤ j ≤ n

2
− 1.

As Fig. 3.4 shows, the values of the coarse-grid vector are weighted averages of
values at neighboring fine-grid points.

In the discussion that follows, we use full weighting as a restriction operator.
However, in some instances, injection may be the better choice. The issue of inter-
grid transfers, which is an important part of multigrid theory, is discussed at some
length in Brandt’s guide to multigrid [4].

The full weighting operator is a linear operator from Rn−1 to R
n
2 −1. It has a

rank of n
2 − 1 (Exercise 4) and a null space of dimension n

2 (Exercise 5). For the
case n = 8, the full weighting operator has the form

I2h
h vh =

1
4

 1 2 1

1 2 1
1 2 1

v1

v2

v3

v4

v5

v6

v7

h

=

 v1

v2

v3

2h

= v2h.

One reason for our choice of full weighting as a restriction operator is the important
fact (Exercise 6) that

Ih
2h = c(I2h

h)T , c ∈ R.

The fact that the interpolation operator and the full weighting operator are trans-
poses of each other up to a constant is called a variational property and will soon
be of importance.

For the sake of completeness, we give the full weighting operator in two dimen-
sions. It is just an averaging of the fine-grid nearest neighbors. Letting I2h

h vh = v2h,
we have that

v2h
ij =

1
16

[
vh
2i−1,2j−1 + vh

2i−1,2j+1 + vh
2i+1,2j−1 + vh

2i+1,2j+1

+ 2
(
vh
2i,2j−1 + vh

2i,2j+1 + vh
2i−1,2j + vh

2i+1,2j

)
+ 4vh

2i,2j

]
, 1 ≤ i, j ≤ n

2
− 1.

A Multigrid Tutorial 37

We now have a well-defined way to transfer vectors between fine and coarse
grids. Therefore, we can return to the correction scheme and make it precise. To
do this, we define the following two-grid correction scheme.

Two-Grid Correction Scheme

vh ← MG(vh, fh).

• Relax ν1 times on Ahuh = fh on Ωh with initial guess vh.

• Compute the fine-grid residual rh = fh − Ahvh and restrict it to the coarse
grid by r2h = I2h

h rh.

• Solve A2he2h = r2h on Ω2h.

• Interpolate the coarse-grid error to the fine grid by eh = Ih
2he

2h and correct
the fine-grid approximation by vh ← vh + eh.

• Relax ν2 times on Ahuh = fh on Ωh with initial guess vh.

This procedure is simply the original correction scheme, now refined by the
use of the intergrid transfer operators. We relax on the fine grid until it ceases
to be worthwhile; in practice, ν1 is often 1, 2, or 3. The residual of the current
approximation is computed on Ωh and then transferred by a restriction operator
to the coarse grid. As it stands, the procedure calls for the exact solution of the
residual equation on Ω2h, which may not be possible. However, if the coarse-grid
error can at least be approximated, it is then interpolated up to the fine grid, where
it is used to correct the fine-grid approximation. This is followed by ν2 additional
fine-grid relaxation sweeps.

Several comments are in order. First, notice that the superscripts h or 2h are
essential to indicate the grid on which a particular vector or matrix is defined.
Second, all of the quantities in the above procedure are well defined except for A2h.
For the moment, we take A2h simply to be the result of discretizing the problem
on Ω2h. Finally, the integers ν1 and ν2 are parameters in the scheme that control
the number of relaxation sweeps before and after visiting the coarse grid. They
are usually fixed at the start, based on either theoretical considerations or on past
experimental results.

It is important to appreciate the complementarity at work in the process. Re-
laxation on the fine grid eliminates the oscillatory components of the error, leaving
a relatively smooth error. Assuming the residual equation can be solved accurately
on Ω2h, it is still important to transfer the error accurately back to the fine grid.
Because the error is smooth, interpolation should work very well and the correction
of the fine-grid solution should be effective.

Numerical example. A numerical example will be helpful. Consider the weighted
Jacobi method with ω = 2

3 applied to the one-dimensional model problem Au = 0
on a grid with n = 64 points. We use an initial guess,

vh
j =

1
2

[
sin

(
16jπ

n

)
+ sin

(
40jπ

n

)]
,

consisting of the k = 16 and k = 40 modes. The following two-grid correction
scheme is used:

38 Chapter 3

• Relax three times on Ahuh = 0 on Ωh with initial guess vh.

• Compute r2h = I2h
h rh.

• Relax three times on A2he2h = r2h on Ω2h with initial guess e2h = 0.

• Correct the fine-grid approximation: vh ← vh + Ih
2he

2h.

• Relax three times on Ahuh = 0 on Ωh with initial guess vh.

• Compute r2h = I2h
h rh.

• Relax three times on A2he2h = r2h on Ω2h with initial guess e2h = 0.

• Correct the fine-grid approximation: vh ← vh + Ih
2he

2h.

The results of this calculation are given in Fig. 3.5. The initial guess with its two
modes is shown in the top left figure. In the top right, the approximation vh after
one relaxation sweep is superimposed on the initial guess. Much of the oscillatory
component of the initial guess has already been removed, and the 2-norm of the
error has been diminished to 57% of the norm of the initial error. The middle left
plot shows the approximation after three relaxation sweeps on the fine grid, again
superimposed on the initial guess. The solution (in this case, the error) has become
smoother and its norm is now 36% of the initial error norm. Further relaxations
on the fine grid would provide only a slow improvement at this point. This signals
that it is time to move to the coarse grid.

The middle right plot shows the fine-grid error after one relaxation sweep on the
coarse-grid residual equation, superimposed on the initial guess. Clearly, we have
achieved another reduction in the error by moving to the coarse grid; the norm of
the error is now 26% of the initial error norm. This improvement occurs because
the smooth error components, inherited from the fine grid, appear oscillatory on the
coarse grid and are quickly removed. The error after three coarse-grid relaxation
sweeps is shown in the bottom left figure. The norm of the error is now about 8%
of its initial value.

The coarse-grid approximation to the error is now used to correct the fine-grid
approximation. After three additional fine-grid relaxations, the 2-norm of the error
is reduced to about 3% of the initial error norm. This result is plotted in the
bottom right figure. The residual is once again transferred to the coarse grid and
three coarse-grid relaxations follow. At this point, the 2-norm of the error is about
1% of its original value. This experiment demonstrates that relaxation, when done
on two grids and applied to both the original and the residual equation, can be
very powerful. ��

The two-grid correction scheme, as outlined above, leaves one looming procedu-
ral question: what is the best way to solve the coarse-grid problem A2he2h = r2h?
The answer may be apparent, particularly to those who think recursively. The
coarse-grid problem is not much different from the original problem. Therefore, we
can apply the two-grid correction scheme to the residual equation on Ω2h, which
means relaxing there and then moving to Ω4h for the correction step. We can re-
peat this process on successively coarser grids until a direct solution of the residual
equation is possible.

A Multigrid Tutorial 39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.5: Coarse-grid correction for −u′′ = 0 on a grid with n = 64. Top left:
The initial guess, (w16 +w40)/2. Top right: The error after one sweep of weighted
Jacobi. Middle left: The error after three sweeps of weighted Jacobi. Middle right:
The fine-grid error after one sweep of weighted Jacobi on the coarse-grid problem.
Bottom left: The fine-grid error after three sweeps of weighted Jacobi on the coarse-
grid problem. Bottom right: The fine-grid error after the coarse-grid correction is
followed by three weighted Jacobi sweeps on the fine grid.

40 Chapter 3

To facilitate the description of this procedure, some economy of notation is de-
sirable. The same notation is used for the computer implementation of the resulting
algorithm. We call the right-side vector of the residual equation f2h, rather than
r2h, because it is just another right-side vector. Instead of calling the solution of the
residual equation e2h, we use u2h because it is just a solution vector. We can then
use v2h to denote approximations to u2h. These changes simplify the notation, but
it is still important to remember the meaning of these variables.

One more point needs to be addressed: what initial guess do we use for v2h on
the first visit to Ω2h? Because there is presumably no information available about
the solution, u2h, we simply choose v2h = 0. Here then is the two-grid correction
scheme, now imbedded within itself. We assume that there are l > 1 grids with
grid spacings h, 2h, 4h, . . . , Lh = 2l−1h.

V-Cycle Scheme

vh ← V h(vh, fh)

• Relax on Ahuh = fh ν1 times with initial guess vh.
• Compute f2h = I2h

h rh.
• Relax on A2hu2h = f2h ν1 times with initial guess v2h = 0.
• Compute f4h = I4h

2hr2h.
• Relax on A4hu4h = f4h ν1 times with initial guess v4h = 0.
• Compute f8h = I8h

4hr4h.
·
·
·

• Solve ALhuLh = fLh.
·
·
·

• Correct v4h ← v4h + I4h
8hv8h.

• Relax on A4hu4h = f4h ν2 times with initial guess v4h.
• Correct v2h ← v2h + I2h

4hv4h.
• Relax on A2hu2h = f2h ν2 times with initial guess v2h.

• Correct vh ← vh + Ih
2hv

2h.
• Relax on Ahuh = fh ν2 times with initial guess vh.

The algorithm telescopes down to the coarsest grid, which can consist of one or
a few interior grid points, then works its way back to the finest grid. Figure 3.6(a)
shows the schedule for the grids in the order in which they are visited. Because of
the pattern in this diagram, this algorithm is called the V -cycle. It is our first true
multigrid method.

Not surprisingly, the V-cycle has a compact recursive definition, which is given
as follows.

V-Cycle Scheme (Recursive Definition)

vh ← V h(vh, fh).

1. Relax ν1 times on Ahuh = fh with a given initial guess vh.

A Multigrid Tutorial 41

Figure 3.6: Schedule of grids for (a) V-cycle, (b) W-cycle, and (c) FMG scheme,
all on four levels.

2. If Ωh = coarsest grid, then go to step 4.

Else

f2h ← I2h
h (fh − Ahvh),

v2h ← 0,

v2h ← V 2h(v2h, f2h).

3. Correct vh ← vh + Ih
2hv

2h.

4. Relax ν2 times on Ahuh = fh with initial guess vh.

42 Chapter 3

The V-cycle is just one of a family of multigrid cycling schemes. The entire
family is called the µ-cycle method and is defined recursively by the following.

µ-Cycle Scheme

vh ← Mµh(vh, fh).

1. Relax ν1 times on Ahuh = fh with a given initial guess vh.

2. If Ωh = coarsest grid, then go to step 4.

Else

f2h ← I2h
h (fh − Ahvh),

v2h ← 0,

v2h ← Mµ2h(v2h, f2h) µ times.

3. Correct vh ← vh + Ih
2hv

2h.

4. Relax ν2 times on Ahuh = fh with initial guess vh.

In practice, only µ = 1 (which gives the V-cycle) and µ = 2 are used. Figure
3.6(b) shows the schedule of grids for µ = 2 and the resulting W -cycle. We refer
to a V-cycle with ν1 relaxation sweeps before the correction step and ν2 relaxation
sweeps after the correction step as a V(ν1, ν2)-cycle, with a similar notation for
W-cycles.

We originally stated that two ideas would lead to multigrid. So far we have
developed only the correction scheme. The nested iteration idea has yet to be
explored. Recall that nested iteration uses coarse grids to obtain improved initial
guesses for fine-grid problems. In looking at the V-cycle, we might ask how to
obtain an informed initial guess for the first fine-grid relaxation. Nested iteration
would suggest solving a problem on Ω2h. But how can we obtain a good initial
guess for the Ω2h problem? Nested iteration sends us to Ω4h. Clearly, we are on
another recursive path that leads to the coarsest grid.

The algorithm that joins nested iteration with the V-cycle is called the full
multigrid V-cycle (FMG) . Given first in explicit terms, it appears as follows.

Full Multigrid V-Cycle

vh ← FMGh(fh).

Initialize f2h ← I2h
h fh, f4h ← I4h

2hf2h,
• Solve or relax on coarsest grid.

·
·
·

• v4h ← I4h
8hv8h.

• v4h ← V 4h(v4h, f4h) ν0 times.
• v2h ← I2h

4hv4h.
• v2h ← V 2h(v2h, f2h) ν0 times.

• vh ← Ih
2hv

2h.
• vh ← V h(vh, fh), ν0 times.

A Multigrid Tutorial 43

We initialize the coarse-grid right sides by transferring fh from the fine grid. An-
other option is to use the original right-side function f . The cycling parameter,
ν0, sets the number of V-cycles done at each level. It is generally determined by
a previous numerical experiment; ν0 = 1 is the most common choice. Expressed
recursively, the algorithm has the following compact form.

Full Multigrid V-Cycle (Recursive Form)

vh ← FMGh(fh).

1. If Ωh = coarsest grid, set vh ← 0 and go to step 3.

Else

f2h ← I2h
h (fh),

v2h ← FMG2h(f2h).

2. Correct vh ← Ih
2hv

2h.

3. vh ← V h(vh, fh) ν0 times.

Figure 3.6(c) shows the schedule of grids for FMG with ν0 = 1. Each V-
cycle is preceded by a coarse-grid V-cycle designed to provide the best initial guess
possible. As we will see, the extra work done in these preliminary V-cycles is not
only inexpensive (Exercise 8), but easily pays for itself.

Full multigrid is the complete knot into which the many threads of the pre-
ceding chapters are tied. It is a remarkable synthesis of ideas and techniques that
individually have been well known and used for a long time. Taken alone, many of
these ideas have serious defects. Full multigrid is a technique for integrating them
so that they can work together in a way that overcomes these limitations. The
result is a very powerful algorithm.

Exercises

1. Aliasing. Show that the kth mode on a grid Ωh with n − 1 interior points
appears as the (n − k)th mode on Ω2h when n

2 < k < n.

2. An important equivalence. Consider a stationary, linear method of the
form v ← v+B−1(f −Av) applied to the problem Au = f . Use the following
steps to show that relaxation on Au = f with an arbitrary initial guess is
equivalent to relaxation on Ae = r with the zero initial guess:

(a) First consider the problem Au = f with an arbitrary initial guess v = v0.
What are the error and residual associated with v0?

(b) Now consider the associated residual equation Ae = r0 = f−Av0. What
are the error and residual in the initial guess e0 = 0?

(c) Conclude that the problems in (a) and (b) are equivalent.

3. Properties of interpolation. Show that Ih
2h based upon linear interpolation

is a linear operator with full rank in one and two dimensions.

4. Properties of restriction. What is the rank of I2h
h based on (a) full weight-

ing and (b) injection in one and two dimensions?

44 Chapter 3

5. Null space of full weighting. Show that the null space of the full weighting
operator, N(I2h

h), has a basis consisting of vectors of the form

(0, 0, . . . ,−1, 2,−1, . . . , 0, 0)T .

By counting these vectors, show that the dimension of N(I2h
h) is n

2 .

6. Variational property.

(a) Let Ih
2h and I2h

h be defined as in the text. Show that linear interpolation
and full weighting satisfy the variational property Ih

2h = c(I2h
h)T by

computing c ∈ R for both one and two dimensions.

(b) The choice of c �= 1 found in part (a) is used because full weighting
essentially preserves constants. Show that, except at the boundary,
I2h
h (1h) = 12h (where 1h and 12h are the vectors with entries 1 on

their respective grids).

7. Properties of red-black Gauss–Seidel. Suppose red-black Gauss–Seidel
is used with the V-cycle scheme for the one-dimensional model problem.

(a) Does it matter whether the odd unknowns or even unknowns are updated
first? Explain.

(b) Show that one sweep of red-black Gauss–Seidel on Ωh leaves the error
eh in the range of interpolation Ih

2h.

(c) Demonstrate that one V-cycle based on red-black Gauss–Seidel and full
weighting is a direct (exact) solver for the one-dimensional model prob-
lem.

8. FMG cost. The difference in cost between FMG and a single V-cycle is the
cost of all but the last V-cycle on Ωh in the FMG scheme. Estimate the cost
of these extra V-cycles. Assume that the cost of a V-cycle on grid Ωph is
proportional to the number of points in that grid, where p = 2, 4, 8, . . . , n/2.
Assume also that ν0 = 1.

Chapter 4

Implementation

The preceding chapter was devoted to the development of several multigrid schemes.
We now turn to the practical issues of writing multigrid programs and determining
whether they work. This will lead us to issues such as data structures, complexity,
predictive tools, diagnostic tools, and performance.

Complexity

Writing multigrid programs can be both fun and challenging. The experience of
many practitioners suggests that such programs should be highly modular. This
allows them to evolve from simple relaxation programs and makes them much easier
to check and debug. Also, the various components of the program (for example,
relaxation, interpolation, and restriction subroutines) can be replaced individually.

Choosing a manageable data structure for a multigrid program is essential.
Modern programming languages are replete with devices that make data manage-
ment easy. For example, in most languages, one can declare a structure that groups
together all the associated information for each grid level. In a structured language,
for instance, a V-cycle could be written along the lines of the following pseudocode:

declare structure:

grid = { double Ddim_array f %% the right hand side

double Ddim_array v %% the current approximation }

declare Grid: array of structure grid

for j = 0 to coarsest - 1

Grid[j].v <- relax(Grid[j].v, Grid[j].f, num_sweeps_down)

Grid[j+1].f <- restrict(Grid[j].f - apply_operator(Grid[j].v))

endfor

Grid[coarsest].v = direct_solve(Grid[coarsest].v, Grid[coarsest].f)

for j = coarsest-1 to 1

Grid[j].v <- Grid[j].v + interpolate(Grid[j+1].v)

Grid[j].v <- relax(Grid[j].v, Grid[j].f, num_sweeps_down)

endfor

45

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

46 Chapter 4

The routines relax, restrict, apply operator, interpolate, and direct solve take
the appropriate Ddim arrays, v and f, for the specified grid level and perform the
appropriate operations. We do not describe this type of data management in any
further detail, as the advances in these languages occur so rapidly that any discus-
sion would soon be outdated!

We describe a data structure for a simpler FORTRAN-like language. Multigrid
codes “grew up” in such an environment and many people learn to write multigrid
codes using MATLAB or a similar prototyping language with more restrictive data
structures. With these languages, there seems to be general agreement that the
solutions and right-side vectors on the various grids should be stored contiguously
in single arrays. Complicating factors such as irregular domains or local fine-grid
patches might require an exception to this practice. However, single arrays are
advisable for the regular grids discussed in this chapter.

We begin by considering a four-level V-cycle applied to a one-dimensional prob-
lem with n = 16 points. A typical data structure is shown in Fig. 4.1. It is
instructive to note how the data structure changes as the V-cycle progresses. Each
grid needs two arrays: one to hold the current approximations on each grid and one
to hold the right-side vectors on each grid. Because boundary values must also be
stored, the coarsest grid involves three grid points (one interior and two boundary
points). In general, the �th coarsest grid involves 2� + 1 points.

Initially, the entire solution array v may be set to zero, which will be the initial
guess on each grid. The right-side array f will also be set to zero, except for the
values on the finest grid, which are known at the outset.

As the V-cycle “descends” into coarser grids, relaxation fills the segment of the
solution array corresponding to each grid. At the same time, the residual vectors
f fill the right-side array corresponding to the next coarsest grid. As the V-cycle
“ascends” through finer grids, the right-side array does not change. However, the
solution array is overwritten by additional relaxations on each level. Notice that
when a new approximation is computed on one level, the approximation on the
previous level is zeroed out. This provides a zero initial guess on each level in case
another V-cycle is performed.

We now turn to the important questions of complexity. How much do the
multigrid schemes cost in terms of storage and computation? The storage question
is easier to answer. Consider a d-dimensional grid with nd points. (Actually, for
Dirichlet boundary conditions, there will be (n− 1)d interior points and, as we will
see later, for Neumann boundary conditions, there will be (n+1)d unknown points.)
For simplicity, suppose n is a power of 2. We have just seen that two arrays must
be stored on each level. The finest grid, Ωh, requires 2nd storage locations; Ω2h

requires 2−d times as much storage as Ωh; Ω4h requires 4−d times as much storage
as Ωh; in general, Ωph requires p−d times as much storage as Ωh. Adding these
terms and using the sum of the geometric series as an upper bound gives

Storage = 2nd
{
1 + 2−d + 2−2d + · · · + 2−nd

}
<

2nd

1 − 2−d
.

In particular, for a one-dimensional problem (d = 1), the storage requirement is
less than twice that of the fine-grid problem alone. For problems in two or more
dimensions, the requirement drops to less than 4

3 of the fine-grid problem alone
(Exercise 3). Thus, the storage costs of multigrid algorithms decrease relatively as
the dimension of the problem increases.

A Multigrid Tutorial 47

Figure 4.1: Illustration of the course of a four-level (n = 16) V-cycle showing
changes in the data arrays. The v and f arrays hold the solution vectors and right-
side vectors, respectively, in the four grids.

We may use similar reasoning to estimate the computational cost of multigrid
methods. It is convenient to measure these costs in terms of a work unit (WU),
which is the cost of performing one relaxation sweep on the finest grid. It is cus-
tomary to neglect the cost of intergrid transfer operations, which typically amounts
to 10–20% of the cost of the entire cycle.

First consider a V-cycle with one relaxation sweep on each level (ν1 = ν2 = 1).
Each level is visited twice and grid Ωph requires p−d work units. Adding these costs
and again using the geometric series for an upper bound gives

V-cycle computation cost

= 2
{
1 + 2−d + 2−2d + · · · + 2−nd

}
<

2
1 − 2−d

WU.

48 Chapter 4

A single V-cycle costs about 4 WUs for a one-dimensional (d = 1) problem, about
8
3 WUs for d = 2, and 16

7 WUs for d = 3 (Exercise 4).
With a slight modification, we can find the computational cost for an FMG cycle.

Assume again that one relaxation sweep is done on each level (ν0 = ν1 = ν2 = 1).
As just shown, a full V-cycle beginning from Ωh costs about 2(1 − 2−d)−1 WUs.
A V-cycle beginning from Ω2h costs 2−d of a full V-cycle. In general, a V-cycle
beginning from Ωph costs p−d of a full V-cycle. Adding these costs gives us

FMG computation cost

=
(

2
1 − 2−d

) (
1 + 2−d + 2−2d + · · · + 2−nd

)
<

2
(1 − 2−d)2

WU.

An FMG cycle costs 8 WUs for a one-dimensional problem, about 7
2 WUs for d = 2,

and 5
2 WU for d = 3 (Exercise 5).

As expected, a single FMG cycle costs more than a single V-cycle, although the
discrepancy is less for higher-dimensional problems. We really need to know how
many V-cycles and FMG cycles are needed to obtain satisfactory results. This begs
the fundamental question: how well do these multigrid cycling schemes work?

Predictive Tools: Local Mode Analysis

The previous section dealt with the practical considerations of implementing multi-
grid algorithms. However, it is a common experience to have a multigrid code that
runs, but does not work! Indeed, it can often be puzzling to know what to expect
in terms of efficiency and accuracy. The remainder of this chapter presents some
practical tools for determining whether an algorithm is working properly. First, we
deal with tools for predicting the convergence rates that can be expected from the
basic relaxation methods applied to standard problems.

Recall from Chapter 2 that the asymptotic convergence factor of a relaxation
scheme is the spectral radius (the largest eigenvalue magnitude) of the correspond-
ing iteration matrix. We also defined the smoothing factor as the convergence factor
associated with the oscillatory modes only. Because eigenvalue calculations can be
difficult, this approach to finding convergence factors is limited to fairly simple
iterations applied primarily to model problems.

We now present a more versatile approach for approximating convergence and
smoothing factors called local mode analysis (or normal mode analysis or Fourier
analysis). The goal of this section is rather modest: we show how to apply the basic
procedure to some prototype problems and then point the way to more advanced
calculations. In its full generality, local mode analysis can be applied to general
operators and to a wide class of relaxation schemes on one or more levels. With
this generality, local mode analysis is a powerful predictive tool that can be used
to compare multigrid performance with theoretical expectations.

The original proponent of local mode analysis was Achi Brandt, who expressed
its significance by saying that

...the main importance of the smoothing factor is that it separates the
design of the interior relaxation from all other algorithmic questions.
Moreover, it sets an ideal figure against which the performance of the
full algorithm can later be judged. [4]

A Multigrid Tutorial 49

Local mode analysis begins with the assumption that relaxation is a local pro-
cess: each unknown is updated using information from nearby neighbors. Because
it is a local process, it is argued that boundaries and boundary conditions can be
neglected if we are considering a few relaxation sweeps at interior points. For this
reason, the finite domain of the problem is replaced by an infinite domain.

As before, we are interested in how a particular relaxation scheme acts on the
errors in an approximation. Assume that relaxation is a linear process and denote
the associated matrix by R. Let e(m) denote the algebraic error at the mth step of
relaxation. Recall (Chapter 2) that the error itself evolves under the action of R:

e(m+1) = Re(m).

The approach of local mode analysis is to assume that the error consists of Fourier
modes and to determine how relaxation acts on those modes. The Fourier modes
we encountered in Chapter 2 have the form wj = sin(jkπ

n), where the wavenumber
k is an integer between 1 and n. This means that the term θ = kπ

n runs roughly
from 0 to π. With the new assumption of an infinite domain (no boundaries or
boundary conditions to satisfy), the Fourier modes need not be restricted to dis-
crete wavenumbers. Instead, we consider modes of the form wj = eιjθ, where the
wavenumber θ can take on any value in the interval (−π, π]. (For the remainder
of the chapter, we let ι =

√
−1 to avoid confusing i with the grid indices.) Notice

that the mode corresponding to a particular θ has a wavelength of 2πh
|θ| ; values of

|θ| near zero correspond to low-frequency waves; value of |θ| near π correspond to
high-frequency waves. The choice of a complex exponential makes computations
much easier and accounts for both sine and cosine terms.

An important point should be mentioned here. Local mode analysis is not
completely rigorous unless the Fourier modes are eigenvectors of the relaxation
matrix, which is not generally the case. However, the analysis is useful for the high
frequency modes of the error, which do tend to resemble the eigenvectors of the
relaxation matrix very closely. For this reason, local mode analysis is used for a
smoothing analysis of the high frequency modes.

With these ground rules, we are ready to apply the method. We begin with
one-dimensional problems and assume that the error at the mth step of relaxation
at the jth grid point consists of a single mode of the form

em
j = A(m)eιjθ, where − π < θ ≤ π. (4.1)

The goal is to determine how the amplitude of the mode, A(m), changes with each
relaxation sweep. In each case we consider, the amplitudes at successive steps are
related by an expression of the form

A(m + 1) = G(θ)A(m).

The function G that describes how the error amplitudes evolve is called the am-
plification factor. For convergence of the method, we must have |G(θ)| < 1 for
all θ. As we have seen, relaxation is used in multigrid to eliminate the oscillatory
modes of the error. Therefore, the quantity of interest is really the smoothing fac-
tor, which is found by restricting the amplification factor, G(θ), to the oscillatory
modes π

2 ≤ |θ| ≤ π. Specifically, we define the smoothing factor as

µ = max
π
2 ≤|θ|≤π

|G(θ)|.

50 Chapter 4

This is the factor by which we can expect the oscillatory modes to be damped (at
worst) with each relaxation sweep. With these definitions, it is best to proceed by
example.

Example: One-dimensional problems. Consider the one-dimensional model
problem

−u′′(x) + c(x)u(x) = f(x).

Letting vj be the approximation to u(xj), we discretize the problem with the usual
second-order finite-difference approximations and apply weighted Jacobi relaxation.
This results in the familiar Jacobi updating step

vm+1
j =

ω

2 + h2cj
(vm

j−1 + vm
j+1 + h2fj) + (1 − ω)vm

j , (4.2)

where cj = c(xj). Knowing that the error, ej = u(xj)− vj , is also governed by the
same weighted Jacobi relaxation, we can write the updating step for the error at
the jth grid point as (Exercise 6)

em+1
j =

ω

2 + h2cj
(em

j+1 + em
j−1) + (1 − ω)em

j . (4.3)

Assume now that the error consists of a mode of the form (4.1) and substitute it
into (4.3). Letting cj = 0 for the moment, we have

A(m + 1)eιjθ =
ω

2

A(m) (eι(j+1)θ + eι(j−1)θ)︸ ︷︷ ︸

2eιjθ cos θ

 + (1 − ω)A(m)eιjθ.

As indicated, the Euler formula for cos θ allows for some simplification. Collecting
terms now leads to

A(m + 1)eιjθ = A(m)(1 − ω (1 − cos θ)︸ ︷︷ ︸
2 sin2(θ/2)

)eιjθ.

Canceling the common term eιjθ and using the indicated trigonometric identity, we
can write the following relationship between successive amplitudes:

A(m + 1) =
(

1 − 2ω sin2

(
θ

2

))
A(m) ≡ G(θ)A(m), where − π < θ ≤ π.

The amplification factor G(θ) = 1− 2ω sin2(θ/2) appears naturally in this calcula-
tion and it should look familiar. In this case, we have just reproduced the eigenvalue
calculation for the weighted Jacobi iteration matrix (see Chapter 2); that is, if we
make the substitution θk = πk

n , then G(θk) is just the kth eigenvalue of the Jacobi
iteration matrix. As we know, |G(θ)| < 1 provided 0 < ω ≤ 1; with ω = 2

3 , we have
the optimal smoothing factor

µ = G
(π

2

)
= |G(±π)| =

1
3
.

A similar calculation can be done with Gauss–Seidel. The updating step for the
error at the jth grid point now appears as (Exercise 7)

em+1
j =

em+1
j−1 + em

j+1

2 + cjh2
. (4.4)

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Text Box
for approximating the exact discrete solution, uj:

stevem
Pencil

stevem
Text Box
algebraic

A Multigrid Tutorial 51

0� 0.5� 1� 1.5� 2� 2.5� 3� 3.5�
0.3�

0.4�

0.5�

0.6�

0.7�

0.8�

0.9�

1�

Figure 4.2: The amplification factor, |G(θ)|, for the Gauss–Seidel method applied to
the one-dimensional problem −u′′(x) = f(x). The graph is symmetric about θ = 0.
The smoothing factor is µ = |G(π

2)| = 1√
5

= 0.45.

Note that because we sweep across the grid from left to right, the previous ((j−1)st)
component has already been updated. Again we assume that the errors have the
form (4.1) and substitute. Assuming for the moment that cj = 0, we find that the
amplitudes are related by (Exercise 7)

A(m + 1) =
eιθ

2 − e−ιθ
A(m) ≡ G(θ)A(m), where − π < θ ≤ π.

To find the smoothing factor from the complex amplification factor, it is easiest to
plot |G(θ)|, as shown in Fig. 4.2. A bit of analysis reveals that

µ =
∣∣∣G (π

2

)∣∣∣ =
1√
5

= 0.45.

A subtle point could be made here. The amplification factor, G(θ), gives the
(complex) eigenvalues of the Gauss–Seidel iteration matrix, not on a bounded
domain with specified boundary conditions, but on an infinite domain. This cal-
culation differs from the eigenvalue calculation of Chapter 2, in which the eigen-
values for a bounded domain were found to be real. For this reason, the amplifica-
tion factor gives only an estimate of the smoothing factors for a bounded domain
problem. ��

We can use the above example to illustrate how local mode analysis works with
a variable coefficient operator. Suppose that c(x) > 0 on the domain. To avoid
working with a different amplification factor at every grid point, the practice is to

52 Chapter 4

“freeze” the coefficient, c(x), at a representative value c0 = c(ξ), for some ξ in the
domain (often the minimum or maximum value of c(x) on the domain). With the
weighted Jacobi iteration, the amplification factor now appears as

G(θ) = 1 − ω

(
1 − 2

2 + c0h2
cos θ

)
.

The idea is to find the value of c0, over all possible c(ξ), that gives the worst
(most pessimistic) smoothing factor. Occasionally, this calculation can be done
analytically; more typically, it is done numerically by choosing several different
possible values of c0. We can rewrite this amplification factor as

G(θ) = G0(θ) −
c0ωh2

2
cos(θ),

where G0(θ) is the amplification factor for the case that c(x) = 0. In this form, we
see that the effect of the variable coefficient is insignificant unless c0 is comparable
to h−2. There is a more general principle at work here: usually the lower order
terms of the operator can be neglected with impunity in local mode analysis.

Local mode analysis can be extended easily to two or more dimensions. In two
dimensions, the Fourier modes have the form

e
(m)
jk = A(m)eι(jθ1+kθ2), (4.5)

where −π < θ1, θ2 ≤ π are the wavenumbers in the x- and y-directions, respectively.
Substituting this representation into the error updating step generally leads to an
expression for the change in the amplitudes of the form

A(m + 1) = G(θ1, θ2)A(m).

The amplification factor now depends on two wavenumbers. The smoothing factor
is the maximum magnitude of the amplification factor over the oscillatory modes.
As we see in Fig. 4.3, the oscillatory modes correspond to π

2 ≤ |θi| ≤ π for either
i = 1 or i = 2; that is,

µ = max
π/2≤|θi|≤π

|G(θ1, θ2)|.

Example: Two-dimensional problems. Consider the model problem

uxx + uyy = f(x, y)

on a rectangular domain with a uniform grid in both directions. Applying the
weighted Jacobi method, the error satisfies (Exercise 8)

e
(m+1)
jk =

ω

4

(
e
(m)
j−1,k + e

(m)
j+1,k + e

(m)
j,k−1 + e

(m)
j,k+1

)
+ (1 − ω)e(m)

jk . (4.6)

Substituting the Fourier modes (4.5) into the error updating equation, we find that
(Exercise 8)

A(m + 1) =
[
1 − ω

(
sin2

(
θ1

2

)
+ sin2

(
θ2

2

))]
A(m) ≡ G(θ1, θ2)A(m).

Two views of the amplification factor are given in Fig. 4.4 for the case that ω = 4
5 .

In the left figure, each curve shows the variation of G over 0 ≤ θ2 ≤ π for fixed

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Text Box
algebraic

A Multigrid Tutorial 53

(0, 0)

(−π,−π)

(−π, π) (π, π)

(π,−π)

θ1

θ2

Figure 4.3: The oscillatory modes in two dimensions correspond to the wavenumbers
π
2 ≤ |θi| < π for either i = 1 or i = 2; this is the region outside the dashed box.

0 0.5 1 1.5

(a)
2 2.5 3 3.5

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.4: (a) Amplification factor, G(θ1, θ2), for the weighted Jacobi method ap-
plied to the model problem in two dimensions, shown as individual curves of fixed
θ1 (θ1 = 0 at the top and θ1 = π at the bottom). (b) Same amplification factor
shown as a surface over the region [0, π] × [0, π]. The picture is symmetric about
both the θ1- and θ2-axes.

values of θ1; the upper curve corresponds to θ1 = 0 and the lower curve corresponds
to θ2 = π. Clearly, the amplification factor decreases in magnitude as the modes
become more oscillatory. The right figure shows the same amplification factor as a

54 Chapter 4

0�

50�

100�
0� 10� 20� 30� 40� 50� 60� 70� 80� 90�

0�

0.1�

0.2�

0.3�

0.4�

0.5�

0.6�

0.7�

0.8�

0.9�

1�

Figure 4.5: Amplification factor, |G(θ1, θ2)|, for the Gauss–Seidel method applied to
the model problem in two dimensions, shown as a surface over the region [−π,−π]×
[π, π].

surface over the region [0, π] × [0, π]. (The surface is symmetric about both axes.)
Some analysis or experimentation reveals that the best smoothing factor is obtained
when ω = 4

5 and it is given by µ = |G(±π,±π)| = 0.6 (Exercise 8). This means that
if we use the Jacobi scheme with ω = 4

5 , then we expect a reduction in the residual
norm by approximately a factor of 0.6 per relaxation sweep. A V(2,1)-cycle, for
example, should have a convergence factor of about 0.63 = 0.216.

A similar calculation can be done for the Gauss–Seidel method applied to the
model problem. The error updating equation is (Exercise 9)

e
(m+1)
jk =

e
(m+1)
j−1,k + e

(m)
j+1,k + e

(m+1)
j,k−1 + e

(m)
j,k+1

4
. (4.7)

Here we assume that the unknowns have a lexicographic ordering (in order of in-
creasing j and k); thus, the unknowns preceding ejk are updated and appear at
the (m + 1)st step. Once again, we substitute the modes given in (4.5). The
amplification factor is most easily expressed in complex form as (Exercise 9)

G(θ1, θ2) =
eιθ1 + eιθ2

4 − e−ιθ1 − e−ιθ2
.

The magnitude of this function is plotted over the region [−π,−π] × [π, π] in Fig.
4.5.

Some computation is required to show that

|G(θ1, θ2)|2 =
1 + cos β

9 − 8 cos(α
2) cos(β

2) + cos β
,

stevem
Pencil

stevem
Pencil

stevem
Pencil

A Multigrid Tutorial 55

The Discrete L2 Norm. Another norm that is particularly appropriate for
measuring errors in numerical calculations is the discrete L2 norm. If the vector
uh is associated with a d-dimensional domain with uniform grid spacing h, then
its discrete L2 norm is given by

‖uh‖h =

(
hd

∑
i

(uh
i)2

)1/2

,

which is the usual Euclidean vector norm, scaled by a factor (hd) that depends
on the geometry of the problem. This scaling factor is introduced to make the
discrete L2 norm an approximation to the continuous L2 norm of a function
u(x), which is given by

‖u‖2 =
(∫

Ω

u(x)dx
)1/2

.

For example, with d = 1, let u(x) = xm/2, where m > −1 is an integer.
Also, let Ω = [0, 1] with grid spacing h = 1

n . Then the associated vector is
uh

i = x
m/2
i = (ih)m/2. The continuous L2 norm is

‖u‖2 =
(∫ 1

0

xm/2

)1/2

dx =
1√

m + 1
,

while the corresponding discrete L2 norm is

‖uh‖h =

(
h

n∑
i=1

((ih)m/2)2
)1/2

h→0=
1√

m + 1
.

In this case, the discrete L2 norm approaches the continuous L2 norm as h → 0,
which occurs only because of the scaling (see Exercise 18).

where α = θ1 + θ2 and β = θ1 − θ2. Restricting the amplification factor to the
oscillatory modes, a subtle analysis [25] reveals that the smoothing factor is given
by

µ = G

(
π

2
, cos−1

(
4
5

))
=

1
2
.

��

These examples illustrate local mode analysis for relatively elementary prob-
lems. The same technique can be extended, usually with more computation and
analysis, to anisotropic equations (for example, εuxx +uyy = f) and line relaxation,
as discussed in Chapter 7. It can be used for more general operators (for example,
convection-diffusion) and for systems of equations. It can also be applied to other
relaxation methods with different orderings, some of which lead to new compli-
cations. For example, red-black relaxation has the property that Fourier modes

56 Chapter 4

become mixed in pairs (in one dimension) or in groups of four (in two dimensions).
Thus, the amplification factor is replaced by an amplification matrix. The exten-
sion to the coarse-grid correction scheme [10] on two levels requires an analysis of
interpolation and restriction in a Fourier setting, a subject discussed in the next
chapter.

Diagnostic Tools

As with any numerical code, debugging can be the most difficult part of creating
a successful program. For multigrid, this situation is exacerbated in two ways.
First, the interactions between the various multigrid components are very subtle,
and it can be difficult to determine which part of a code is defective. Even more
insidious is the fact that an incorrectly implemented multigrid code can perform
quite well—sometimes better than other solution methods! It is not uncommon for
the beginning multigrid user to write a code that exhibits convergence factors in the
0.2–0.3 range for model problems, while proper tuning would improve the factors
to something more like 0.05. The difficulty is convincing the user that 0.2–0.3 is
not good enough. After all, this kind of performance solves the problem in very few
cycles. But the danger is that performance that is below par for model problems
might really expose itself as more complexities are introduced. Diagnostic tools
can be used to detect defects in a multigrid code—or increase confidence in the
observed results.

Achi Brandt has said that “the amount of computational work should be pro-
portional to the amount of real physical changes in the computed system” and
“stalling numerical processes must be wrong.” These statements challenge us to
develop codes that achieve the best possible multigrid performance. The following
short list of diagnostic tools should help to achieve that goal. A systematic ap-
proach to writing multigrid codes is also given by Brandt in the section “Stages in
Developing Fast Solvers” in his 1984 Guide [4].

Of course, no short list of debugging techniques can begin to cover all contin-
gencies. What we provide here is a limited list of tricks and techniques that can
be useful in evaluating a multigrid code; they often tell more about the symptoms
of a defective code than the causes. Nevertheless, with increasing experience, they
can guide the user to develop properly tuned codes that achieve multigrid’s full
potential.

• Methodical Plan. The process of testing and debugging a multigrid code should
be planned and executed methodically. The code should be built in a modular
way so that each component can be tested and integrated into the evolving
code with confidence. It is best to test the algebraic solver first (for example,
V-cycles); then the discretization can be tested, followed by the FMG solver,
if it is to be used. In other words, the initial focus should be on ensuring that
the basic cycling process solves the discrete system up to expectations. This
solver can then be used to test discretization accuracy. Poor discretization,
especially at boundaries, is often the source of multigrid inefficiency. There-
fore, it is important to test the discretization, perhaps with another solver,
when multigrid troubles persist. FMG requires an efficient V-cycle or W-cycle
solver and an accurate discretization method. This means that FMG should

A Multigrid Tutorial 57

be implemented and tested after the solver and the discretization components
are verified (see last item).

• Starting Simply. This recommendation is perhaps the most obvious: it is al-
ways best to begin with basic methods applied to small, simple problems.
Simpler cases expose troubles more clearly and make it easier to trace the
sources. Test problems should consist of either a discrete system with a known
solution or the simplest form of the desired PDE (usually this means constant
coefficients, no convection, no nonlinearity, and trivial boundary conditions).
A good sequence is to test the solver on the coarsest grid that your code
accepts, then add one finer level to test the two-grid scheme thoroughly. One
can then proceed progressively and methodically to larger problems. Once
the simplest cases show expected performance, complexities can be added one
at a time.

• Exposing Trouble. It is critical to start with simple problems so that potential
difficulties are kept in reserve. At the same time, it is also important to avoid
aspects of the problem that mask troubles. For example, reaction terms can
produce strong enough diagonal dominance in the matrix that relaxation by
itself is efficient. These terms should be eliminated in the initial tests if
possible. Similarly, if the matrix arises from implicit time-stepping applied to
a time-dependent problem, then a very large or even infinite time step should
be taken in the initial tests.

• Fixed Point Property. Relaxation should not alter the exact solution to the
linear system: it should be a fixed point of the iteration. Thus, using the
exact solution as an initial guess should yield a zero residual before and af-
ter the relaxation process. Furthermore, the coarse-grid problem takes the
transferred residual as its right side, which means that its solution should
also be zero. Because the coarse-grid problem uses zero as the initial guess,
it is solved exactly, and the correction passed up to the finer grid is also zero.
Therefore, neither relaxation nor coarse-grid correction should alter the exact
solution.

This property can be checked by creating a right-side vector corresponding
to the known solution (of the linear system) and then using that solution as
an initial guess. The relaxation module should be tested first, after which the
V-cycle can be tested. If the output from either differs by more than machine
precision from the input, there must be an error in the code.

• Homogeneous Problem. Applying a multigrid V-cycle code to a homogeneous
problem has the advantage that both the norm of the residual and the norm
of the error are computable and should decrease to zero (up to machine pre-
cision) at a steady rate; it may take eight to ten V-cycles for the steady rate
to appear. The predictive mode analysis tools described above can be used
to determine the factor by which the residual norm should decrease; it should
tend to the asymptotic factor predicted by the smoothing analysis.

• Zero Residuals. A useful technique is to multiply the residual by zero just prior
to transferring it to the coarse grid. As in the homogeneous problem, the
coarse-grid problem now has a zero right side, so its solution is zero. Because

58 Chapter 4

the initial guess to the coarse-grid problem is zero, it is solved exactly, and the
correction (also zero) is passed back to the fine grid. The utility of this test is
that the only part of the code now affecting the approximation is relaxation
on the fine grid. This means that the sequence of approximations generated
by V(ν1, ν2)-cycles should be identical to the approximations generated using
only relaxation; this is an easy property to test.

• Residual Printout. A good technique for monitoring performance is to print
out the norm of the residual on each level after relaxation on both the descent
and ascent legs of the V-cycle. Here again, it is important that the discrete
L2 norm be used, because its scaling makes the error norms comparable from
one level to the next. The residuals should behave in a regular fashion: on
each level, the sequence of norms should decline to machine zero at a steady
rate as the cycling continues. The norm on each level should be smaller
after post-relaxation (on the upward leg) than it was after pre-relaxation (on
the downward leg). This ensures that the coarse-grid correction/relaxation
tandem is working on each level.

Because most multigrid codes are recursive in nature (although they may not
actually use recursive calls), it is important to note that seeing an abnor-
mal residual pattern on a given level does not necessarily mean the code is
somehow wrong on that level. More frequently, the flaw exists on all levels,
because all levels are treated by the same code. Indeed, the most common
culprits are the intergrid transfer operators and boundary treatments. Moni-
toring the sequence of residuals, however, can be more helpful in ascertaining
the presence of a problem than simply observing the overall convergence rate
on the fine grid.

• Error Graph. Solver trouble that seems impervious to diagnosis can sometimes
be resolved with a picture of the error. Surface plots of the algebraic error
before and after relaxation on the fine grid can be extremely informative.
Of course, knowledge of the error is required, so solving the homogeneous
problem can be advantageous here. Is the error oscillatory after coarse-grid
correction? Is it effectively smoothed by relaxation everywhere? Is there
unusual behavior of the error near special features of the domain such as
boundaries or interfaces?

• Two-Level Cycles. For any multigrid method to work, it is necessary that the
two-level scheme (relaxation and exact coarse-grid correction) work. A useful
technique is to test the two-level scheme. This may be done by replacing the
recursive call for V-cycles with a direct or iterative solver on the coarse grid.
If an iterative solver is used (many multigrid cycles on the coarse grid might
actually be used here), the coarse-grid problem should be solved very accu-
rately, possibly to machine precision. The correction can then be transferred
to the fine grid and applied there.

Another useful trick is to use two-level cycling between specific pairs of levels.
In particular, if the residual printouts indicate an abnormal residual on a
specific level, it is useful to perform two-level cycling between that level and
the level below it (or between that level and the one above it). This may
isolate exactly where the problem occurs.

A Multigrid Tutorial 59

• Boundaries. One of the most common sources of errors in multigrid programs
is the incorrect treatment of boundary data. Generally, interpolation and re-
striction stencils must be altered at boundary points and neighbors of bound-
ary points. Issues involved here are often very subtle and errors can be difficult
to detect. Among the most common indicators is that V-cycles will show con-
vergence factors at or near the predicted values for several V-cycles, only to
have convergence slow down and eventually stall with continued cycling. The
reason is that early in the process, errors at the boundaries have little effect,
since the boundary is a lower-dimensional feature of the problem. However,
as the cycling continues, the errors from the boundaries propagate into the
interior, eventually infecting the entire domain.

One of the most useful techniques in building or debugging a multigrid code is
to separate the effects of the boundary entirely. This can be done by replacing
the given boundary conditions by periodic conditions. A periodic boundary
value problem should attain convergence factors near those predicted by mode
analysis, because the assumptions underlying the Fourier analysis are more
closely met. Once it is determined that periodic boundary conditions work
properly, the actual boundary conditions may be applied. If the convergence
factors degrade with continued cycling, then the treatment at the boundaries
may be suspected. A useful technique is to apply extra relaxation sweeps
at the boundaries. Often, the extra relaxations will overcome any boundary
difficulties and the overall results will approach the ideal convergence factors.
If this does not occur, then a very careful examination of how each piece of
the code treats the boundaries is in order. Special attention should be paid to
the intergrid transfer operators at and near the boundaries. Just as it is easy
to obtain discretizations that are of lower order on the boundary than the
interior, it is also easy to produce intergrid transfers that fail to be consistent
in their treatment of boundary data.

• Symmetry. Matrices that arise in the discretization of self-adjoint problems
are often symmetric. Such is the case for most of the matrices featured in
this book. Many coarsening strategies preserve matrix symmetry when it is
present, as does the so-called Galerkin scheme introduced in the next chapter.
Inadvertent loss of symmetry often occurs at boundaries, especially at corners
and other irregularities of the domain. This loss can lead to subtle difficulties
that are hard to trace. If the fine- and coarse-grid matrices are supposed to
be symmetric, then this should be tested. This is easily done by comparing
entries i, j and j, i of the matrix on each grid.

• Compatibility Conditions. We have not yet discussed compatibility condi-
tions, but they arise in the context of Neumann boundary conditions (among
other settings), which we discuss in Chapter 7. A compatibility condition is
one that must be enforced on the right-side vector to ensure that the problem
is solvable. A common source of error is that, while great care may be taken
to enforce a compatibility condition on the fine grid, it might not be enforced
on the coarse grids. Sometimes, the compatibility condition is enforced au-
tomatically in the coarsening process. However, round-off errors may enter
and compound themselves as coarsening proceeds, so it may be worthwhile
to enforce the condition explicitly on all coarse grids.

60 Chapter 4

• Linear Performance by Nonlinear Codes. We describe the FAS (Full Ap-
proximation Scheme) for nonlinear problems in Chapter 6. A useful technique
for debugging an FAS code is to begin by applying it to a linear problem. FAS
reduces to standard multigrid in this case, so an FAS code should exhibit
standard performance on these problems. FAS codes should be written so the
nonlinearity can be controlled by a parameter: setting the parameter to zero
yields a linear problem, while increasing the parameter value strengthens the
nonlinearity. As the nonlinearity increases, the performance of FAS should
not, in general, degrade significantly (at least for reasonable values of the
parameter).

• Solutions to the PDE. A known solution to the underlying PDE can be very
useful in assessing whether a multigrid code is working as it should. The
first thing to consider is whether the solution computed from the multigrid
code looks like a sampled version of the continuous solution. The first cur-
sory examination can be qualitative: Does the overall shape of the computed
solution resemble the exact solution? Are the peaks and valleys in the right
places?

If the qualitative comparison is good, more quantitative tests can be per-
formed. First, the norm of the error (the difference between the sampled
continuous solution and the approximation) should be monitored as a func-
tion of the number of V-cycles. The discrete L2 norm is usually appropriate
here. This norm should behave in very specific ways, depending on the accu-
racy of the discretization. If the known solution has no discretization error
(for example, if second-order finite differences are used and the known so-
lution is a second degree polynomial), then the error norm should be driven
steadily to machine zero with continued V-cycles. Indeed, the rate at which it
goes to zero should be about the same rate at which the norm of the residual
declines, and it should reflect the predicted asymptotic convergence factor.

On the other hand, if discretization error is present, then we expect the norm
to stop decreasing after several V-cycles, and it may even grow slightly. This
indicates (in a correctly working code) that we have reached the level of dis-
cretization error (roughly the difference between the continuous and discrete
solutions, as discussed in Chapter 5). Here it is useful to solve the same
problem repeatedly, with the same right side, on a sequence of grids with de-
creasing grid spacing h. If the discretization is, for example, O(h2) accurate
in the discrete L2 norm, then the error norms should decrease roughly by a
factor of four each time h is halved. Naturally, the fit will not be perfect, but
if the code is working correctly, the trend should be very apparent.

• FMG Accuracy. The basic components of an effective FMG scheme are an
efficient V-cycle (or W-cycle) solver and an accurate discretization. The idea
is to assess the discretization error for a given problem using a sequence
of increasingly finer grids. This can be done by choosing a PDE with a
known solution and solving each level in turn, starting from the coarsest.
Each level should be solved very accurately, perhaps using many V-cycles,
testing the residual norm to be sure it is small. The computed solution can
then be compared on each level to the PDE solution, evaluated at the grid
points, using the discrete L2 norm. These comparisons yield discretization
error estimates on each level. FMG can then be tested by comparing its

A Multigrid Tutorial 61

computed approximation on each level to the PDE solution. The ratio of
these estimates to the discretization error estimates should be close to one as
the mesh size decreases. This signals that FMG is achieving accuracy to the
level of discretization error. Properly tuning the FMG scheme by choosing the
right number of V-cycles, pre-smoothing sweeps, and post-smoothing sweeps
may be required to achieve this property.

Having discussed a variety of practical matters, it is now time to observe these
ideas at work in some numerical experiments.

Numerical example. The first experiment deals with the one-dimensional model
problem Au = 0. The weighted Jacobi method with ω = 2

3 is applied to this
problem on a grid with n = 64 points. The initial guess consists of two waves with
wavenumbers k = 3 and k = 10. For purposes of illustration, we implemented
a modified V-cycle algorithm. Called the immediate replacement algorithm, this
version makes an error correction directly to the fine grid after every coarse-grid
relaxation. In this way, it is possible to see the immediate effect of each coarse-
grid correction on the full, fine-grid solution. Although this version is algebraically
equivalent to the standard algorithm, it is impractical because it involves an inor-
dinate number of intergrid transfers. Nevertheless, it is useful for demonstrating
algorithm performance because it allows us to monitor the effects of individual
coarse-grid operations on the error.

Figures 4.6(a, b) show the course of the algorithm by plotting the maximum
norms of the error and the residual after each coarse-grid correction. The algorithm
progresses from left to right in the direction of increasing work units (WUs). Notice
that the data points are spaced nonuniformly due to the different amount of work
done on each level.

Figure 4.6(a) illustrates five full V-cycles with ν1 = ν2 = 1 relaxation sweep
on each grid. This computation requires roughly 15 WUs. In these 15 WUs, the
initial error norm is reduced by about three orders of magnitude, giving an average
convergence rate of about 0.2 decimal digits per WU. Figure 4.6(b) shows the result
of performing V-cycles with ν1 = ν2 = 2 relaxation sweeps on each level. In this
case, three V-cycles are done in 20 WUs, giving an average convergence rate of
about 0.15 decimal digits per WU. In this case, it seems more efficient to relax
only once on each level. For another problem, a different cycling strategy might
be preferable. It is also possible to relax, say, twice on the “descent” phase of the
V-cycle and only once on the “ascent” phase.

The curves of these two figures also show a lot of regular fine structure. Neither
the error norm nor the residual norm decreases monotonically. The error curve
decreases rapidly on the “descent” to the coarsest grid, while the residual curve
decreases rapidly on the “ascent” to the finest grid. A detailed account of this fine
structure should be left to multigrid aficionados! ��

The previous experiment indicates that the choice of cycling parameters
(ν0, ν1, ν2) for multigrid schemes may not be obvious. They are often chosen a
priori, based on analysis or prior experimentation, and they remain fixed through-
out the course of the algorithm. For certain problems, there are heuristic methods
for changing the parameters adaptively [4].

62 Chapter 4

F
ig

ur
e

4.
6:

(a
).

Im
m

ed
ia

te
re

pl
ac

em
en

t
ve

rs
io

n
of

th
e

V
-c

yc
le

sc
he

m
e

ap
pl

ie
d

to
th

e
on

e-
di

m
en

si
on

al
m

od
el

pr
ob

le
m

w
it
h

n
=

64
po

in
ts

w
it
h

ν 1
=

ν 2
=

1
re

la
xa

ti
on

sw
ee

p
on

ea
ch

le
ve

l.
T

he
m

ax
im

um
no

rm
s

of
th

e
er

ro
r

an
d

th
e

re
si

du
al

ar
e

pl
ot

te
d

ag
ai

ns
t
W

U
s

ov
er

th
e

co
ur

se
of

fiv
e

V
-c

yc
le

s.

A Multigrid Tutorial 63

F
ig

ur
e

4.
6,

co
nt

in
ue

d:
(b

).
Im

m
ed

ia
te

re
pl

ac
em

en
t
ve

rs
io

n
of

th
e

V
-c

yc
le

sc
he

m
e

ap
pl

ie
d

to
th

e
on

e-
di

m
en

si
on

al
m

od
el

pr
ob

le
m

w
it
h

n
=

64
po

in
ts

w
it
h

ν 1
=

ν 2
=

2
re

la
xa

ti
on

sw
ee

ps
on

ea
ch

le
ve

l.
T

he
m

ax
im

um
no

rm
s

of
th

e
er

ro
r

an
d

th
e

re
si

du
al

ar
e

pl
ot

te
d

ag
ai

ns
t
W

U
s

ov
er

th
e

co
ur

se
of

th
re

e
V

-c
yc

le
s.

64 Chapter 4

We have devoted much attention to the one-dimensional model problem with
the understanding that many of the algorithms, ideas, and results extend directly
to higher dimensions. It is useful to mention a few issues that arise only in higher-
dimensional problems. For example, the basic relaxation schemes have many more
variations. In two dimensions, we can relax by points (updating one unknown
at a time in one-dimensional problems) or by lines. In line relaxation, an entire
row or column of the grid is updated at once, which generally requires the direct
solution of a tridiagonal system for each line. Line relaxation permits additional
options, determined by orderings. The lines may be swept forward, backward, or
both (symmetric relaxation). The lines may be colored and relaxed alternately
in a red-black fashion (often called zebra relaxation). Or the grid may be swept
alternately by rows and then by columns, giving an alternating direction method.
Line relaxation will be discussed further in Chapter 7.

These ideas are further generalized in three dimensions. Here we can relax by
points, lines, or planes, with various choices for ordering, coloring, and direction.
There are also ways to incorporate fast direct solvers for highly structured subprob-
lems that may be imbedded within a relaxation sweep. Many of these possibilities
have been analyzed; many more have been implemented. However, there is still
room for more work and understanding.

Numerical example. We conclude this chapter with an extensive numerical ex-
periment in which several multigrid methods are applied to the two-dimensional
problem

−uxx − uyy = 2
[
(1 − 6x2)y2(1 − y2) + (1 − 6y2)x2(1 − x2)

]
in Ω, (4.8)

u = 0 on ∂Ω,

where Ω is the unit square, {(x, y) : 0 < x < 1, 0 < y < 1}. Knowing that the
analytical solution to this problem is

u(x, y) = (x2 − x4)(y4 − y2),

errors can be computed.
It should be mentioned in passing that the convergence properties of the basic

relaxation methods carry over directly from one to two dimensions when they are
applied to the model problem. Most importantly, weighted Jacobi and Gauss–Seidel
retain the property that they smooth high-frequency Fourier modes effectively and
leave low-frequency modes relatively unchanged. A guided eigenvalue calculation
that leads to these conclusions is given in Exercise 12.

We first use red-black Gauss–Seidel relaxation in a V-cycle scheme on fine grids
with n = 16, 32, 64, and 128 points in each direction (four separate experiments).
Full weighting and linear interpolation are used. We let e be the vector with
components u(xi)−vh

i and compute its discrete L2 norm of the error, ‖·‖h. Because
the error is not available in most problems, a more practical measure, the discrete
L2 norm of the residual rh, is also computed.

Table 4.1 shows the residual and error norms after each V-cycle. For each V-
cycle, the two columns labeled ratio show the ratios of ‖rh‖h and ‖e‖h between
successive V-cycles. There are several points of interest. First consider the column

A Multigrid Tutorial 65

n = 16 n = 32

V-cycle ‖rh‖h ratio ‖e‖h ratio ‖rh‖h ratio ‖e‖h ratio

0 6.75e+02 5.45e−01 2.60e+03 5.61e−01
1 4.01e+00 0.01 1.05e−02 0.02 1.97e+01 0.01 1.38e−02 0.02
2 1.11e−01 0.03 4.10e−04 0.04 5.32e−01 0.03 6.32e−04 0.05
3 3.96e−03 0.04 1.05e−04 0.26 2.06e−02 0.04 4.41e−05 0.07
4 1.63e−04 0.04 1.03e−04 0.98∗ 9.79e−04 0.05 2.59e−05 0.59
5 7.45e−06 0.05 1.03e−04 1.00∗ 5.20e−05 0.05 2.58e−05 1.00∗

6 3.75e−07 0.05 1.03e−04 1.00∗ 2.96e−06 0.06 2.58e−05 1.00∗

7 2.08e−08 0.06 1.03e−04 1.00∗ 1.77e−07 0.06 2.58e−05 1.00∗

8 1.24e−09 0.06 1.03e−04 1.00∗ 1.10e−08 0.06 2.58e−05 1.00∗

9 7.74e−11 0.06 1.03e−04 1.00∗ 7.16e−10 0.06 2.58e−05 1.00∗

10 4.99e−12 0.06 1.03e−04 1.00∗ 4.79e−11 0.07 2.58e−05 1.00∗

11 3.27e−13 0.07 1.03e−04 1.00∗ 3.29e−12 0.07 2.58e−05 1.00∗

12 2.18e−14 0.07 1.03e−04 1.00∗ 2.31e−13 0.07 2.58e−05 1.00∗

13 2.33e−15 0.11 1.03e−04 1.00∗ 1.80e−14 0.08 2.58e−05 1.00∗

14 1.04e−15 0.45 1.03e−04 1.00∗ 6.47e−15 0.36 2.58e−05 1.00∗

15 6.61e−16 0.63 1.03e−04 1.00∗ 5.11e−15 0.79 2.58e−05 1.00∗

n = 64 n = 128

V-cycle ‖rh‖h ratio ‖e‖h ratio ‖rh‖h ratio ‖e‖h ratio

0 1.06e+04 5.72e−01 4.16e+04 5.74e−01
1 7.56e+01 0.01 1.39e−02 0.02 2.97e+02 0.01 1.39e−02 0.02
2 2.07e+00 0.03 6.87e−04 0.05 8.25e+00 0.03 6.92e−04 0.05
3 8.30e−02 0.04 4.21e−05 0.06 3.37e−01 0.04 4.22e−05 0.06
4 4.10e−03 0.05 7.05e−06 0.17 1.65e−02 0.05 3.28e−06 0.08
5 2.29e−04 0.06 6.45e−06 0.91∗ 8.99e−04 0.05 1.63e−06 0.50
6 1.39e−05 0.06 6.44e−06 1.00∗ 5.29e−05 0.06 1.61e−06 0.99∗

7 8.92e−07 0.06 6.44e−06 1.00∗ 3.29e−06 0.06 1.61e−06 1.00∗

8 5.97e−08 0.07 6.44e−06 1.00∗ 2.14e−07 0.06 1.61e−06 1.00∗

9 4.10e−09 0.07 6.44e−06 1.00∗ 1.43e−08 0.07 1.61e−06 1.00∗

10 2.87e−10 0.07 6.44e−06 1.00∗ 9.82e−10 0.07 1.61e−06 1.00∗

11 2.04e−11 0.07 6.44e−06 1.00∗ 6.84e−11 0.07 1.61e−06 1.00∗

12 1.46e−12 0.07 6.44e−06 1.00∗ 4.83e−12 0.07 1.61e−06 1.00∗

13 1.08e−13 0.07 6.44e−06 1.00∗ 3.64e−13 0.08 1.61e−06 1.00∗

14 2.60e−14 0.24 6.44e−06 1.00∗ 1.03e−13 0.28 1.61e−06 1.00∗

15 2.30e−14 0.88 6.44e−06 1.00∗ 9.19e−14 0.89 1.61e−06 1.00∗

Table 4.1: The V(2,1) scheme with red-black Gauss–Seidel applied to a two-
dimensional problem on fine grids with n = 16, 32, 64, and 128 points. The discrete
L2 norms of the residual and error are shown after each V-cycle. The ratio columns
give the ratios of residual and error norms of successive V-cycles. The ∗ in the error
ratio column indicates that the level of discretization error has been reached.

66 Chapter 4

of error norms. For each of the four grid sizes, the error norms decrease rapidly and
then level off abruptly as the scheme reaches the level of discretization error. We
confirm this by comparing the final error norms, ‖e‖h, on the four grids (1.03e − 04,
2.58e − 05, 6.44e − 06, and 1.61e − 06). These norms decrease by a factor of four
as the resolution doubles, which is consistent with the second-order discretization
we have used. The residual norms also decrease rapidly for 12 to 14 V-cycles,
with the value in the corresponding ratio column reaching a nearly constant value,
until the last few cycles. This constant value is a good estimate of the asymptotic
convergence factor of the scheme (approximately 0.07) for this problem. The sharp
increase in the residual norm ratio during the last two cycles reflects the fact that
the algebraic approximation is already accurate to near machine precision.

In the course of our development, we described several different schemes for
relaxation, restriction, and interpolation. Specifically, we worked with weighted
Jacobi, Gauss–Seidel, and red-black Gauss–Seidel relaxation schemes; injection and
full weighting restriction operators; and linear interpolation. We now investigate
how various combinations of these schemes perform when used in V-schemes applied
to model problem (4.8).

For completeness, we introduce two more schemes, half-injection and cubic inter-
polation. Half-injection, as the name implies, is simply defined in one dimension by
v2h

j = 0.5vh
2j , with a similar extension to two dimensions. Half-injection is designed

for use on the model problem with red-black relaxation and may be understood
most easily by considering the one-dimensional case. The idea is that because one
sweep of the red-black relaxation produces zero residuals at every other point, full-
weighting and half-injection are equivalent. We will see shortly that the scheme
indeed works well for this case.

Cubic interpolation is one of the many interpolation schemes that could be
applied and is probably the most commonly used in multigrid after linear interpo-
lation. As its name implies, the method interpolates cubic (or lower degree) poly-
nomials exactly. It represents a good compromise between the desire for greater
interpolation accuracy and the increase in computational cost required to achieve
the desired accuracy. In one dimension, the basic cubic interpolation operator is
given by

vh
2j = v2h

j ,

vh
2j+1 =

1
16

(
−v2h

j−1 + 9v2h
j + 9v2h

j+1 − v2h
j+2

)
.

Table 4.2 gives comparative results for many experiments. For each of the Ja-
cobi, Gauss–Seidel, and red-black Gauss–Seidel relaxation schemes, we performed
six V-cycles, using all possible combinations of the half-injection, injection, and full
weighting restriction operators with linear or cubic interpolations. In each case, the
experiment was performed using (1,0), (1,1), and (2,1) V-cycles, where (ν1, ν2) indi-
cates ν1 pre-correction relaxation sweeps and ν2 post-correction relaxation sweeps.
The entries in the table give the average convergence factor for the last five V-cycles
of each experiment. A dash indicates that a particular scheme diverged. The en-
tries in the cost line reflect the cost of the method, in terms of operation count,
shown as a multiple of the cost of the (1,0) scheme using linear interpolation and
injection. Notice that the cost is independent of the different relaxation schemes,
as they all perform the same number of operations.

A Multigrid Tutorial 67

Relaxation Injection Full Weighting Half-Injection
(ν1, ν2) Scheme Linear Cubic Linear Cubic Linear Cubic
(1,0) Jacobi – – 0.49 0.49 0.55 0.62

GS 0.89 0.66 0.33 0.34 0.38 0.37
RBGS – – 0.21 0.23 0.45 0.42
Cost 1.00 1.25 1.13 1.39 1.01 1.26

(1,1) Jacobi 0.94 0.56 0.35 0.34 0.54 0.52
GS 0.16 0.16 0.14 0.14 0.45 0.43

RBGS – – 0.06 0.05 0.12 0.16
Cost 1.49 1.75 1.63 1.88 1.51 1.76

(2,1) Jacobi 0.46 0.31 0.24 0.24 0.46 0.45
GS 0.07 0.07 0.08 0.07 0.40 0.39

RBGS – – 0.04 0.03 0.03 0.07
Cost 1.99 2.24 2.12 3.37 1.51 1.76

Table 4.2: Average convergence factors over five V-cycles on model problem (4.8)
for various combinations of relaxation, restriction, and interpolation operators. The
dashes indicate divergent schemes. The cost line gives the computational cost of a
V(ν1, ν2)-cycle scheme using the specified choice of restriction and interpolation, as
a multiple of the cost of a (1,0) V-cycle scheme using injection and linear interpo-
lation.

A few observations are in order. At least for this problem, cubic interpolation
is only noticeably more effective than linear interpolation when injection is used
as the restriction operator. It is also apparent that half-injection is useful only
with red-black Gauss–Seidel, as expected; even then, several smoothing sweeps
are required. Finally, and not surprisingly, the table indicates that you get what
you pay for: combinations that produce the best convergence factors are also those
with the higher costs. Parameter selection is largely the art of finding a compromise
between performance and cost.

The final set of experiments concerns the effectiveness of FMG schemes and,
in particular, whether FMG schemes are more or less effective than V-cycles.
Table 4.3 describes the performance of three FMG schemes. Square grids with
up to n = 2048 points in each direction are used. The FMG(ν1,ν2) scheme uses ν1

relaxation sweeps on the descent phase and ν2 relaxation sweeps on the ascent phase
of each V-cycle. Red-black Gauss–Seidel relaxation is used with full weighting and
linear interpolation. In each case, only one complete FMG cycle is done.

The table shows the discrete L2 norm of the error for each scheme. Evidence
that the FMG code solves the problem to the level of discretization error on each
grid is that the ratio of the error norms between successive levels is roughly 0.25
(for this two-dimensional problem). If the ratio is noticeably greater than 0.25,
the solution is probably not accurate to the level of discretization. Based on this
observation, we suspect that the FMG(1,0) scheme does not solve the problem to
the level of discretization error on any level. This is confirmed when we observe the
FMG(1,1) and FMG(2,1) schemes, which do solve to the level of the discretization
error on all levels. The FMG(2,1) scheme requires more work than the FMG(1,1)
with little gain in accuracy; so it appears that FMG(1,1) is the best choice for this
problem.

68 Chapter 4

FMG(1,0) FMG(1,1) FMG(2,1) FMG(1,1) V(2,1) V(2,1)
N ‖e‖h ratio ‖e‖h ratio ‖e‖h ratio WU cycles WU

2 5.86e−03 5.86e−03 5.86e−03
4 5.37e−03 0.917 2.49e−03 0.424 2.03e−03 0.347 7/2 3 12
8 2.78e−03 0.518 9.12e−04 0.367 6.68e−04 0.328 7/2 4 16
16 1.19e−03 0.427 2.52e−04 0.277 1.72e−04 0.257 7/2 4 16
32 4.70e−04 0.395 6.00e−05 0.238 4.00e−05 0.233 7/2 5 20
64 1.77e−04 0.377 1.36e−05 0.227 9.36e−06 0.234 7/2 5 20
128 6.49e−05 0.366 3.12e−06 0.229 2.26e−06 0.241 7/2 6 24
256 2.33e−05 0.359 7.35e−07 0.235 5.56e−07 0.246 7/2 7 28
512 8.26e−06 0.354 1.77e−07 0.241 1.38e−07 0.248 7/2 7 28
1024 2.90e−06 0.352 4.35e−08 0.245 3.44e−08 0.249 7/2 8 32
2048 1.02e−06 0.351 1.08e−08 0.247 8.59e−09 0.250 7/2 9 36

Table 4.3: Three different FMG schemes applied to the two-dimensional problem
on square grids with up to n = 2048 points in each direction. The FMG(ν1,ν2)
scheme uses ν1 red-black Gauss–Seidel relaxation sweeps on the descent phase and
ν2 relaxation sweeps on the ascent phase of each V-cycle. The discrete L2 norm
of the error and the ratio of errors at each grid level are shown. Solution to the
level of discretization error is indicated when the ratio column shows a reduction
of at least 0.25 in the error norm. For comparison, the V-cycles column shows the
number of V(2,1)-cycles needed to converge to the level of discretization error, while
the V-cycle WU column shows the number of work units needed to converge to the
level of discretization error.

A useful question is whether an FMG(1,1) scheme is more efficient than, say,
the V(2,1) scheme in achieving a solution accurate to the level of discretization
error. We answer this question by performing the V(2,1) method (as in Table 4.1)
for all grid sizes from n = 4 through n = 2048 (over 4 million fine-grid points!) and
recording the number of V-cycles required to converge to the level of discretization
error. These results are presented in the second-to-last column of Table 4.3. It is
apparent that the number of cycles required to solve to the level of discretization
error increases with the problem size.

We can now make some comparisons. Recall our discussion of computational
costs earlier in the chapter. We determined that a (1,1) V-cycle in d = 2 dimensions
costs about 8

3 WUs (Exercise 3); therefore, a (2,1) V-cycle costs half again as much,
or 4 WU. The last column of Table 4.3 shows the costs in WUs of solving to the
level of discretization error with the V(2,1) scheme on various grids. We also saw
(Exercise 4) that the FMG(1,0) scheme, which did not converge to the level of
discretization error in this case, requires just under 2 WUs, while the FMG(1,1) and
FMG(2,1) schemes, which did achieve the desired accuracy, require approximately
7
2 and 16

3 WUs, respectively; these costs are the same for all grid sizes. Thus, on all
of the grids shown in Table 4.3, the FMG(1,1) scheme is significantly less expensive
in WUs than the V(2,1) scheme. This confirms the observation that for converging
to the level of discretization error, full multigrid methods are generally preferable
to simple V-cycles. ��

Exercises

Data Structures and Complexity

1. Data structures. Work out the details of the data structures given in Fig.
4.1. Assume that for a one-dimensional problem, the finest grid has n − 1 =

A Multigrid Tutorial 69

2L − 1 interior points. Let h = 1
n be the grid spacing on Ωh. Let level l

have grid spacing 2l−1h. As suggested in the text, store the approximations
vh,v2h, . . . contiguously in a single array v, with the level L values stored in
v1, v2, v3; the level L− 1 values in v4, . . . , v8; etc. Use a similar arrangement
for the right-side values fh, f2h, How many values are stored on level l,
where 1 ≤ l ≤ L? What is the starting index in the v array for the level l
values, where 1 ≤ l ≤ L?

2. Data structure for two dimensions. Now consider the two-dimensional
model problem. The one-dimensional data structure may be retained in the
main program. However, the initial index for each grid will now be different.
Compute these indices, assuming that on the finest grid Ωh there are (n−1)2

interior points, where n − 1 = 2L − 1.

3. Storage requirements. Verify the statement in the text that for a one-
dimensional problem (d = 1), the storage requirement is less than twice that
of the fine-grid problem alone. Show that for problems in two or more dimen-
sions, the requirement drops to less than 4

3 of the fine-grid problem alone.

4. V-cycle computation cost. Verify the statement in the text that a single
V-cycle costs about 4 WUs for a one-dimensional (d = 1) problem, about 8

3
WUs for d = 2, and 16

7 WUs for d = 3.

5. FMG computation cost. Verify the statement in the text that an FMG
cycle costs 8 WUs for a one-dimensional problem; the cost is about 7

2 WUs
for d = 2 and 5

2 WUs for d = 3.

Local Mode Analysis

6. One-dimensional weighted Jacobi.

(a) Verify the Jacobi updating step (4.2).

(b) Show that the error ej = u(xj) − vj satisfies (4.3).

(c) Verify that the amplification factor for the method is given by

G(θ) = 1 − 2ω sin2

(
θ

2

)
.

7. One-dimensional Gauss–Seidel. Verify the error updating step (4.4).
Then show that the amplification factor for the method is given by

G(θ) =
eiθ

2 − e−iθ
.

8. Two-dimensional weighted Jacobi.

(a) Verify the error updating step (4.6).

(b) Show that the amplification factor for the method is given by

G(θ1, θ2) = 1 − ω

(
sin2

(
θ1

2

)
+ sin2

(
θ2

2

))
.

stevem
Pencil

stevem
Pencil

70 Chapter 4

(c) Show that the optimal smoothing factor is obtained with ω = 4
5 and

that its value is µ = |G(±π,±π)| = 0.6. Hint: Note that µ(ω) =
max |G(θ1, θ2)| is a function of ω. The optimal value of ω is that which
minimizes µ, viewed as a function of ω. The substitutions ξ = sin2(θ1

2),
η = sin2(θ2

2) may be helpful.

9. Two-dimensional Gauss–Seidel.

(a) Verify the error updating step (4.7).
(b) Show that the amplification factor for the method is given by

G(θ1, θ2) =
eιθ1 + eιθ2

4 − e−ιθ1 − e−ιθ2
.

(c) Show that the smoothing factor is given by

µ = G

(
π

2
, cos−1

(
4
5

))
=

1
2
.

10. Nine-point stencil. Consider the nine-point stencil for the operator −uxx−
uyy given by

1
3h2

 −1 −1 −1

−1 8 −1
−1 −1 −1

 .

Find the amplification factors for the weighted Jacobi method and Gauss–
Seidel relaxation applied to this system.

11. Anisotropic operator. Consider the five-point stencil for the operator
−εuxx − uyy given by

1
h2

 0 −1 0

−ε 2(1 + ε) −ε
0 −1 0

 .

Find the amplification factors for weighted Jacobi and Gauss–Seidel applied
to this system. Discuss the effect of the parameter ε in the case that ε << 1.

12. Eigenvalue calculation in two dimensions. Consider the weighted Jacobi
method applied to the model Poisson equation in two dimensions on the unit
square. Assume a uniform grid of h = 1

n in each direction.

(a) Let vij be the approximation to the solution at the grid point (xi, yj).
Write the (i, j)th equation of the corresponding discrete problem, where
1 ≤ i, j ≤ n − 1.

(b) Letting A be the matrix of coefficients for the discrete system, write the
(i, j)th equation for the eigenvalue problem Av = λv.

(c) Assume an eigenvector solution of the form

vij = sin
(

ikπ

n

)
sin

(
j�π

n

)
, 1 ≤ k, � ≤ n − 1.

Using sine addition rules, simplify this eigenvalue equation, cancel com-
mon terms, and show that the eigenvalues are

λk� = 4
[
sin2

(
kπ

2n

)
+ sin2

(
�π

2n

)]
, 1 ≤ k, � ≤ n − 1.

A Multigrid Tutorial 71

(d) As in the one-dimensional case, note that the iteration matrix of the
weighted Jacobi method is given by Pω = I − ωD−1A, where D corre-
sponds to the diagonal terms of A. Find the eigenvalues of Pω.

(e) Using a graphing utility, find a suitable way to present the two-dimensional
set of eigenvalues (either a surface plot or multiple curves). Plot the
eigenvalues for ω = 2

3 , 4
5 , 1, and n = 16.

(f) In each case, discuss the effect of the weighted Jacobi method on low-
and high-frequency modes. Be sure to note that modes can have a high
frequencies in one direction and low frequencies in the other direction.

(g) What do you conclude about the optimal value of ω for the two-dimensional
problem?

Implementation

13. V-Cycle program. Develop a V-cycle program for the one-dimensional
model problem. Write a subroutine for each individual component of the
algorithm as follows.

(a) Given an approximation array v, a right-side array f, and a level number
1 ≤ l ≤ L, write a subroutine that will carry out ν weighted Jacobi
sweeps on level l.

(b) Given an array f and a level number 1 ≤ l ≤ L − 1, write a subroutine
that will carry out full weighting between level l and level l + 1.

(c) Given an array v and a level number 2 ≤ l ≤ L, write a subroutine that
will carry out linear interpolation between level l and level l − 1.

(d) Write a driver program that initializes the data arrays and carries out a
V-cycle by calling the three preceding subroutines. The program should
be tested on simple problems for which the exact solution is known. For
example, for fixed k, take f(x) = C sin(kπx) on the interval 0 ≤ x ≤ 1,
where C is a constant. Then

u(x) =
C

π2k2 + σ
sin(kπx)

is an exact solution to model problem (1.1). Another subroutine that
computes norms of errors and residuals will be useful.

14. Modification of V-cycle code. It is now easy to modify this program and
make comparisons.

(a) Vary ν and vary the number of V-cycles.

(b) Replace the weighted Jacobi subroutine, first by a Gauss–Seidel subrou-
tine, then by a red-black Gauss–Seidel subroutine.

(c) Replace the full weighting subroutine by an injection subroutine. Ob-
serve that using red-black Gauss–Seidel and injection impairs conver-
gence. Try to remedy this by using half-injection. In all cases, determine
experimentally how these changes affect convergence rates and compu-
tation time.

(d) Explain the result of using black-red (rather than red-black) Gauss–
Seidel with injection.

stevem
Text Box
A good choice for the weight here is w = 2/3.

72 Chapter 4

15. Two-dimensional program. For the two-dimensional problem, proceed
again in a modular way.

(a) Write a subroutine that performs weighted Jacobi on a two-dimensional
grid. Within the subroutine, it is easiest to refer to v and f as two-
dimensional arrays.

(b) Make the appropriate modifications to the one-dimensional code to im-
plement bilinear interpolation and full weighting on a two-dimensional
grid.

(c) Make the (minor) changes required in the main program to create a
two-dimensional V-cycle program. Test this program on problems with
known exact solutions. For example, for fixed k and �, take f(x, y) =
C sin(kπx) sin(�πy) on the unit square (0 ≤ x, y ≤ 1), where C is a
constant. Then

u(x, y) =
C

π2k2 + π2�2 + σ
sin(kπx) sin(�πy)

is an exact soultion to model problem (1.4).

16. FMG programs. Modify the one- and two-dimensional V-cycle programs
to carry out the FMG scheme.

17. A convection-diffusion problem. Consider the following convection-diffusion
problem on the unit square Ω = {(x, y) : 0 < x < 1, 0 < y < 1}:

−ε(uxx + uyy) + aux = A sin(�πy)(C2x
2 + C1x + C0) on Ω,

u = 0 on ∂Ω,

where ε > 0, A ∈ R, a ∈ R, � is an integer, C2 = −ε�2π2, C1 = ε�2π2 − 2a,
and C0 = a+2ε. It has the exact solution u(x, y) = Ax(1−x) sin(�πy). Apply
the multigrid algorithms discussed in this chapter to this problem. Compare
the algorithms and explore how their performance changes for ε = 0.01, 0.1, 1;
a = 0.1, 1, 10; n = 32, 64, 128; l = 1, 3, 16.

18. Discrete L2 norm. Let u(x) = xm/2, where m > −1 is an integer, on
Ω = [0, 1], with grid spacing h = 1

n . Let uh
i = x

m/2
i = (ih)m/2. Show that

the continuous L2 norm is

‖u‖2 =
(∫ 1

0

xm/2

)1/2

=
1√

m + 1
,

while the corresponding discrete L2 norm satisfies

‖uh‖h
h→0=

1√
m + 1

.

stevem
Text Box
A good choice for the weight here is w = 4/5.

Chapter 5

Some Theory

In the previous chapter, we considered some practical questions concerning the
implementation, cost, and performance of multigrid methods. The arguments and
experiments of that chapter offer good reason to believe that multigrid methods can
be extremely effective. Now we must confront some questions on the theoretical
side. The goal of this chapter is to present multigrid in a more formal setting
and offer an explanation of why these methods work so well. In the first part of
this chapter, we sketch the ideas that underlie the convergence theory of multigrid.
In the second section, we present what might be called the subspace picture of
multigrid. While the terrain in this chapter may seem a bit more rugged than in
previous chapters, the reward is an understanding of why multigrid methods are so
remarkably effective.

Variational Properties

We first return to a question left unanswered in previous chapters. In expressing the
coarse-grid problem, we wrote A2hu2h = f2h and said that A2h is the Ω2h version
of the original operator Ah. Our first goal is to define the coarse-grid operator A2h

precisely.
The argument that follows assumes we are working with the model problem,

−u′′(x) = f(x), and the corresponding discrete operator Ah. We adopt the notation
that Ωph represents not only the grid with grid spacing ph, but also the space
of vectors defined on that grid. In keeping with our former notation, we let vh

be a computed approximation to the exact solution uh. For the purpose of this
argument, assume that the error in this approximation, eh = uh − vh, lies entirely
in the range of interpolation, which will be denoted R(Ih

2h). This means that for
some vector u2h ∈ Ω2h, eh = Ih

2hu
2h. Therefore, the residual equation on Ωh may

be written
Aheh = AhIh

2hu
2h = rh. (5.1)

In this equation, Ah acts on a vector that lies entirely in the range of interpolation.
How does Ah act on R(Ih

2h)? Figure 5.1 gives the answer. An arbitrary vector
u2h ∈ Ω2h is shown in Fig. 5.1(a); Ih

2hu
2h, which is the interpolation of u2h up

to Ωh, is shown in Fig. 5.1(b); and the effect of Ah acting pointwise on Ih
2hu

2h

is shown in Fig. 5.1(c). We see that AhIh
2hu

2h is zero at the odd grid points of

73

74 Chapter 5

Figure 5.1: The action of Ah on the range of interpolation R(Ih
2h): (a) an arbitrary

vector u2h ∈ Ω2h; (b) the linear interpolant Ih
2hu

2h; and (c) AhIh
2hu

2h, which is
zero at the odd grid points on Ωh.

Ωh. The effect is analogous to taking the second derivative of a piecewise linear
function.

We may conclude that the odd rows of AhIh
2h in (5.1) are zero. On the other

hand, the even rows of (5.1) correspond to the coarse-grid points of Ω2h. Therefore,
we can find a coarse-grid form of the residual equation by dropping the odd rows
of (5.1). We do this formally by applying the restriction operator I2h

h to both sides
of (5.1). When this is done, the residual equation becomes

I2h
h AhIh

2h︸ ︷︷ ︸
A2h

u2h = I2h
h rh.

This observation gives us a plausible definition for the coarse-grid operator:
A2h = I2h

h AhIh
2h. The terms of A2h may be computed explicitly as shown in

Table 5.1. We simply apply I2h
h AhIh

2h term by term to the jth unit vector ê2h
j on

Ω2h. This establishes that the jth column of A2h and also, by symmetry, the jth
row of A2h are given by

1
(2h)2

(
−1 2 − 1

)
.

We would get the same result if the original problem were simply discretized on
Ω2h using the usual second-order finite differences. Therefore, by this definition,
A2h really is the Ω2h version of Ah.

The preceding argument was based on the assumption that the error eh lies
entirely in the range of interpolation. This is not the case in general. If it were,
then solving the Ω2h residual equation exactly and doing the two-grid correction
would give the exact solution. Nevertheless, the argument does give a sensible def-
inition for A2h. It also leads us to two important properties called the variational

A Multigrid Tutorial 75

j − 1 j j + 1

ê2h
j 0 1 0

Ih
2hê

2h
j 0 1

2 1 1
2 0

AhIh
2hê

2h
j − 1

2h2 0 1
h2 0 − 1

2h2

I2h
h AhIh

2hê
2h
j − 1

4h2
1

2h2 − 1
4h2

Table 5.1: Calculation of the ith row of A2h = I2h
h AhIh

2h.

properties; they are given by

A2h = I2h
h AhIh

2h (Galerkin condition),
I2h
h = c(Ih

2h)T , c ∈ R.

The first of these, the Galerkin condition, is simply the definition of the coarse-grid
operator. The second property is the relationship satisfied by the interpolation op-
erator and the full weighting operator defined in Chapter 3. While these properties
are not desirable for all applications, they are exhibited by many commonly used
operators. They also facilitate the analysis of the two-grid correction scheme. We
see a deeper justification of these properties in Chapter 10.

Toward Convergence Theory

Convergence analysis of multigrid methods is difficult and has occupied researchers
for several decades. We cannot even pretend to address this problem with the rigor
and depth it deserves. Instead, we attempt to give heuristic arguments suggesting
that the standard multigrid schemes, when applied to well-behaved problems (for
example, scalar elliptic problems), not only work, but work very effectively. Con-
vergence results for these problems have been rigorously proved. For more general
problems, new results appear at a fairly steady pace. Where analytical results are
lacking, a wealth of computational evidence testifies to the general effectiveness of
multigrid methods. Between analysis and experimentation, the multigrid territory
is slowly being mapped. However, multigrid convergence analysis is still an open
area of computational mathematics.

We begin with a heuristic argument that captures the spirit of rigorous conver-
gence proofs. As we have seen, the smoothing rate (the convergence factor for the
oscillatory modes) for the standard relaxation schemes is small and independent
of the grid spacing h. Recall that the smooth error modes, which remain after
relaxation on one grid, appear more oscillatory on the coarser grids. Therefore,
by moving to successively coarser grids, all of the error components on the original
fine grid eventually appear oscillatory and are reduced by relaxation. It then follows

76 Chapter 5

that the overall convergence factor for a good multigrid scheme should be small
and independent of h.

Now we can be a bit more precise. Denote the original continuous problem (for
example, one of our model boundary value problems) by Au = f . The associated
discrete problem on the fine grid Ωh is denoted by Ahuh = fh. As before, we let
vh be an approximation to uh on Ωh. The discretization error is defined by

Eh
i = u(xi) − uh

i , 1 ≤ i ≤ n − 1.

The discretization error measures how well the exact solution of the discrete problem
approximates the exact solution of the original continuous problem. It may be
bounded in the discrete L2 norm in the form

‖Eh‖h ≤ Khp, (5.2)

where K is a positive constant and p is a positive integer. For the model problems
in Chapter 1, in which second-order finite differences were used, we have p = 2 (see
Exercise 11 for a careful derivation of this fact).

Unfortunately, we can seldom solve the discrete problem exactly. The quantity
that we have been calling the error, eh = uh − vh, will now be called the alge-
braic error to avoid confusion with the discretization error. The algebraic error, as
we have seen, measures how well our approximations (generated by relaxation or
multigrid) agree with the exact discrete solution.

The purpose of a typical calculation is to produce approximations vh that agree
with the exact solution of the continuous problem u. Let us specify a tolerance ε
and an error condition such as

‖u − vh‖h < ε, (5.3)

where u = (u(x1), . . . , u(xn−1))T is the vector of exact solution values sampled
at the grid points. This condition can be satisfied if we guarantee that both the
discretization and algebraic errors are small. Suppose, for example, that

‖Eh‖h + ‖eh‖h < ε.

Then, using the triangle inequality,

‖u − vh‖h ≤ ‖u − uh‖h + ‖uh − vh‖h = ‖Eh‖h + ‖eh‖h < ε.

One way to ensure that ‖Eh‖h + ‖eh‖h < ε is to require that ‖Eh‖h < ε
2 and

‖eh‖h < ε
2 individually. The first condition determines the grid spacing on the

finest grid. Using (5.2), it suggests that we choose

h < h∗ ≡
(ε

2K

)1/p

.

The second condition determines how well vh must approximate the exact dis-
crete solution uh. If relaxation or multigrid cycles have been performed until the
condition ‖eh‖ < ε

2 is met on grid Ωh, where h < h∗, then we have converged to
the level of discretization error. In summary, the discretization error determines
the critical grid spacing h∗; so (5.3) will be satisfied provided we converge to the
level of discretization error on a grid with h < h∗.

A Multigrid Tutorial 77

Consider first a V-cycle scheme applied to a d-dimensional problem with (about)
nd unknowns and h = 1

n . We assume (and can generally show rigorously) that with
fixed cycling parameters, ν1 and ν2, the V-cycle scheme has a convergence factor
bound, γ, that is independent of h. This V-cycle scheme must reduce the algebraic
error from O(1) (the error in the zero initial guess) to O(hp) = O(n−p) (the order
of the discretization error). Therefore, the number of V-cycles required, ν, must
satisfy γν = O(np) or ν = O(log n). Because the cost of a single V-cycle is O(nd),
the cost of converging to the level of discretization error with a V-cycle scheme is
O(nd log n). This is comparable to the computational cost of the best fast direct
solvers applied to the model problem.

The FMG scheme costs a little more per cycle than the V-cycle scheme. How-
ever, a properly designed FMG scheme can be much more effective overall because
it supplies a very good initial guess to the final V-cycles on Ωh. The key obser-
vation in the FMG argument is that before the Ωh problem is even touched, the
Ω2h problem has already been solved to the level of discretization error. This is
because of nested iteration, which is designed to provide a good initial guess for
the next finer grid. Our goal is to determine how much the algebraic error needs
to be reduced by V-cycles on Ωh. The argument is brief and worthwhile; however,
it requires a new tool.

Energy Norms, Inner Products, and Orthogonality. Energy norms and
inner products are useful tools in the analysis of multigrid methods. They
involve a slight modification of the inner product and norms that we have
already encountered. Suppose A is an n×n symmetric positive definite matrix.
Define the A-inner product of two vectors u,v ∈ Rn by

(u,v)A ≡ (Au,v),

where (·, ·) is the usual Euclidean inner product on Rn. The A-norm now
follows in a natural way. Just as ‖u‖ = (u,u)

1
2 , the A-norm is given by

‖u‖A = (u,u)
1
2
A.

The A-norm and A-inner product are sometimes called the energy norm and
inner product. We can also use the A-inner product to define a new orthogo-
nality relationship. Extending the usual notion of vectors and subspaces, two
vectors u and v are A-orthogonal if (u, v)A = 0, and we write u ⊥A v. We
then say that two subspaces U and V are A-orthogonal if, for all u ∈ U and
v ∈ V , we have u ⊥A v. In this case, we write U ⊥A V .

Our FMG argument can be made in any norm, but it is simplest in the Ah-
norm. The goal is to show that one properly designed FMG cycle is enough to
ensure that the final algebraic error on Ωh is below the level of discretization error;
that is,

‖eh‖Ah ≤ Khp, (5.4)

where K is a positive constant that depends on the smoothness of the solution and
p is a positive integer. The values of K and p also depend on the norm used to
measure the error, so they will generally be different from the constants in (5.2).

78 Chapter 5

The argument is inductive in nature. If Ωh is the coarsest grid, then FMG is
exact and (5.4) is clearly satisfied. Assume now that the Ω2h problem has been
solved to the level of discretization error, so that

‖e2h‖A2h ≤ K(2h)p. (5.5)

We now use (5.5) to prove (5.4).
The initial algebraic error on Ωh, before the V-cycles begin, is the difference

between the exact fine-grid solution, uh, and the coarse-grid approximation inter-
polated to the fine grid:

eh
0 = uh − Ih

2hv
2h.

To estimate the size of this initial error, we must account for the error that might
be introduced by interpolation from Ω2h to Ωh. To do this, we assume that the
error in interpolation has the same order (same value of p) as the discretization
error and satisfies

‖uh − Ih
2hu

2h‖Ah ≤ Kαhp, (5.6)

where α is a positive constant. (This sort of bound can be determined rigorously;
in fact, α is typically 1 + 2p.) A bound for the initial error now follows from the
triangle inequality:

‖eh
0‖Ah = ‖uh − Ih

2hv
2h‖Ah

≤ ‖uh − Ih
2hu

2h‖Ah + ‖Ih
2hu

2h − Ih
2hv

2h‖Ah (triangle inequality)
= ‖uh − Ih

2hu
2h‖Ah︸ ︷︷ ︸

≤Kαhp

+ ‖u2h − v2h‖A2h︸ ︷︷ ︸
≤K(2h)p

(Galerkin conditions).

As indicated, we use (5.5), (5.6), and Exercise 2 to form the following estimate for
the norm of the initial error:

‖eh
0‖Ah ≤ Kαhp + K(2h)p = K(α + 2p)hp.

To satisfy (5.4), the algebraic error must be reduced from roughly K(α + 2p)hp to
Khp. This means we should use enough V-cycles on Ωh to reduce the algebraic
error by a factor of

β = α + 2p.

This reduction requires ν V-cycles, where γν ≤ β. Because β is O(1), it follows that
ν is also O(1). (Typically, β = 5 or 9 and γ ≈ 0.1 for a V(2,1)-cycle, so ν = 1.) In
other words, the preliminary cycling through coarser grids gives such a good initial
guess that only O(1) V-cycles are needed on the finest grid. This means that the
total computational cost of FMG is O(nd), which is optimal.

This discussion is meant to give some feeling for the rigorous arguments that can
be used to establish the convergence properties of the basic multigrid algorithms.
These results cannot be pursued much further at this point and must be left to the
multigrid literature. Instead, we turn to a different perspective on why multigrid
works.

Spectral and Algebraic Pictures

Much of this section is devoted to an analysis of the two-grid correction scheme,
which lies at the heart of multigrid. Recall that the V-cycle is just nested ap-
plications of the two-grid correction scheme and that the FMG method is just

A Multigrid Tutorial 79

Figure 5.2: The full weighting operator I2h
h acting on (a) a smooth mode of Ωh

(k = 2 and n = 8) and (b) an oscillatory mode of Ωh (k = 6 and n = 8). In the
first case, the result is a multiple of the k = 2 mode on Ω2h. In the second case,
the result is a multiple of the n − k = 2 mode on Ω2h.

repeated applications of the V-cycle on various grids. Therefore, an understanding
of the two-grid correction scheme is essential for a complete explanation of the basic
multigrid methods.

We begin with a detailed look at the intergrid transfer operators. Consider
first the full weighting (restriction) operator, I2h

h . Recall that I2h
h maps Rn−1 →

R
n
2 −1. It has rank n

2 − 1 and null space N(I2h
h) of dimension n

2 . It is important
to understand what we call the spectral properties of I2h

h . In particular, how does
I2h
h act upon the modes of the original operator Ah?

Recall that the modes of Ah for the one-dimensional model problem are given
by

wh
k,j = sin

(
jkπ

n

)
, 1 ≤ k ≤ n − 1, 0 ≤ j ≤ n.

80 Chapter 5

Figure 5.3: A pair of complementary modes on a grid with n = 8 points. The solid
line shows the k = 2 mode. The dashed line shows the k′ = n − k = 6 mode.

The full weighting operator may be applied directly to these vectors. The result of
I2h
h acting on the smooth modes is (Exercise 4)

I2h
h wh

k = cos2
(

kπ

2n

)
w2h

k , 1 ≤ k ≤ n

2
.

This says that I2h
h acting on the kth (smooth) mode of Ah produces a constant

times the kth mode of A2h when 1 ≤ k ≤ n
2 . This property is illustrated in Fig.

5.2(a). For the oscillatory modes, with n
2 < k < n − 1, we have (Exercise 5)

I2h
h wh

k′ = − sin2

(
kπ

2n

)
w2h

k , 1 ≤ k <
n

2
,

where k′ = n−k. This says that I2h
h acting on the (n−k)th mode of Ah produces a

constant multiple of the kth mode of A2h. This property, illustrated in Fig. 5.2(b),
is similar to the aliasing phenomenon discussed earlier. The oscillatory modes on Ωh

cannot be represented on Ω2h. As a result, the full weighting operator transforms
these modes into relatively smooth modes on Ω2h.

In summary, we see that both the kth and (n − k)th modes on Ωh become the
kth mode on Ω2h under the action of full weighting. We refer to this pair of fine-grid
modes {wh

k ,wh
n−k} as complementary modes. Letting Wh

k = span{wh
k ,wh

n−k}, we
have that

I2h
h : Wh

k → span{w2h
k }.

In passing, it is interesting to note the relationship between two complementary
modes. It may be shown (Exercise 6) that wh

n−k,j = (−1)j+1wh
k,j . Figure 5.3

illustrates the smooth and oscillatory nature of a pair of complementary modes.
As noted earlier, the full weighting operator has a nontrivial null space, N(I2h

h).
It may be verified (Exercise 7) that this subspace is spanned by the vectors nj =
Ahêh

j , where j is odd and êh
j is the jth unit vector on Ωh. As shown in Fig. 5.4,

the basis vectors nj appear oscillatory. However, they do not coincide with the
oscillatory modes of Ah. In fact, an expansion of nj in terms of the modes of Ah

requires all of the modes. Thus, the null space of I2h
h possesses both smooth and

oscillatory modes of Ah.
Having established the necessary properties of the full weighting operator, we

now examine the interpolation operator Ih
2h in the same way. Recall that Ih

2h maps

A Multigrid Tutorial 81

Figure 5.4: A typical basis vector of the null space of the full weighting operator
N(I2h

h).

Figure 5.5: A typical basis vector of the range of interpolation R(Ih
2h).

R
n
2 −1 → Rn−1 and has full rank. In order to establish the spectral properties of

Ih
2h, we ask how Ih

2h acts on the modes of A2h. Letting

w2h
k,j = sin

(
jkπ

n/2

)
, 1 ≤ k <

n

2
, 0 ≤ j ≤ n

2
,

be the Ω2h modes, we can show (Exercise 8) that Ih
2h does not preserve these modes.

The calculation shows that

Ih
2hw

2h
k = ckwh

k − skwh
k′ , 1 ≤ k <

n

2
, k′ = n − k,

where ck = cos2
(

kπ
2n

)
and sk = sin2

(
kπ
2n

)
. We see that Ih

2h acting on the kth mode
of Ω2h produces not only the kth mode of Ωh but also the complementary mode
wh

k′ . This fact exposes the interesting property that interpolation of smooth modes
on Ω2h excites (to some degree) oscillatory modes on Ωh. It should be noted that
for a very smooth mode on Ωh with k � n/2,

Ih
2hw

2h
k =

[
1 − O

(
k2

n2

)]
wh

k + O

(
k2

n2

)
wh

k′ .

In this case, the result of interpolation is largely the corresponding smooth mode
on Ωh with very little contamination from the complementary oscillatory mode.
As it has been defined, Ih

2h is a second-order interpolation operator because the
magnitude of the spurious oscillatory mode is O(k2

n2).
We have already anticipated the importance of the range of interpolation, R(Ih

2h).
A basis for R(Ih

2h) is given by the columns of Ih
2h. While these basis vectors appear

smooth, as Fig. 5.5 shows, they do not coincide with the smooth modes of Ah. In
fact, it may be shown that any one of these basis vectors requires all modes of Ah

for a full representation. In other words, the range of interpolation contains both
smooth and oscillatory modes of Ah.

82 Chapter 5

With this investigation of the intergrid transfer operators, we now return to the
two-grid correction scheme. We begin with an observation made in Chapter 2 that
a stationary linear iteration may be expressed in the form

v(1) = (I − BA)v(0) + Bf = Rv(0) + Bf ,

where B is a specified matrix and R = I − BA is the iteration matrix for the
method. It follows that m sweeps of the iteration can be represented by

v(m) = Rmv(0) + C(f),

where C(f) represents a series of operations on f .
We can now turn to the two-grid correction scheme. The steps of this scheme,

with an exact solution on the coarse grid, are given by the following procedure:

• Relax ν times on Ωh with scheme R: vh ← Rνvh + C(f).

• Full weight rh to Ω2h: f2h ← I2h
h (fh − Ahvh).

• Solve the residual equation exactly: v2h = (A2h)−1f2h.

• Correct the approximation on Ωh: vh ← vh + Ih
2hv

2h.

If we now take this process one step at a time, it may be represented in terms
of a single replacement operation:

vh ← Rνvh + C(f) + Ih
2h(A2h)−1I2h

h (fh − Ah(Rνvh + C(f))).

The exact solution uh is unchanged by the two-grid correction scheme. Therefore,

uh = Rνuh + C(f) + Ih
2h(A2h)−1I2h

h (fh − Ah(Rνuh + C(f))).

By subtracting these last two expressions, we can see how the two-grid correction
operator, which we now denote TG, acts upon the error, eh = uh − vh. We find
that

eh ←
[
I − Ih

2h(A2h)−1I2h
h Ah

]
Rνeh ≡ TGeh. (5.7)

As in Chapter 2, we imagine that the error can be expressed as a linear combi-
nation of the modes of Ah. This leads us to ask how TG acts upon the modes of
Ah. However, TG consists of R, Ah, (A2h)−1, I2h

h , and Ih
2h, and we now know how

each of these operators acts upon the modes of Ah. For the moment, consider the
two-grid correction scheme TG with no relaxation (ν = 0). Using all of the spectral
properties we have just discovered, it may be shown (Exercise 9) that the coarse-
grid correction operator, TG, is invariant on the subspaces Wh

k = span{wh
k ,wh

k′};
that is,

TGwk = skwk + skwk′ , (5.8)

TGwk′ = ckwk + ckwk′ , 1 ≤ k ≤ n

2
, k′ = n − k, (5.9)

where ck = cos2
(

πk
2n

)
and sk = sin2

(
πk
2n

)
.

This implies that when TG is applied to a smooth or oscillatory mode, the same
mode and its complement result. But it is important to look at the amplitudes of

A Multigrid Tutorial 83

Figure 5.6: Damping factor for the two-grid correction operator TG, without relax-
ation, acting on the oscillatory modes with wavenumbers n − k (upper curve) and
on the smooth modes with wavenumbers k (lower curve) for 1 ≤ k ≤ n

2 .

the resulting modes. Consider the case of TG acting on very smooth modes and
very oscillatory modes with k � n. Then (5.8) and (5.9) become

TGwk = O

(
k2

n2

)
wk + O

(
k2

n2

)
wk′ ,

TGwk′ =
[
1 − O

(
k2

n2

)]
wk +

[
1 − O

(
k2

n2

)]
wk′ , 1 ≤ k ≤ n

2
, k′ = n − k.

TG acting on smooth modes produces smooth and oscillatory modes with very
small amplitudes. Therefore, the two-grid correction scheme is effective at elim-
inating smooth components of the error. However, when TG acts upon highly
oscillatory modes, it produces smooth and oscillatory modes with O(1) ampli-
tudes. Therefore, two-grid correction, without relaxation, does not damp oscil-
latory modes. Figure 5.6 illustrates this behavior of the two-grid correction scheme
with no relaxation by showing the damping factors, ck and sk, for the smooth and
oscillatory components of the error.

We now bring relaxation into the picture. Knowing its spectral properties,
we can anticipate that relaxation will balance perfectly the action of TG without
relaxation. We now include ν steps of a relaxation method R and assume for
simplicity that R does not mix the modes of Ah. Many other relaxation methods
can be analyzed without this assumption. As before, let λk be the eigenvalue of R
associated with the kth mode wk. Combining all of these observations with (5.7),
the action of TG with relaxation is given by (Exercise 10)

TGwk = λν
kskwk + λν

kskwk′ , (5.10)

TGwk′ = λν
k′ckwk + λν

k′ckwk′ , 1 ≤ k ≤ n

2
, k′ = n − k. (5.11)

We know that the smoothing property of relaxation has the strongest effect on
the oscillatory modes. This is reflected in the term λν

k′ , which is small. At the
same time, the two-grid correction scheme alone (without relaxation) eliminates

84 Chapter 5

the smooth modes. This is reflected in the sk terms. Thus, all terms of (5.10) and
(5.11) are small, particularly for k � n

2 or as ν becomes large. The result is a
complete process in that both smooth and oscillatory modes of the error are well
damped.

We have now completed what we call the spectral picture of multigrid. By
examining how various operators act on the modes of Ah, we have determined
the effect of the entire two-grid correction operator on those modes. This analy-
sis explains how the two-grid correction process eliminates both the smooth and
oscillatory components of the error.

Solvability and the Fundamental Theorem of Linear Algebra. Suppose
we have a matrix A ∈ Rm×n. The fundamental theorem of linear algebra states
that the range (column space) of the matrix, R(A), is equal to the orthogonal
complement of N (AT), the null space of AT . Thus, spaces Rm and Rn can be
orthogonally decomposed as follows:

Rm = R(A) ⊕N (AT),
Rn = R(AT) ⊕N (A).

For the equation Ax = f to have a solution, it is necessary that the vector f
lie in R(A). Thus, an equivalent condition is that f be orthogonal to every
vector in N (AT). For the equation Ax = f to have a unique solution, it is
necessary that N (A) = {0}. Otherwise, if x is a solution and y ∈ N (A), then
A(x + y) = Ax + Ay = f + 0 = f , so the solution x is not unique.

There is another vantage point from which to view the coarse-grid correction
scheme. This perspective will lead to what we will call the algebraic picture of
multigrid. With both the spectral and the algebraic picture before us, it will be
possible to give a good qualitative explanation of multigrid. Let us now look at the
algebraic structure of the two-grid correction scheme.

The variational properties introduced earlier now become important. Recall
that these properties are given by

A2h = I2h
h AhIh

2h (Galerkin property),
I2h
h = c(Ih

2h)T , c ∈ R.

The two-grid correction scheme involves transformations between the space of fine-
grid vectors, Ωh, and the space of coarse-grid vectors, Ω2h. Figure 5.7 diagrams
these two spaces and the action of the full weighting and interpolation operators.

As we have already seen, the range of interpolation, R(Ih
2h), and the null space

of full weighting, N(I2h
h), both reside in Ωh and have dimensions of roughly n

2 .
From the orthogonality relationships between the subspaces of a linear operator
(Fundamental Theorem of Linear Algebra), we know that

N(I2h
h) ⊥ R[(I2h

h)T].

By the second variational property, it then follows that

N(I2h
h) ⊥ R(Ih

2h).

A Multigrid Tutorial 85

Figure 5.7: Schematic drawing of the space of fine-grid vectors, Ωh; the space of
coarse-grid vectors, Ω2h; and their subspaces and the intergrid transfer operators,
Ih
2h and I2h

h .

The fact that the range of interpolation is orthogonal to the null space of full
weighting is significant.

We will now use the notion of A-orthogonality to rewrite the above orthogonality
relationship. The fact that N(I2h

h) ⊥ R(Ih
2h) means that (qh,uh) = 0 whenever

qh ∈ R(Ih
2h) and I2h

h uh = 0. This is equivalent to the condition that (qh, Ahuh) = 0
whenever qh ∈ R(Ih

2h) and I2h
h Ahuh = 0. This last condition may be written as

N(I2h
h Ah) ⊥Ah R(Ih

2h);

that is, the null space of I2h
h Ah is Ah-orthogonal to the range of interpolation.

This orthogonality property allows the space Ωh to be decomposed in the form

Ωh = R(Ih
2h) ⊕ N(I2h

h Ah).

This means that if eh is a vector in Ωh, then it may always be expressed as

eh = sh + th,

where sh ∈ R(Ih
2h) and th ∈ N(I2h

h Ah).
It will be helpful to interpret the vectors sh and th. Since sh is an element of

R(Ih
2h), it must satisfy sh = Ih

2hq
2h, where q2h is some vector of Ω2h. We observed

the smoothing effect of interpolation and noted the smooth appearance of the basis
vectors of R(Ih

2h). For this reason, we associate sh with the smooth components of
the error. We also noted the oscillatory appearance of the basis vectors of N(I2h

h).
For this reason, we associate th with the oscillatory components of the error.

We may now consider the two-grid correction operator in light of these subspace
properties. The two-grid correction operator without relaxation is

TG = I − Ih
2h(A2h)−1I2h

h Ah.

86 Chapter 5

First note that if sh ∈ R(Ih
2h), then sh = Ih

2hq
2h for some vector q2h in Ω2h. We

then have that
TGsh =

[
I − Ih

2h(A2h)−1I2h
h Ah

]
Ih
2hq

2h. (5.12)

However, by the first of the variational properties, I2h
h AhIh

2h = A2h. Therefore,
TGsh = 0. This gives us the important result that any vector in the range of
interpolation also lies in the null space of the two-grid correction operator, that is,

N(TG) ⊃ R(Ih
2h).

Having seen how TG acts on R(Ih
2h), now consider a vector th in N(I2h

h Ah).
This case is even simpler. We have

TGth =
[
I − Ih

2h(A2h)−1I2h
h Ah

]
th. (5.13)

Because I2h
h Ahth = 0, we conclude that TGth = th. This says that TG is the

identity when it acts on N(I2h
h Ah). This implies that the dimension of N(TG)

cannot exceed the dimension of R(Ih
2h). We therefore have the stronger result

(Exercise 11) that
N(TG) = R(Ih

2h).

This argument gives us the effect of the two-grid correction operator on the two
orthogonal subspaces of Ωh. Let us now put these algebraic results together with
the spectral picture. We have established two independent ways to decompose the
space of fine-grid vectors, Ωh. We have the spectral decomposition

Ωh = L ⊕ H =

Low-frequency modes

1 ≤ k <
n

2

 ⊕

High-frequency modes
n

2
≤ k < n

and the subspace decomposition

Ωh = R(Ih
2h) ⊕ N(I2h

h Ah).

We can now give a schematic illustration of the two-grid correction scheme as
it works on an arbitrary error vector. The diagrams in Figs. 5.8–5.11 are rather
unconventional and may require some deliberation. However, they do incorporate
all of the spectral and subspace results elaborated on in this chapter.

We first focus on the upper diagrams of each figure. These diagrams portray the
space Ωh as the plane of the page. As we have seen, Ωh may be decomposed in two
ways. These two decompositions are represented by two pairs of orthogonal axes
labeled (H, L) for the high-frequency/low-frequency decomposition and (N, R) for
the N(I2h

h Ah)/R(Ih
2h) decomposition. The L and R axes are more nearly aligned,

suggesting that the smooth, low-frequency modes are associated with the range of
interpolation.

Initially, an arbitrary error vector eh in Ωh appears as a point in the plane
as shown in Fig. 5.8. This vector has projections on all four axes. Specifically,
consider the projections on the R and N axes, which we have called sh and th,
respectively. Both sh and th may be further projected onto the L and H axes. The
projections of sh on the L and H axes are denoted sL and sH , respectively. The
projections of th on the L and H axes are denoted tL and tH , respectively. This
gives the picture for the initial error, before any relaxation is done.

A Multigrid Tutorial 87

Figure 5.8: The top diagram shows the space Ωh decomposed along the (low-
frequency, high-frequency) axes and along the (R(Ih

2h), N(I2h
h Ah)) axes. The initial

error, eh, appears as a point with projections on all four axes. The lower diagram
gives a schematic “energy budget” of the initial error. The error energy is divided
between R(Ih

2h) and N(I2h
h Ah) and further divided between low- and high-frequency

modes.

The upper diagram in Fig. 5.9 shows the effect of several relaxation sweeps on
the fine grid. Assume that enough relaxation sweeps are done to eliminate entirely
the high-frequency components of the error. In the diagram, the resulting error has
no component along the H-axis and the point representing eh is projected down
to the L-axis. The diagram also shows the new projections on the R and N axes.
Notice that the component of eh in R(Ih

2h) has actually increased.
The upper diagram of Fig. 5.10 shows the effect of the rest of the two-grid

correction scheme. Since R(Ih
2h) is the null space of TG, the component of eh along

the R-axis vanishes. Therefore, this step is represented by a projection directly onto
the N -axis. This is consistent with our observation that TG acts as the identity
on N(I2h

h Ah). This new projection has eliminated a large amount of the initial
error. However, as we proved earlier, the coarse-grid correction operator (without

88 Chapter 5

Figure 5.9: The top diagram shows the effect of several fine-grid relaxation sweeps.
Assuming that all oscillatory components are eliminated, the error is projected onto
the low-frequency axis (L). The lower diagram shows the corresponding changes in
the energy budget. Dashed lines indicate the previous energy budget. Shaded areas
show the current budget.

relaxation) does excite oscillatory modes, which can be seen in the diagram as a
nonzero component in the H direction.

The upper diagram of Fig. 5.11 shows the error after more relaxation sweeps on
the fine grid. Assuming again that relaxation eliminates all high-frequency error
modes, this relaxation sweep is represented as a projection directly onto the L-axis.
This further reduces a significant amount of the error.

The pattern should now be evident. By combining relaxation with corrections
from the coarse-grid residual equation, we alternately project onto the L and N
axes. In doing this, the error vector is driven toward the origin (zero error) in a
way that is reminiscent of the convergence of a fixed point iteration.

The lower diagrams of Figs. 5.8–5.11 attempt to illustrate the two-grid correction
scheme in terms of the “energy budget” of the error. Initially, the error has a
certain energy or magnitude. Part of this energy resides in R(Ih

2h), which is drawn

A Multigrid Tutorial 89

Figure 5.10: The top diagram shows the error after doing the remainder of the
two-grid correction. All components in R(Ih

2h) are eliminated as indicated by the
projection onto the N -axis. The lower diagram shows the corresponding changes in
the energy budget.

on the left of the vertical line; the remainder of the energy resides in N(I2h
h Ah),

which is drawn on the right of that line. The energy in R(Ih
2h) may be divided

further between the low-frequency modes (above the horizontal line) and the high-
frequency modes (below the horizontal line). We see that the initial error is fairly
evenly divided between R(Ih

2h) and N(I2h
h Ah). As we noted before, most of the

error in R(Ih
2h) is associated with the smooth, low-frequency modes; most of the

error in N(I2h
h Ah) is associated with the oscillatory, high-frequency modes.

The lower diagram of Fig. 5.9 shows the energy budget after several effective
relaxation sweeps. The dotted lines indicate the previous budget status. The
shaded regions indicate the budget after relaxation. As described above, relaxation
eliminates the high-frequency error components, but at the same time increases the
component of the error in R(Ih

2h).

90 Chapter 5

Figure 5.11: The top diagram shows the effect of several more fine-grid relaxations
on the error. Once again, all high-frequency components are removed as indicated
by a projection onto the L-axis. The lower diagram shows the corresponding changes
in the energy budget.

The lower diagram of Fig. 5.10 shows the energy budget after a correction
step. As we saw earlier, this step eliminates all of the error in R(Ih

2h). Finally,
further relaxation (Fig. 5.11) reduces the remaining oscillatory error modes, but re-
introduces error with a small magnitude into R(Ih

2h). A continuation of this cycle
will further reduce the energy of the error; this reduction signifies convergence.

The subspace iteration diagrams, together with the energy budget diagrams,
illustrate the way in which relaxation and correction work together. These two
processes complement each other remarkably. When they are applied in tandem,
the result is an extremely effective algorithm.

It should be remembered that this entire discussion has dealt only with a two-
grid scheme. The V-cycle uses this scheme at all levels, ensuring that relaxation is

A Multigrid Tutorial 91

always directed at the oscillatory modes of the current grid. As we have seen, two-
grid correction without relaxation takes care of the smooth error components on
the current fine grid. Therefore, by adding relaxation at all levels, all components
of the error are eventually acted upon and quickly removed.

The efficiency of the two-grid scheme is further amplified by the FMG method.
This scheme uses nested V-cycles to compute accurate initial guesses on coarser
grids before relaxing on the finer grids. This ensures that a particular coarse-grid
problem is solved to the level of discretization error before the more expensive
fine-grid relaxations are begun. But even in these more elaborate procedures, it is
the combination of relaxation and correction that provides the underlying power.
Therefore, the arguments of this chapter, although somewhat qualitative, hold the
key to the remarkable effectiveness of multigrid.

Exercises

1. Energy norm. Assume A is symmetric positive definite. As defined in this
chapter, the A-energy inner product and the A-energy norm are given by

(u,v)A = (Au,v) and ‖u‖2
A = (u,u)A.

(a) Show that these are acceptable definitions for an inner product and a
norm.

(b) Show that ‖r‖2 = ‖e‖A2 .

(c) The error norm ‖e‖2 is generally not computable. Is ‖e‖A computable?
Is ‖e‖A2 computable?

2. FMG error analysis. A key step in the FMG error analysis is showing that

‖Ih
2hu

2h − Ih
2hv

2h‖Ah = ‖u2h − v2h‖A2h .

Use the Galerkin property and the property of inner products that

(Bu,v) = (u, BT v)

to prove this equality for any two coarse-grid vectors.

3. Discretization error. The goal of this exercise is to consider the model
problem in one dimension and show carefully that the discrete L2 norm of
the discretization error is bounded by a constant times h2 (see equation (5.2)).
Consider the boundary value problem

−u′′(x) = f(x) on (0, 1),
u(0) = u(1) = 0.

The discretized form of the problem is

(Ahuh)i = −uh
i+1 − 2uh

i + uh
i−1

h2
= f(xi), 1 ≤ i ≤ n,

uh
0 = uh

n+1 = 0.

stevem
Text Box
Assume that the constant from the Galerkin property is c = 1.

stevem
Pencil

stevem
Text Box
Note that the left side of the equations are divided by h2; compare with (2.1). The eigenvalues of Ah need to be divided by h2 as well.

92 Chapter 5

(a) Let u be the vector consisting of values of the exact solution u sampled
at the grid points; that is, ui = u(xi). Expanding u(xi±1) in a Taylor
series about xi, show that

(Ahu)i = −u′′(xi) −
h2

24
(u(iv)(ξ+) + u(iv)(ξ−)),

where xi−1 < ξ− < xi and xi < ξ+ < xi+1.

(b) Assuming continuity of u(iv) and using the Intermediate Value Theorem,
show that the truncation error is given by

τh
i ≡ f(xi) − (Ahu)i =

h2

24
(u(iv)(ξ+) + u(iv)(ξ−)) =

h2

12
f ′′(ξi),

where xi−1 < ξi < xi+1.

(c) Recall that if A is symmetric, then ‖A‖2 = ρ(A), and that if Aw = λw,
then A−1w = λ−1w. Use the eigenvalues of Ah and the definition of
matrix norms to show that ‖(Ah)−1‖h ≤ γ, where γ ≈ π−2. Note that
this bound is independent of h.

(d) Show that if f ′′ is bounded on [0, 1] and vi = f ′′(ξi), then ‖v‖h is
bounded. Is this result true for the (unscaled) Euclidean norm?

(e) Combine the above facts and use properties of matrix norms to conclude
that the discrete L2 norm of the discretization error is bounded by a
constant times h2; begin by making the observation that

‖Eh‖h = ‖uh − u‖h = ‖(Ah)−1Ah(uh − u)‖h.

4. Effect of full weighting. Verify that I2h
h wh

k = cos2
(

kπ
2n

)
w2h

k , where wh
k,j =

sin
(

jkπ
n

)
, 1 ≤ k < n

2 , and I2h
h is the full weighting operator.

5. Effect of full weighting. Verify that I2h
h wh

k′ = − sin2
(

kπ
2n

)
w2h

k , where
k′ = n− k, 1 ≤ k < n

2 , and I2h
h is the full weighting operator. What happens

to wh
n/2 under full weighting?

6. Complementary modes. Show that the complementary modes {wh
k ,wh

k′}
on Ωh are related by wh

k′,j = (−1)j+1wh
k,j , where k′ = n − k.

7. Null space of full weighting. Verify that the vectors nj = Ahêh
j , where j

is odd and êh
j is the jth unit vector on Ωh, form a basis for the null space of

I2h
h .

8. Effect of linear interpolation. Show that Ih
2hw

2h
k = ckwh

k − skwh
k′ , where

1 ≤ k < n
2 , k′ = n − k, ck = cos2

(
kπ
2n

)
, sk = sin2

(
kπ
2n

)
, and Ih

2h is the linear
interpolation operator.

9. Two-grid correction scheme. Using the previous results concerning the
effects of Ah, I2h

h , and Ih
2h on the fundamental modes, determine the ef-

fect of the coarse-grid correction operator without relaxation, TG = I −
Ih
2h(A2h)−1I2h

h Ah, on the modes wk and wk′ , where 1 ≤ k ≤ n
2 , k′ = n − k.

(Recall that if Aw = λw, then A−1w = λ−1w.)

stevem
Text Box
Use the eigenvalues of Ah and the definition of matrix norms to show that ||(Ah)-1|| is bounded independently of h.

stevem
Pencil

stevem
Pencil

A Multigrid Tutorial 93

10. Effect of two-grid correction. Let R be an iteration matrix with the same
eigenvectors, wk, as Ah and with eigenvalues λk. Consider the coarse-grid cor-
rection operator with ν sweeps of relaxation, TG = [I−Ih

2h(A2h)−1I2h
h Ah]Rν .

(a) Determine how TG acts on the modes wk and wk′ , where 1 ≤ k ≤ n
2 ,

k′ = n − k.

(b) Find the specific convergence factors for the coarse-grid correction oper-
ator that uses one sweep of damped Jacobi with ω = 2

3 .

11. An important equivalence. Prove that the null space of TG is the range
of interpolation, where TG is the coarse grid correction operator without
relaxation. Equation (5.12) of the text can be used to show that N(TG) ⊃
R(Ih

2h). Use equation (5.13) and the dimensions of the subspaces to show
that N(TG) = R(Ih

2h).

12. Two-dimensional five-point stencil. When the two-dimensional model
problem is discretized on a uniform grid with hx = hy = h, the coefficients at
each grid point are given by the five-point stencil

Ah =
1
h2

 −1

−1 4 −1
−1

 .

What does the stencil for A2h = I2h
h AhIh

2h look like if Ih
2h is based on bilinear

interpolation and I2h
h is based on (a) full weighting? (b) injection?

13. Two-dimensional nine-point stencil. Repeat the previous problem with
the nine-point stencil

Ah =
1

3h2

−1 −1 −1

−1 8 −1
−1 −1 −1

 .

Chapter 6

Nonlinear Problems

The preceding chapters presented multigrid methods applied to linear problems.
Because of their iterative nature, multigrid ideas should be effective on nonlinear
problems, where some form of iteration is usually imperative. Just as multigrid
methods were developed to improve classical linear relaxation methods, we will see
that they can also guide us in the use of nonlinear methods.

We begin by clarifying the most significant formal difference between linear and
nonlinear systems of equations. Consider a system of nonlinear algebraic equations,
A(u) = f , where u, f ∈ Rn. (The notation A(u), rather than Au, signifies that the
operator is nonlinear.) Suppose that v is an approximation to the exact solution
u. It is possible to define the error and the residual for this problem, much as we
did earlier: the error is simply e = u − v and the residual is r = f − A(v). If we
now subtract the original equation, A(u) = f , from the definition of the residual,
we find that

A(u) − A(v) = r. (6.1)

We are one step from the residual equation that we derived for linear systems in
Chapter 2. However, because A is nonlinear, even though u − v = e, we cannot
conclude that A(u) − A(v) = A(e). This means that we no longer have a simple
linear residual equation, which necessitates changes in the methods that we devise
for nonlinear problems. We must now use (6.1) as the residual equation.

It makes sense to review quickly a classical relaxation method for nonlinear
systems; it will have a part to play in multigrid methods. Working with the
system of nonlinear algebraic equations A(u) = f , one of the most frequently
used methods is nonlinear Gauss–Seidel relaxation [16]. Suppose the jth equa-
tion of the system can be solved for the jth variable in terms of the other variables
(u1, u2, . . . , uj−1, uj+1, . . . , un). We write the result in the abstract form

uj = Mj(u1, u2, . . . , uj−1, uj+1, . . . , un), 1 ≤ j ≤ n.

Just as with linear systems, Gauss–Seidel relaxation takes the form

vj ← Mj(v1, v2, . . . , vj−1, vj+1, . . . , vn), 1 ≤ j ≤ n,

where the current value of each component is used on the right side. For cases where
this iteration cannot be formed explicitly, we use the same characterization that
was used for linear Gauss–Seidel: for each j = 1, 2, . . . , n, set the jth component

95

96 Chapter 6

of the residual to zero and solve for vj . Because the residual is r = f − A(v), this
characterization amounts to solving (A(v))j = fj for vj . Equivalently, as in the
linear case, we can let εj be the jth unit vector, so that the jth step of nonlinear
Gauss–Seidel amounts to finding an s ∈ R such that

(A(v + sεj))j = fj , 1 ≤ j ≤ n.

This is generally a nonlinear scalar equation in the scalar s, which can be solved
efficiently with one or two steps of (scalar) Newton’s method [16]. When an ap-
proximate solution s is found, the jth component is updated by v ← v + sεj .
Updating all n components sequentially in this way constitutes one iteration sweep
of nonlinear Gauss–Seidel.

Now, to see how residual equation (6.1) can be used as a basis for multigrid
methods, let v be the current approximation and replace the exact solution u by
v + e. Then residual equation (6.1) becomes

A(v + e) − A(v) = r. (6.2)

Expanding A(v + e) in a Taylor series (in n variables) about v and truncating the
series after two terms, we have the linear system of equations

J(v)e = r, (6.3)

where J = (∂Ai/∂uj) is the n× n Jacobian matrix. Linear system (6.3) represents
an approximation to nonlinear system (6.1). It can be solved for e and the current
approximation v can be updated by v ← v + e. Iteration of this step is Newton’s
method. But how should linear system (6.3) be solved at each step? One highly
recommended option is to use multigrid. Such a combination of Newton’s method
for the outer iteration and multigrid for the (linear) inner iteration is called Newton-
multigrid.

Newton-multigrid can be effective, but it does not use multigrid ideas to treat
the nonlinearity directly. To do this, we return to the residual equation,

A(v + e) − A(v) = r,

and use it in the familiar two-grid setting. Suppose we have found an approxima-
tion, vh, to the original fine-grid problem

Ah(uh) = fh . (6.4)

Proceeding as we did for the linear problem, we now want to use the residual
equation on the coarse grid Ω2h to approximate eh, the error in vh. Using the
above argument, the residual equation on the coarse grid appears as

A2h(v2h + e2h) − A2h(v2h) = r2h, (6.5)

where A2h denotes the coarse-grid operator, r2h is the coarse-grid residual, v2h is a
coarse-grid approximation to vh, and e2h is a coarse-grid approximation to eh. Once
e2h is computed, the fine-grid approximation can be updated by vh ← vh + Ih

2he2h.
We have already encountered the coarse-grid residual r2h. Nothing changes

here; we simply choose it to be the restriction of the fine-grid residual to the coarse
grid:

r2h = I2h
h rh = I2h

h (fh − Ah(vh)).

A Multigrid Tutorial 97

Newton’s Method. Perhaps the best known and most important method
for solving nonlinear equations is Newton’s method, which can be derived as
follows. Suppose we wish to solve the scalar equation F (x) = 0. We expand F
in a Taylor series about an initial guess x:

F (x + s) = F (x) + sF ′(x) +
s2

2
F ′′(ξ),

where ξ is between x and x + s. If x + s is the solution, then (neglecting
the higher-order terms) the series becomes 0 = F (x) + sF ′(x), from which s =
−F (x)/F ′(x). Thus, we can update the initial guess using x ← x−F (x)/F ′(x).
Newton’s method results by iterating this process:

x ← x − F (x)
F ′(x)

.

Newton’s method for a system of n nonlinear equations is a straightforward
extension of the scalar Newton’s method. We write the system in vector form
as

F(x) ≡

f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)

 =

0
0
...
0

 .

Expanding in a Taylor series yields

F(x + s) = F(x) + J(x)s + higher-order terms,

where J(x) is the Jacobian matrix

J(x) =

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn

 .

Newton’s method results when we replace F(x + s) = 0 by F(x) + J(x)s = 0.
Solving for the vector s yields the iteration

x ← x − [J(x)]−1 F(x).

But what about the current approximation v2h? When we move to the coarse grid,
it makes sense to restrict the current fine-grid approximation to the coarse grid,
often using the same transfer operator used for the residual: v2h = I2h

h vh.
Making these substitutions in the residual equation yields

A2h(I2h
h vh + e2h︸ ︷︷ ︸

u2h

) = A2h(I2h
h vh) + I2h

h (fh − Ah(vh)). (6.6)

The right side of this nonlinear system is known. The goal is to find or approximate
the solution to this system, which we have denoted u2h. The coarse-grid error

98 Chapter 6

approximation, e2h = u2h−I2h
h vh, can then be interpolated up to the fine grid and

used to correct the fine-grid approximation vh. This correction step takes the form

vh ← vh + Ih
2he

2h or vh ← vh + Ih
2h(u2h − I2h

h vh).

The scheme we have just outlined is the most commonly used nonlinear version
of multigrid. It is called the full approximation scheme (FAS) because the coarse-
grid problem is solved for the full approximation u2h = I2h

h vh + e2h rather than
the error e2h. A two-grid version of this scheme is described as follows:

Full Approximation Scheme (FAS)

• Restrict the current approximation and its fine-grid residual to the coarse
grid: r2h = I2h

h (fh − Ah(vh)) and v2h = I2h
h vh.

• Solve the coarse-grid problem A2h(u2h) = A2h(v2h) + r2h.

• Compute the coarse-grid approximation to the error: e2h = u2h − v2h.

• Interpolate the error approximation up to the fine grid and correct the current
fine-grid approximation: vh ← vh + Ih

2he
2h.

There are several observations to be made about this method. It is worth
noting that if A is a linear operator, then the FAS scheme reduces directly to the
(linear) two-grid correction scheme (Exercise 1). Thus, FAS can be viewed as a
generalization of the two-grid correction scheme to nonlinear problems.

Less obvious is the fact that an exact solution of the fine-grid problem is a
fixed point of the FAS iteration (Exercise 2). This fixed point property, which is a
desirable attribute of most iterative methods, means that the process stalls at the
exact solution.

A third observation is that the FAS coarse-grid equation can be written as

A2h(u2h) = f2h + τ 2h
h ,

where the tau correction τ 2h
h is defined by

τ 2h
h = A2h(I2h

h vh) − I2h
h Ah(vh) .

One of the many consequences of this relationship is that the solution of the coarse-
grid FAS equation, u2h, is not the same as the solution of the original coarse-grid
equation A2h(u2h) = f2h because τ 2h

h �= 0 generally. In fact, as FAS processing
advances, u2h begins to achieve accuracy that compares to that of the solution on
the finest grid, albeit at the resolution of grid 2h. This tau correction relationship
allows us to view FAS as a way to alter the coarse-grid equations so that their
approximation properties are substantially enhanced.

Here is another important observation. Because the second step in the above
procedure involves a nonlinear problem itself, FAS involves an inner and an outer
iteration; the outer iteration is the FAS correction scheme, while the inner iter-
ation is usually a standard relaxation method such as nonlinear Gauss–Seidel. A
true multilevel FAS process would be done recursively by approximating solutions to

A Multigrid Tutorial 99

the Ω2h problem using the next coarsest grid, Ω4h. Thus, FAS, like its linear
counterparts, is usually implemented as a V-cycle or W-cycle scheme.

In earlier chapters, we saw the importance of full multigrid (FMG) for obtaining
a good initial guess for the fine-grid problem. The convergence of nonlinear itera-
tions depends even more critically on a good initial guess. Typically, the better the
initial guess used on the fine grid, the more linear the fine-grid problem appears,
and the more effective the fine-grid solver will be. When FMG is used for nonlinear
problems, the interpolant Ih

2hu
2h is generally accurate enough to be in the basin of

attraction of the fine-grid solver. Thus, whether we use Newton-multigrid or FAS
V-cycles on each new level, we can expect one FMG cycle to provide accuracy to
the level of discretization, unless perhaps the nonlinearity is exceptionally strong.
These options are investigated in a numerical example later in the chapter.

Example: An algebraic problem. We need to warn the reader that this example
should not be taken too seriously: it was devised only as a way to illustrate the
mechanics of the FAS scheme. The problem does not really need the power of
multigrid because it can be effectively treated by a good classical relaxation scheme.
More importantly, as with most nonlinear problems, the example has subtleties that
must be addressed before solution techniques should even be considered (Exercise
4).

Consider the following nonlinear algebraic system of n equations and n un-
knowns uh ∈ Rn:

Ah
j (uh) ≡ uh

j uh
j+1 = fh

j , 1 ≤ j ≤ n , (6.7)

where the vector fh ∈ Rn is given. (The notation Ah
j (uh) means the jth component

of Ah(uh).) We impose the periodic boundary condition uh
n+1 = uh

1 to close the
problem. Suppose we have a fine-grid approximation, vh, obtained by relaxation.
In passing, note that Gauss–Seidel relaxation is easy to formulate for this problem:
it consists of the replacement steps

vh
j ←

fh
j

vh
j+1

, 1 ≤ j ≤ n. (6.8)

To see what the FAS correction looks like, assume that n is a positive even integer
and write coarse-grid residual equation (6.5) as

A2h
j (v2h + e2h) − A2h

j (v2h) = r2h
j , 1 ≤ j ≤ n

2
.

In component form, these equations are

(v2h
j + e2h

j)(v2h
j+1 + e2h

j+1) − v2h
j v2h

j+1 = r2h
j or

v2h
j e2h

j+1 + v2h
j+1e

2h
j + e2h

j e2h
j+1 = r2h

j , 1 ≤ j ≤ n

2
.

Notice how the term v2h
j v2h

j+1 cancels. Now, e2h
j and e2h

j+1 are the unknowns in the
jth equation; the coefficients v2h

j , v2h
j+1, and r2h

j must come from the fine grid. We
can obtain the terms v2h

j and v2h
j+1 from the fine grid by injection:

v2h
j = I2h

h vh
2j = vh

2j , v2h
j+1 = I2h

h vh
2j+2 = vh

2j+2.

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

100 Chapter 6

Similarly, the coarse-grid residual (using injection) is given by

r2h
j = I2h

h rh
2j = fh

2j − vh
2jv

h
2j+1.

The equations that must be solved on the coarse grid for e2h
j are therefore given by

vh
2je

2h
j+1 + vh

2j+2e
2h
j + e2h

j e2h
j+1 = fh

2j − vh
2jv

h
2j+1, 1 ≤ j ≤ n

2
.

This system corresponds to the general FAS equation (6.6). In this example, with a
specific form for the operator Ah, we have simplified the right side of (6.6), resulting
in an explicit system for e2h

j . This system would typically be handled by a standard
relaxation method. Note that Gauss–Seidel is again fairly simple because the jth
equation is linear in e2h

j , although the system of equations is nonlinear in the vector
eh. In any case, after approximations to e2h

j have been computed, they can then
be interpolated up to the fine grid to correct vh. ��

Example: Formulating FAS for a boundary value problem. Consider the
two-point boundary value problem

−u′′(x) + γu(x)u′(x) = f(x), 0 < x < 1, (6.9)
u(0) = u(1) = 0.

The source term f and a constant γ > 0 are given. To set up the FAS solution
to this problem, let Ωh consist of the grid points xj = j

n , for some positive even
integer n, and let uj = u(xj) and fj = f(xj), for j = 0, 1, . . . , n. Of the many
possible ways to discretize this differential equation, consider the following finite
difference scheme:

Ah
j (u) =

−uh
j−1 + 2uh

j − uh
j+1

h2
+ γuh

j

(
uh

j+1 − uh
j−1

2h

)
= fj , 1 ≤ j ≤ n − 1.

Note the use of a centered difference approximation to u′(xj). One consequence
of this choice is that this scalar equation is linear in uh

j even though the vector
equation Ah(uh) = fh is nonlinear in uh. Thus, nonlinear Gauss–Seidel requires
no Newton step and can be stated explicitly as follows:

uh
j ← 2

h2fj +
(
uh

j−1 + uh
j+1

)
4 + hγ(uh

j+1 − uh
j−1)

, 1 ≤ j ≤ n − 1 . (6.10)

To examine the FAS correction step, assume that an approximation vh has been
obtained on the fine grid. Residual equation (6.5), given by

A2h
j (v2h + e2h) − A2h

j (v2h) = r2h
j ,

appears in component form as

−(v2h
j−1 + e2h

j−1) + 2(v2h
j + e2h

j) − (v2h
j+1 + e2h

j+1)
4h2

+ γ(v2h
j + e2h

j)

(
v2h

j+1 − v2h
j−1

4h
+

e2h
j+1 − e2h

j−1

4h

)
−

−v2h
j−1 + 2v2h

j − v2h
j+1

4h2

− γv2h
j

(
v2h

j+1 − v2h
j−1

4h

)
= r2h

j , 1 ≤ j ≤ n

2
− 1 .

A Multigrid Tutorial 101

Canceling terms leaves the coarse-grid equation for the unknowns e2h
j :

−e2h
j−1 + 2e2h

j − e2h
j+1

4h2
+ γv2h

j

(
e2h
j+1 − e2h

j−1

4h

)
+ γe2h

j

(
v2h

j+1 − v2h
j−1

4h

)

+ γe2h
j

(
e2h
j+1 − e2h

j−1

4h

)
= I2h

h (fh
j − Ah

j (vh))︸ ︷︷ ︸
r2h

j

.

As before, the terms v2h
j , v2h

j+1, v
2h
j−1, and r2h

j are obtained by restriction from the
fine grid.

This equation is the analogue of FAS equation (6.6), although we have written
out the terms explicitly. Approximations to the solution, e2h

j , of this equation must
be computed using a relaxation method such as nonlinear Gauss–Seidel (which can
again be carried out explicitly). These corrections are interpolated up to the fine
grid and used to update the fine-grid approximation vh. ��

Numerical example: FAS for a boundary value problem. To study the
performance of FAS on boundary value problem (6.9), we choose the exact solution

u(x) = ex(x − x2),

which results in the source term

f(x) = (x2 + 3x)ex + γ (x4 − 2x2 + x)e2x.

The problem is discretized on a grid with n = 512 (511 interior points). On the
coarsest grid, consisting of one interior point and two boundary points, the problem
is solved exactly by

u1 =
f1

8
.

In this experiment, we treat the problem using full weighting, linear interpola-
tion, and a (2,1) FAS V-cycle based on nonlinear Gauss–Seidel (6.10). For γ = 0,
the problem reduces to the one-dimensional Poisson equation, which is the standard
model problem for multigrid. In this instance, the FAS V-cycle reduces to the stan-
dard V-cycle. As γ increases, the nonlinear term γu(x)u′(x) begins to dominate
the problem.

Table 6.1 displays the performance of FAS for various values of γ. Starting with
an initial guess of vh = 0, the FAS V-cycles are carried out until the norm of the
residual vector is less than 10−10. Displayed for each choice of γ is the number of
FAS V-cycles required to achieve this tolerance, as well as the average convergence
factor per cycle. For γ ≤ 10, FAS performance is essentially the same as for the
linear case, γ = 0. As γ increases, the performance degrades slowly until, for
γ ≥ 40, FAS no longer converges.

We see similar qualitative behavior if we change the exact solution to u(x) =
x − x2 so that f(x) = 2 + γ (x − x2)(1 − 2x). FAS performance for this problem
is summarized in Table 6.2. Now the method converges for γ < 100, although
performance degrades more noticeably as γ approaches γ = 100. For γ ≥ 100, the
method no longer converges. FAS is an effective solver for this problem, even for
cases where the nonlinear term is relatively large.

102 Chapter 6

γ
0 1 10 25 35 39 ≥ 40

Convergence factor .096 .096 .096 .163 .200 .145 NC
Number of FAS cycles 11 11 11 14 16 13 NC

Table 6.1: FAS performance for the problem −u′′ + γ u u′ = f , with the exact
solution u(x) = ex(x − x2), discretized on a grid with 511 interior points. Shown
are average convergence factors and the number of FAS cycles needed to converge
from a zero initial guess to a residual norm of 10−10. NC indicates that the method
did not converge.

γ
0 1 10 50 70 90 ≥ 100

Convergence factor .096 .096 .094 .148 .432 .728 NC
Number of FAS V-cycles 11 11 11 13 30 79 NC

Table 6.2: FAS performance for the problem −u′′ + γ u u′ = f , with the exact
solution u(x) = x − x2, discretized on a grid with 511 interior points. Shown are
average convergence factors and the number of FAC cycles needed to converge from
a zero initial guess to a residual norm of 10−10. NC indicates that the method did
not converge. ��

Numerical example: Two-dimensional boundary value problem. We finish
the numerical examples with a study of the performance of FAS and Newton solvers
applied to the two-dimensional nonlinear problem

−∆u(x, y) + γ u(x, y) eu(x,y) = f(x, y) in Ω, (6.11)
u(x, y) = 0 on ∂Ω, (6.12)

where Ω is the unit square [0, 1] × [0, 1]. For γ = 0, this problem reduces to the
model problem. We discretize this equation on uniform grids in both directions,
with grid spacings of h = 1

64 and h = 1
128 . Using the usual finite difference operator,

the equation for the unknown ui,j at (xi, yj) = (ih, jh) becomes

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
+ γ ui,j eui,j = fi,j , 1 < i, j < n.

(6.13)
To enforce the boundary condition, we set

u0,j = uN,j = ui,0 = ui,N = 0

wherever these terms appear in the equations.
We consider several approaches to solving this problem. An FAS solver can

be implemented in a straightforward way. We use full weighting and linear inter-
polation for the intergrid transfer operators. For the coarse-grid versions of the
nonlinear operator, we use discretization (6.13) with the appropriate grid spacing
(2h, 4h, . . .). Because the individual component equations of the system are non-
linear, the nonlinear Gauss–Seidel iteration uses scalar Newton’s method to solve

stevem
Pencil

A Multigrid Tutorial 103

the (i, j)th equation for ui,j (Exercise 5):

ui,j ← ui,j −
h−2(4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1) + γ ui,j eui,j − fi,j

4h−2 + γ (1 + ui,j) eui,j
.

(6.14)

The nonlinear Gauss–Seidel smoother is not intended to solve the system exactly,
so we need not solve for ui,j exactly. Although no fixed rule exists to determine
how many Newton steps are required in each nonlinear Gauss–Seidel sweep, a small
number usually suffices (we used one Newton step in this example). It should be
noted that the number of Newton steps used on the scalar problem can have a
significant impact on both the effectiveness and the cost of the FAS algorithm.

In the previous example, it was simple to solve the equation on the coarsest
grid exactly. This is not the case here, where, on a 3× 3 grid with a single interior
point, the equation to be solved for u1,1 is

16u1,1 + γ u1,1 eu1,1 = f1,1.

Because this equation is nonlinear, the “solve” on the coarse grid requires the use of
Newton’s Method. All experiments presented here use a 3 × 3 grid as the coarsest
grid, and in all cases it was determined experimentally that a single Newton step
was sufficient there.

In this example, we use the source term

f(x, y) = 2((x − x2) + (y − y2)) + γ (x − x2)(y − y2) e(x−x2)(y−y2),

which corresponds to the exact solution

u(x, y) = (x − x2)(y − y2).

The first test examines the effect of FAS for various choices of γ, from the linear
case (γ = 0) through cases in which the nonlinear part of the operator dominates
(γ = 10, 000). For each test, the problem is solved on a 127 × 127 interior grid.
The problem is deemed solved when the norm of the residual is less than 10−10, at
which point the average convergence rate is reported. Also reported is the number
of V-cycles required to achieve the desired tolerance. The results appear in Table
6.3.

γ
0 1 10 100 1000 10000

Convergence factor .136 .135 .124 .098 .072 .039
Number of FAS cycles 12 12 11 11 10 8

Table 6.3: FAS performance for the problem −∆u + γ u eu = f , discretized on a
grid with 127 × 127 interior points.

One feature of interest is that this problem becomes easier to solve as the non-
linear term becomes more dominant. Note that this particular nonlinear term,
ueu, involves only the unknown ui,j , and none of its neighboring values. Therefore,
as the nonlinear term becomes more dominant, the problem becomes more local

104 Chapter 6

in nature. As this occurs, the smoothing steps, being local solvers, become more
effective. Indeed, with enough dominance of the nonlinear term, the problem could
be solved entirely with the nonlinear Gauss–Seidel smoother. This phenomenon is
analogous to increasing diagonal dominance in the linear case. Of course, this type
of behavior would not be expected for other types of nonlinearity.

It is useful to examine how the FAS solver performs compared to Newton’s
method applied to the nonlinear system. The Jacobian matrix for this problem is
a block tridiagonal system

J(u) =

J1 B
B J2 B

B J3 B
.

B JN−2 B
B JN−1

,

where each of the block matrices is (n− 1)× (n− 1). The off-diagonal blocks B are
all − 1

h2 times the identity matrix. The diagonal blocks are tridiagonal, with the
constant value − 1

h2 on the super- and sub-diagonals. The diagonal entries of Jj ,
corresponding to the grid locations (xi, yj) = (ih, jh) for fixed j and 1 ≤ i ≤ n− 1,
are given by

(Jj)i,i =
4
h2

+ γ ui,j eui,j .

To perform the Newton iteration, we choose two of the many ways to invert the
Jacobian matrix. The first is to compute the LU decomposition of J(u) and to use
it to solve the system. With a lower triangular matrix L and an upper triangular
matrix U such that LU = J(u), we solve the system J(u)s = F (u), first solving
Ly = F (u) and then solving Us = y. Because J(u) is sparse and has a narrow
band of nonzero coefficients, the factors L and U are also sparse, narrow-banded
matrices. Indeed, the banded LU decomposition can be computed quite efficiently;
and because the factors L and U are triangular, solving for y and s is also fast.
Table 6.4 gives the results of applying Newton’s method, with the band LU solver,
to the problem −∆u + γ u eu = f , using a 63 × 63 interior grid.

γ
0 1 10 100 1000 10000

Convergence factor 2.6e-13 3.9e-5 7.4e-5 3.2e-4 1.9e-4 1.2e-4
Number of Newton iterations 1 3 3 4 4 4

Table 6.4: Performance of Newton’s Method for the problem −∆u + γ u eu = f ,
discretized on a 63 × 63 interior grid.

A comparison of Tables 6.3 and 6.4 indicates that convergence of Newton’s
method is much faster than that of FAS. It is well known that Newton’s method
converges quadratically, so this is not surprising. To make this comparison useful,
however, it is important to compare the computational costs of the methods. We
present some empirical evidence on this question shortly.

First, however, we consider an alternative method for inverting the Jacobian
system in the Newton iteration, namely, V-cycles. Certainly in the linear case

stevem
Pencil

stevem
Pencil

stevem
Pencil

A Multigrid Tutorial 105

(γ = 0), we know this is an effective method: both the original and the Jacobian
problems are discrete Poisson equations. As γ increases, the diagonal dominance
of the Jacobian improves, so we should expect even better performance.

If we solve the Jacobian system to the same level of accuracy by V-cycles as was
done with the LU decomposition, the results should be essentially the same as in
Table 6.4. However, it is probably much more efficient to use only a few V-cycles to
solve the Jacobian system approximately. This technique is known as the inexact
Newton’s method [8], which we denote Newton-MG.

We now compare the performance of FAS, Newton’s method, and Newton-MG
in the following numerical experiment. Consider the same operator as before with
a different source term:

−∆u + γueu =
((

9π2 + γe(x2−x3) sin(3πy)
)

(x2 − x3) + 6x − 2
)

sin(3πy). (6.15)

With γ = 10, the exact solution is u(x, y) = (x2 − x3) sin(3πy). This solution (as
opposed to the previous polynomial solution) results in a nontrivial discretization
error. The problem is discretized with n = 128 so that the interior grid is 127×127.

No. outer No. inner
Method iterations iterations Megaflops
Newton 3 – 1660.6

Newton-MG 3 20 56.4
Newton-MG 4 10 38.5
Newton-MG 5 5 25.1
Newton-MG 10 2 22.3
Newton-MG 19 1 24.6

FAS 11 – 27.1

Table 6.5: Comparison of FAS, Newton, and Newton-multigrid methods for the
problem −∆u + γ u eu = f on a 127 × 127 grid. In all cases, a zero initial guess is
used.

Table 6.5 shows the costs of FAS, Newton (with a direct solve), and Newton-MG
applied to (6.15), resulting in the nonlinear system (6.13). The iteration is stopped
when the residual norm is less than 10−10. The column labeled outer iterations lists
how many V-cycles (for FAS) or Newton steps (for Newton and Newton-MG) are
required to achieve the desired tolerance. For Newton-MG, we varied the number
of V-cycles used to solve the Jacobian system. The column labeled inner iterations
gives the number of V-cycles used in the approximate inversion of the Jacobian sys-
tem. The last column, labeled Megaflops, is the number of millions of floating-point
operations required to achieve the desired tolerance (as determined by the MAT-
LAB flops function). For this example, using these performance measurements, it
appears that both the multigrid-based methods are much more efficient than New-
ton’s method using a direct solver. Furthermore, Newton-MG compares well to
FAS when the number of inner MG iterations is properly tuned.

These results should not be taken too seriously. While the convergence proper-
ties may be representative for a fairly broad class of nonlinear problems, the oper-
ation counts are likely to vary dramatically with the character of the nonlinearity,
details of implementation, computer architecture, and programming language. It
should also be remembered that we have not accounted for the cost of evaluating the

106 Chapter 6

nonlinear function, which is highly problem-dependent. Therefore, it may be risky
to draw any general conclusions from this single experiment. On the other hand, it
does seem fairly clear that the multigrid-based methods will outperform Newton’s
method using direct solvers when the problems are large. It is also clear that only
a few V-cycles should be used in the Newton scheme if it is to be competitive with
FAS. Finally, in the end, there may be very little difference in the performance
between the two carefully designed multigrid-based schemes. The choice may de-
pend largely on convenience and other available algorithm features (for example,
τ -extrapolation in FAS [4]).

There is, of course, one further option we should consider: combining the New-
ton and FAS methods with an FMG scheme. The idea is to apply the basic solver
(either Newton or FAS) on successively finer grids of the FMG cycle: for each new
fine grid, the initial guess is obtained by first solving the nonlinear problem on
the next coarser grid. In the linear case, we showed that convergence to the level
of discretization was achieved in one FMG cycle. Table 6.6 shows the results of
applying the FMG–FAS combination to (6.15); it suggests that we can hope for the
same kind of performance in the nonlinear case.

The discrete L2 norms are shown for the residual and error (difference between
computed and sampled continuous solutions), after one FMG–FAS cycle and eight
subsequent FAS V-cycles on the fine grid. Both the FMG cycle and the FAS V-
cycles were performed using nonlinear Gauss–Seidel (2,1) sweeps. Observe that the
norm of the error is reduced to 2.0 × 10−5 by the FMG–FAS cycle alone. Further
FAS V-cycling does not reduce the error, indicating that it has reached the level
of discretization error. However, subsequent FAS V-cycles do reduce the residual
norm further until it reaches the prescribed tolerance of 10−10. The column labeled
Mflops in the table gives the cumulative number of floating-point operations after
each stage of the computation.

Cycle ||rh||h Ratio ||e||h Mflops
FMG–FAS 1.07e−2 2.00e−5 3.1

FAS V 1 6.81e−4 0.064 2.44e−5 5.4
FAS V 2 5.03e−5 0.074 2.49e−5 7.6
FAS V 3 3.89e−6 0.077 2.49e−5 9.9
FAS V 4 3.25e−7 0.083 2.49e−5 12.2
FAS V 5 2.98e−8 0.092 2.49e−5 14.4
FAS V 6 2.94e−9 0.099 2.49e−5 16.7
FAS V 7 3.01e−10 0.102 2.49e−5 18.9
FAS V 8 3.16e−11 0.105 2.49e−5 21.2

Table 6.6: Performance of the FMG–FAS cycle, followed by eight FAS V-cycles, on
−∆u + γueu = f , with γ = 10. The grid size is 127 × 127. Note that one FMG–
FAS cycle reduces the error to the level of discretization error, and that subsequent
FAS V-cycles further reduce the residual norm quickly to the prescribed tolerance
of 10−10.

We show analogous results in Table 6.7 for FMG with a Newton solver applied
to (6.15). Here we again use FMG, applying one step of Newton-MG on each
level in the FMG process. Each Newton step starts with an initial guess from the
next coarser grid and uses one (2,1) V-cycle. The discrete L2 norms are shown for
the residual and error after one FMG–Newton-MG cycle followed by subsequent

A Multigrid Tutorial 107

Cycle ||rh||h Ratio ||e||h Mflops
FMG–Newton-MG 1.06e−002 2.50e−005 2.4

Newton-MG 1 6.72e−004 0.063 2.49e−005 4.1
Newton-MG 2 5.12e−005 0.076 2.49e−005 5.8
Newton-MG 3 6.30e−006 0.123 2.49e−005 7.5
Newton-MG 4 1.68e−006 0.267 2.49e−005 9.2
Newton-MG 5 5.30e−007 0.315 2.49e−005 10.9
Newton-MG 6 1.69e−007 0.319 2.49e−005 12.6
Newton-MG 7 5.39e−008 0.319 2.49e−005 14.3
Newton-MG 8 1.72e−008 0.319 2.49e−005 16.0
Newton-MG 9 5.50e−009 0.319 2.49e−005 17.7

Newton-MG 10 1.76e−009 0.319 2.49e−005 19.4
Newton-MG 11 5.61e−010 0.319 2.49e−005 21.1
Newton-MG 12 1.79e−010 0.319 2.49e−005 22.8
Newton-MG 13 5.71e−011 0.319 2.49e−005 24.5

Table 6.7: Performance of the FMG–Newton-MG cycle, followed by 13 Newton-MG
steps, on −∆u + γueu = f , with γ = 10. The grid size is 127× 127. Note that one
FMG–Newton-MG cycle reduces the error to the level of discretization error, and
that subsequent Newton-MG steps on the fine grid further reduce the residual error
to the prescribed tolerance of 10−10.

Newton-MG cycles on the fine grid. The results are very similar to those for FMG–
FAS in Table 6.6. Observe that the norm of the actual error is reduced to the level
of discretization error by one FMG–Newton cycle. Subsequent Newton-MG cycles
do, however, continue to reduce the discrete L2 norm of the residual effectively to
below the prescribed tolerance.

Both of these methods reduce the error to the level of discretization in one FMG
cycle. The flop count indicates that the methods are similar in cost, with the FMG–
Newton-MG cycle somewhat less expensive (2.4 Mflops) than the FMG–FAS cycle
(3.1 Mflops). However, the individual Newton-MG steps on the fine grid, although
cheaper, are not quite as effective as FAS V-cycles for reducing the residual norm.
Indeed, if the goal is to reduce the residual norm to 10−10, it is somewhat less
expensive (21.2 vs. 26.2 Mflops) to use FAS than Newton-MG. We remind the
reader, however, that these flop counts, like those reported earlier, should not be
taken too seriously: comparative measures of efficiency depend critically on specific
implementation details, computing environment, and problem characteristics. The
major conclusion to be reached is that both methods are very efficient and robust.

One of the goals of FMG is to obtain (efficiently) results that are comparable
to the accuracy of the discretization. For nonlinear problems, the nested iteration
feature of FMG improves the likelihood that initial guesses will lie in the basin of
attraction of the chosen iterative method, which accounts for some of its effective-
ness. We do not claim that FMG solves all the difficulties that nonlinear problems
present. Rather, FMG should be considered a potentially powerful tool that can
be used to treat nonlinear problems that arise in practice. ��

So far we have developed FAS in a fairly mechanical way. We showed how
the development of multigrid for linear problems can be mimicked to produce a
scheme that makes sense for nonlinear equations. However, what we have not done

108 Chapter 6

is motivate this development from basic principles in a way that suggests why it
works. We attempt to do so now.

Here is the central question in treating nonlinearities by multigrid: When work-
ing on the fine grid with the original equation in the form Ah(vh + eh) = fh, how
can the error for this equation be effectively represented on a coarser grid?

This is analogous to asking: How do you move from the continuous problem
to the fine grid; that is, how do you effectively discretize the differential equation
A(v + e) = f with a known function v? For one possible answer, we turn to the
second example above (−u′′ + γuu′ = f) with u replaced by v + e:

−(v + e)′′ + γ(v + e)(v + e)′ = f.

It is important first to think of e and e′ as small quantities so that the dominant
part of this equation is the term −v′′ + γvv′, which must be treated carefully. To
expose this term in the equation, we expand the products to obtain

−(v′′ + e′′) + γ(vv′ + v′e + ve′ + ee′) = f.

Since −v′′ + γvv′ is known, we simply move it to the right side to obtain the
differential residual equation

γ(ve′ + v′e + ee′) = f − (−v′′ + γvv′). (6.16)

A natural way to discretize this equation begins by evaluating the right side,

r = f − (−v′′ + γvv′) = f − A(v),

at the grid points; this produces a vector rh
j = r(xj) . This way of transferring r

from the differential setting to Ωh is analogous to transferring the fine-grid residual
rh to Ω2h by injection: r2h

j = rh
2j .

For the left side of residual equation (6.16), we need a sensible scheme for
evaluating the coefficients v and v′ on Ωh. For v, the natural choice is again to
evaluate it at the grid points: vh

j = v(xj). For v′, we can use a central difference
approximation at the grid points:

(v′)h
j ≈ v(xj+1) − v(xj−1)

2h
.

We are now left with the task of representing e and e′ on Ωh. This is naturally
done using the expressions eh

j and

(e′)h
j ≈

eh
j+1 − eh

j−1

2h
,

respectively.
Putting all of this together gives us a fine-grid approximation to the differential

residual equation. We write it at grid point x2j of the fine grid as follows:

γvh
2j

(
eh
2j+1 − eh

2j−1

2h

)
+ γeh

2j

(
vh
2j+1 − vh

2j−1

2h

)
+ γeh

2j

(
eh
2j+1 − eh

2j−1

2h

)

= fh
2j − Ah

2j(v
h)︸ ︷︷ ︸

rh
2j

.

A Multigrid Tutorial 109

We have shown how to move from the continuum to the fine grid in a natural
way. How do we make the analogous move from the fine grid to the coarse grid?
Terms evaluated at x2j can be restricted directly to the coarse grid; for example,
vh
2j = v2h

j . The difference approximations can be written as analogous centered
differences with respect to the coarse-grid points. Making these replacements, we
have the coarse-grid approximation to the fine-grid residual equation:

γv2h
j

(
e2h
j+1 − e2h

j−1

4h

)
+ γe2h

j

(
v2h

j+1 − v2h
j−1

4h

)
+ γe2h

j

(
e2h
j+1 − e2h

j−1

4h

)
= (I2h

h rh)j .

This is precisely the FAS equation that we derived in the example above.
We just developed FAS as a way to go from the fine to the coarse grid and showed

that it can be viewed as a natural extension of the discretization process that goes
from the continuum to the fine grid. This exposes a general multigrid coarsening
principle: What is good for discretization is probably good for coarsening. There
are notable exceptions to this principle, but the discretization process is always a
good place to start for guidance in constructing the coarse-grid correction scheme.

Along these lines, notice that, in moving from the continuum to the fine grid,
we could have computed the approximation to v′ by reversing the order of the
steps, that is, by first computing the derivative v′, then evaluating it at the grid
points: (v′)h

i ≈ v′(xi). When moving from the fine grid to the coarse grid, this
choice means we use the fine-grid difference approximation as a coefficient in the
coarse-grid equation. Its coarse-grid correction formula is

γv2h
j

(
e2h
j+1 − e2h

j−1

4h

)
+ γe2h

j

(
vh
2j+1 − vh

2j−1

2h

)
+ γe2h

j

(
e2h
j+1 − e2h

j−1

4h

)
= (I2h

h rh)j .

Note that the only difference over FAS is in the coefficient of the second term.
This alternative illustrates that FAS is not necessarily the most direct way to

treat the nonlinearity. In many cases, there are coarsening strategies that are
more compatible with the discretization processes. See [15] for examples that use
discretizations based on projections, as the finite element method does. On the
other hand, FAS is advantageous as a general coarsening approach because of its
very convenient form

A2h(v2h + e2h) − A2h(v2h) = r2h .

Exercises

1. Linear problems. Assume that Ah is actually a linear operator: Ah(uh) =
Ahuh. Show that formula (6.5) for the FAS coarse-grid correction reduces to
the formula for the two-grid correction scheme given in Chapter 3. Do this
first by showing that the coarse-grid equations are the same, then by showing
that the corrections to the fine-grid approximations are the same.

2. Fixed point property. Assume that relaxation has the fixed point property,
namely, that if the exact solution uh of equation (6.4) is used as the initial
guess vh, then the result is uh. Assume also that the coarse-grid equation
has a unique solution.

110 Chapter 6

(a) Assume that the coarse-grid equation is solved exactly. Show that FAS
also has this fixed point property.

(b) Now show that this fixed point property holds even if the exact solver
of the coarse-grid equations is replaced by an appropriate approximate
solver. Assume only that the coarse-grid solver itself exhibits this fixed
point property.

3. Residual equation. You may have wondered why the FAS scheme is based
on the residual equation and not the original equation Ah(uh) = fh. To see
this more clearly, consider the following coarse-grid approximation to Ah(vh+
eh) = fh:

A2h(v2h + e2h) = I2h
h fh .

If this is used in place of the coarse-grid equation A2h(v2h+e2h) = A2h(v2h)+
r2h, show that FAS generally loses both fixed point properties described in
the previous exercise. Thus, for example, if you start with the exact fine
grid solution, you will not get it back after the first iteration. Note also that
the solution of this coarse-grid equation does not change from one FAS cycle
to the next, so that it cannot properly represent smooth components of the
fine-grid error, which do change.

4. Example revisited. Here we show that problem (6.7) of the first example is
subtle in the sense that it has a solution if and only if the fj satisfy a certain
compatibility condition. For this purpose, assume that fj �= 0 for every j.

(a) Remembering that n is an even positive integer, show that if u satisfies
(6.7), then

u1 =
(

f1f3 · · · fn−1

f2f4 · · · fn

)
u1 .

(b) Now show that u1 must be nonzero and that we therefore have the
compatibility condition

f1f3 · · · fn−1 = f2f4 · · · fn .

(c) Assuming that this compatibility condition is satisfied, show that the
solution to (6.7) is determined up to an arbitrary multiplicative constant.

5. Scalar Newton’s methods within nonlinear Gauss–Seidel. Show that
in solving the component equations of (6.11) for ui,j , scalar Newton’s method
takes the form given in (6.14).

6. Formulating methods of solution. Apply parts (a)–(e) to the following
boundary value problems:

(i) u′′(x) + eu = 0, (ii) u′′(x) + u2 = 1,
u(0) = u(1) = 0. u(0) = u(1) = 0.

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

A Multigrid Tutorial 111

(a) Use finite difference to discretize the problem. Write out a typical equa-
tion of the resulting system of equations.

(b) Determine if nonlinear Gauss–Seidel can be formulated explicitly. If so,
write out a typical update step. If not, formulate a typical Newton step
that must be used.

(c) Formulate Newton’s method for the system and identify the linear sys-
tem that needs to be solved at each step.

(d) Formulate the solution by FAS, indicating clearly the systems that must
be solved on Ωh and Ω2h .

Chapter 7

Selected Applications

Our model problem for highlighting basic multigrid concepts has been Poisson’s
equation in one and two dimensions. To see how multigrid can be applied to other
problems, we now consider three variations on our model problem, each, we hope,
of fairly general interest: Neumann boundary conditions, anisotropic equations,
and variable-coefficient/mesh problems. In each case, we present a typical, but
simplified, problem that we treat with a specially tailored multigrid technique. The
method we propose is not necessarily the most robust, and we ignore complicating
issues for the sake of clarity. The purpose here is to illustrate the application of
multigrid to new problems and to gain an entry-level understanding of the broad
scope of multigrid techniques.

Neumann Boundary Conditions

Dirichlet boundary conditions specify values of the unknown function on the bound-
ary of the domain. In most cases, these so-called essential boundary conditions are
easily treated in the discretization and in the multigrid solver by simply eliminating
the corresponding unknowns in the equations. On the other hand, Neumann con-
ditions involve derivatives of the unknown function. This relatively small change
in the boundary conditions can be treated in a variety of ways; it also introduces a
few important subtleties.

Consider the following two-point boundary value problem with homogeneous
Neumann conditions at both end points (the inhomogeneous case is left for Exercise
8):

−u′′(x) = f(x), 0 < x < 1 , (7.1)
u′(0) = u′(1) = 0.

With n an odd positive integer, denote the points of a uniform grid on the interval
[0, 1] by xj = jh, for 0 ≤ j ≤ n + 1, where h = 1

n+1 . A common way to dis-
cretize this problem involves the ghost points x−1 = − 1

h and xn+2 = 1 + 1
h . These

points are outside the problem domain and are used only temporarily to produce
approximations at the boundary points.

With this extended grid, we can use central differences for the differential equa-
tion at the interior points and boundary points. We also use the ghost points to

113

114 Chapter 7

form central difference approximations for the boundary conditions. These choices
lead to the following set of discrete equations:

−uh
j−1 + 2uh

j − uh
j+1

h2
= fh

j , 0 ≤ j ≤ n + 1 ,

uh
1 − uh

−1

2h
= 0 ,

uh
n+2 − uh

n

2h
= 0 .

We could now choose to work with this entire system of equations, which requires
careful treatment of the boundary equations in relaxation and coarsening. Instead,
we eliminate the discrete boundary conditions. The two boundary condition equa-
tions imply that

uh
−1 = uh

1 and uh
n+2 = uh

n.

Eliminating the ghost points in the j = 0 and j = n + 1 equations yields the
following (n + 2) × (n + 2) system of algebraic equations:

−uh
j−1 + 2uh

j − uh
j+1

h2
= fh

j , 1 ≤ j ≤ n ,

2uh
0 − 2uh

1

h2
= fh

0 ,

−2uh
n + 2uh

n+1

h2
= fh

n+1 .

As before, we write this system in the matrix form

Ahuh = fh, (7.2)

where now

Ah =
1
h2

2 −2
−1 2 −1

· · ·
· · ·

−1 2 −1
−2 2

 . (7.3)

Note that system (7.2) involves the boundary unknowns uh
0 and uh

n+1 and that Ah

is an (n + 2) × (n + 2) nonsymmetric matrix.
The first observation to be made is that two-point boundary value problem (7.1)

is not yet well-posed. First, if this problem has a solution u, it cannot be unique:
because the system involves only derivatives of u, the function u+ c must also be a
solution for any constant c (Exercise 1). Second and worse yet, we cannot even be
sure that boundary value problem (7.1) has a solution. If a solution of (7.1) exists,
then the source term must satisfy∫ 1

0

f(x) dx = 0 (7.4)

(Exercise 2). This integral compatibility condition is necessary for a solution to exist:
if f does not satisfy it, then there can be no solution. Fortunately, the compatibility

A Multigrid Tutorial 115

condition is also sufficient in general. Showing this fact is a little beyond the scope
of this book. It amounts to proving that − ∂2

∂x2 is a well-behaved operator on the
appropriate space of functions u that have zero mean:

∫ 1

0
u(x) dx = 0.

This reasoning allows us to conclude that if f satisfies compatibility condition
(7.4), then the following boundary value problem is well-posed:

−u′′(x) = f(x), 0 < x < 1 ,

u′(0) = u′(1) = 0, (7.5)∫ 1

0

u(x) dx = 0 .

The last condition says that of all the solutions u + c that satisfy the differential
equation and boundary conditions, we choose the one with zero mean.

Note that if u solves (7.5), then u + c solves the same boundary value problem
with

∫ 1

0
u(x) dx = c. Thus, the solution of (7.2) with mean value c is easily found

from the zero-mean solution.
In a similar way, discrete system (7.2) is not well-posed. Let 1h be the (n + 2)-

vector whose entries are all 1, so the entries of c1h are all c. The matrix Ah has a
nontrivial null space consisting of the constant vectors c1h (Exercise 3). Thus, if
uh is a specific solution of (7.2), then the general solution is uh + c1h (Exercise 4).

By the Fundamental Theorem of Linear Algebra, (7.2) is solvable only if fh is or-
thogonal to N (AT). It is not difficult to show that the (n+2)-vector (1

2 , 1, . . . , 1, 1
2)

forms a basis for N (AT). Thus, the system is solvable only if f is orthogonal to
N ((Ah)T), which implies that

1
2
fh
0 +

n∑
j=0

fh
j +

1
2
fh

n+1 = 0.

As in the continuous problem, we have two issues to handle: solvability, which
requires that fh be orthogonal to the null space of (Ah)T , and nonuniqueness,
which means that two solutions differ by a vector in the null space of Ah. A useful
observation is that if A is symmetric (A = AT), then solvability and nonuniqueness
can be dealt with together, because the null spaces of A and AT are identical in
that case.

Fortunately, there is an extremely simple way to symmetrize this problem: we
just divide the first and last equations of the system by 2. This yields a symmetric
system whose matrix is

Âh =
1
h2

1 −1
−1 2 −1

· · ·
· · ·

−1 2 −1
−1 1

 . (7.6)

Âh and its transpose have as a null space multiples of the constant vector 1h.
The right-side vector becomes f̂h = [f0/2, f1, . . . , fn, fn+1/2]T . Solvability is then
guaranteed by ensuring that f̂h is orthogonal to the constant vector 1h:

〈f̂h, 1h〉 =
n+1∑
j=0

f̂h
j = 0 (7.7)

116 Chapter 7

x0 x1 x2 x3 x4

Ω2h × × × × ×

Ωh
� � � � � � � � �

x0 x1 x2 x3 x4 x5 x6 x7 x8

Figure 7.1: For the Neumann boundary condition case, the solution is unknown at
the end points x0 and xn+1, where n is an odd integer. The figure shows Ωh and
Ω2h for the case n = 7.

(Exercise 5). This is the discrete analogue of integral compatibility condition (7.4).
Hence, the discrete analogue of the well-posed differential system (7.5) is

−uh
j−1 + 2uh

j − uh
j+1

h2
= fh

j , 1 ≤ j ≤ n ,

uh
0 − uh

1

h2
=

fh
0

2
, (7.8)

−uh
n + uh

n+1

h2
=

fh
n+1

2
,

n+1∑
i=0

uh
i = 0 ,

or simply

Âhuh = f̂h , (7.9)
〈uh, 1h〉 = 0 . (7.10)

As before, of all solutions to the problem, that last condition selects the solution
with zero mean. Matrix system (7.9)–(7.10) is well-posed in the sense that it has a
unique solution, provided f̂h satisfies (7.7).

The ingredients of our multigrid algorithm for solving (7.9)–(7.10) are basically
the same as before, except we now must account for the extra equations associated
with the unknowns at the boundary points and the zero-mean condition. Figure
7.1 shows a fine grid, Ωh, with n + 2 = 9 points and the corresponding coarse grid
Ω2h with n+3

2 = 5 points.
The approximation vh must include the entries vh

0 and vh
n+1, and the coarse-grid

correction v2h must include v2h
0 and v2h

(n+1)/2. Relaxation is now performed at all
the fine-grid points, including x0 and xn+1. Relaxation at the end points is based
on the second and third equations of (7.8):

vh
0 ← vh

1 + h2f̂h
0 ,

vh
n+1 ← vh

n + h2f̂h
n+1.

To account for zero-mean condition (7.10), we now just add the step

vh ← vh − 〈vh, 1h〉
〈1h, 1h〉1

h, (7.11)

A Multigrid Tutorial 117

which is just the Gram–Schmidt method applied to orthogonality condition (7.10).
(Note that 〈1h, 1h〉 = n + 2.) This global step can be applied before or after
relaxation on each level. In principle, this step can wait until the very end of the
multigrid algorithm since its primary role is to produce an approximation with the
correct average. From a mathematical point of view, it does not really matter if the
intermediate approximation vh has a nonzero mean. However, from a numerical
point of view, it is probably best to apply (7.11) often enough to prevent a large
constant from creeping in and swamping accuracy.

The coarsening process is similar to that for the Dirichlet case, but now we
must remember to interpolate corrections to the end point approximations. These
end points are present on both fine and coarse grids, so the correction process is
straightforward. For example, recalling that the terms v2h

j are errors computed on
the coarse grid, the correction steps are given by

vh
0 ← vh

0 + v2h
0 , (7.12)

vh
1 ← vh

1 +
v2h
0 + v2h

1

2
.

What about restriction of residuals to the coarse grid? In the Dirichlet case, we
chose I2h

h to be the transpose of Ih
2h scaled by 1

2 :

I2h
h =

1
2

(
Ih
2h

)T
.

We will use the same restriction operator here, but we must determine its form at
the boundary points. Correction step (7.12) shows that interpolation relates v2h

0

to vh
0 using the weight 1 and relates v2h

0 to vh
1 using the weight 1

2 . Thus, reversing
these relationships (which is what the transpose does) and scaling them by 1

2 , we
arrive at the restriction step (Exercise 6)

f̂2h
0 ← 1

2
f̂h
0 +

1
4
f̂h
1 .

The coarse-grid matrix we get from the Galerkin condition, Â2h = I2h
h ÂhIh

2h,
is just the coarse-grid version of Âh defined in (7.3): this follows from Table 5.1
for the interior points, and from Table 7.1 for the boundary point x = 0 (x = 1
is analogous). One consequence of this relationship is that the multigrid scheme
preserves the variational properties we used in the Dirichlet case.

Another subtlety that we need to address is the discrete compatibility condition.
If we are given a general source vector f̂h, we can be sure that the fine-grid problem
has a solution simply by testing the zero-mean condition (7.7). But what do we
do if this test fails? We could simply stop because this problem has no solution.
However, we might find it advantageous to solve the nearby problem created by
making the replacement

f̂h ← f̂h − 〈f̂h, 1h〉
〈1h, 1h〉1

h . (7.13)

But what about the coarse-grid problem? The answer is that the coarse-grid equa-
tion will be solvable, at least in theory, whenever the fine-grid equation is solvable
(Exercise 7). However, to be sure that numerical round-off does not perturb the

118 Chapter 7

0 1

ê2h
0 1 0

Ih
2hê

2h
0 1 1

2 0

ÂhIh
2hê

2h
0

1
2h2 0 − 1

2h2

I2h
h ÂhIh

2hê
2h
0

1
4h2 − 1

4h2

Table 7.1: Calculation of the first row of Â2h = I2h
h ÂhIh

2h at the boundary x = 0.

solvability too much, it is probably best to incorporate a Gram–Schmidt step anal-
ogous to (7.13) on the coarse grids:

f̂2h ← f̂2h − 〈f̂2h, 12h〉
〈12h, 12h〉1

2h .

Note that 〈12h, 12h〉 = n+3
2 .

Numerical example. Consider the two-point boundary value problem

−u′′(x) = 2x − 1, 0 < x < 1,

u′(0) = u′(1) = 0.

By integrating the differential equation twice and applying the boundary conditions,
we find that the function u(x) = x2

2 − x3

3 + c solves the problem for any constant
c. The zero-mean solution corresponds to c = − 1

12 , and we use this function as
our exact solution in the numerical experiments. Solutions are approximated on a
succession of grids to illustrate the effectiveness of the algorithm as n increases.

Symmetrization of the problem produces the source vector f̂ , where f̂i = fi for
1 ≤ i ≤ n,

f̂0 =
f0

2
= −1

2
, and f̂n+1 =

fn+1

2
=

1
2
.

It can be checked that f̂ satisfies discrete compatibility condition (7.7). The restric-
tion, interpolation, and coarse-grid operators described above are used with V(2,1)-
cycles based on Gauss–Seidel relaxation. For this problem, which is computed in
double precision, we observed that it was enough to apply the Gram–Schmidt pro-
cess once at the end of each V-cycle.

Table 7.2 shows the results of this experiment. Each test is stopped when the
discrete L2 norm of the residual drops below 10−10. Listed are the grid sizes,
the final residual norm, the average convergence factor, the final error norm (the
difference between the computed solution and the sampled version of the continuous
solution), and the number of V-cycles required to reach the desired tolerance.

A Multigrid Tutorial 119

Grid size Average Number
n ‖rh‖h conv. factor ‖e‖h of cycles
31 6.3e−11 0.079 9.7e−05 9
63 1.9e−11 0.089 2.4e−05 10
127 2.6e−11 0.093 5.9e−06 10
255 3.7e−11 0.096 1.5e−06 10
511 5.7e−11 0.100 3.7e−07 10
1027 8.6e−11 0.104 9.2e−08 10
2047 2.1e−11 0.112 2.3e−08 10
4095 5.2e−11 0.122 5.7e−09 11

Table 7.2: Numerical results for −u′′(x) = f(x), u′(0) = u′(1) = 0. Shown are
discrete L2 norms of the final residual and the final error, average convergence
factors, and number of V(2,1)-cycles required to reduce the residual norm to less
than 10−10.

It is evident from the table that the method is very robust on this problem in
that the speed of convergence is essentially independent of problem size. Further-
more, with the strict tolerance on the residual norm used, the discrete problems
are solved well below the level of discretization error. The final errors represent the
discretization errors themselves: they decrease by almost exactly one-fourth with
each doubling of n, which is evidence of O(h2) behavior.

An interesting subtlety of this problem is that we could have chosen to use
one-sided differences for approximating the boundary derivatives:

u′(0) ≈ u1 − u0

h
and u′(1) ≈ un+2 − un+1

h
.

This choice would have resulted in exactly the same operator matrix, Âh, that we
obtained by symmetrizing the discretization based on central differences. However,
the source vector would be the original vector, f , rather than the vector f̂ . Using
this system, and leaving the remainder of the algorithm unchanged, we found ex-
perimentally that the speed of convergence and residual errors were approximately
as we see in Table 7.2, as expected. However, the final errors (that is, the discretiza-
tion errors) were much larger and did not decrease nearly as fast with increasing
n, because one-sided differences are not as accurate as central difference ((O(h)
compared to O(h2)). ��

Anisotropic Problems

The problems treated thus far have been limited to matrices with constant nonzero
off-diagonal entries, namely, − 1

h2 . Such matrices naturally arise in treating Pois-
son’s equation on uniform grids. Our first departure from this situation is to con-
sider two-dimensional problems in which the matrices have two different constants
appearing in the off-diagonal terms. Such matrices arise when

• the differential equation has constant, but different, coefficients for the deriva-
tives in the coordinate directions, or

120 Chapter 7

• when the discretization has constant but different mesh sizes in each coordi-
nate direction.

The model problems for these two cases are, respectively, the differential equa-
tion

−uxx − εuyy = f (7.14)

discretized on a uniform grid of mesh size h and Poisson’s equation (ε = 1) dis-
cretized on a grid with constant mesh size hx = h in the x-direction and constant
mesh size hy = h√

ε
in the y-direction. To be very distinct from the isotropic case

ε = 1, we assume that 0 < ε << 1.
It is interesting that these two anisotropic model problems lead to the same

five-point stencil (Exercise 9):

Ah =
1
h2

 −ε

−1 2 + 2ε −1
−ε

 . (7.15)

This relationship between problems with variable coefficients and problems with
variable mesh sizes is important; it means that we can think of either example as we
develop a method to treat anisotropic problems. Note that the weak connection in
the vertical direction in these examples arises, respectively, from a small coefficient
of the y-derivative term or a large grid spacing in the y-direction.

This departure from the model (isotropic) problem unfortunately leads to trou-
ble with the standard multigrid approach: multigrid convergence factors degrade
as ε tends to zero, and even for ε ≈ 0.1, poor performance can be expected.

To understand why multigrid deteriorates, consider (7.14) in the limiting case
ε = 0. The matrix then becomes

Ah =
1
h2

 0

−1 2 −1
0

 ,

which means that the discrete problem becomes a collection of one-dimensional
Poisson equations in the x-direction, with no connections in the y-direction. Gauss–
Seidel or damped Jacobi point relaxation will smooth in the x-direction because
it does so in one dimension. However, the lack of connections in the y-direction
means that errors on one x-line have nothing to do with errors on any other: errors
in the y-direction will generally have a random pattern, far from the smoothness
needed for coarsening to work well.

We can gain further insight into the problems that arise with anisotropy if we
look at the eigenvalues of the iteration matrix. Recalling Exercise 12 of Chapter 4,
if the weighted Jacobi method with parameter ω is applied to the model Poisson
equation in two dimensions on an n×n grid, the eigenvalues of the iteration matrix
are given by

λk,� = 1 − ω

(
sin2

(
kπ

2n

)
+ sin2

(
�π

2n

))
, 1 ≤ k, � ≤ n.

The wavenumbers (frequencies) k and � correspond to the x- and y-directions, re-
spectively. The same analysis (Exercise 10) applied to the problem (7.14) reveals

A Multigrid Tutorial 121

that the eigenvalues of the Jacobi iteration matrix are

λk,� = 1 − 2ω

1 + ε

(
sin2

(
kπ

2n

)
+ ε sin2

(
�π

2n

))
, 1 ≤ k, � ≤ n.

Notice that for small ε, the contributions from the wavenumbers in the y-direction
(the direction of weak coupling) are insignificant. Thus, there is little variation
in the eigenvalues with respect to the y-wavenumbers. The variation in eigenval-
ues with respect to the x-wavenumbers is what we expect in the one-dimensional
problem.

The eigenvalue picture is best given in the two plots of Fig. 7.2, with ε =
0.05, n = 16, and ω = 2

3 . The upper plot shows the variation in eigenvalues with
respect to � (the y-wavenumber) on lines of constant k; notice that there is little
variation in the eigenvalues along a single line in this direction. The lower plot
shows the variation in eigenvalues with respect to k (the x-wavenumber) on lines of
constant �. This time we see individual curves that look much like the eigenvalue
curves for the one-dimensional problem. In addition, the curves are tightly bunched,
meaning that the convergence is much the same along any horizontal line of the
grid. It should be mentioned that local mode analysis, as discussed in Chapter 4,
could have been used to reach many of these same conclusions.

These observations suggest two possible strategies for dealing with the anisotropy:

• Because we expect typical multigrid convergence for the one-dimensional
problems along x-lines, we should “do multigrid” and coarsen the grid in
the x-direction, but not in the y-direction.

• Because the equations are strongly coupled in the x-direction, it will prove
advantageous to solve for entire lines of unknowns in the x-direction all at
once; this is the goal of line or block relaxation.

We now investigate these two strategies in more detail.

Semicoarsening/point relaxation

Because relaxation smooths in the x-direction, it makes sense to coarsen horizon-
tally by eliminating every other vertical (y-) line. However, because point relaxation
does not smooth in the y-direction, we should not coarsen vertically; all horizontal
lines should be retained on the coarse grid. This semicoarsening process is depicted
in Fig. 7.3. This means that when we write Ω2h, we really mean the coarse grid that
has the original grid spacing in the y-direction and twice the original grid spacing
in the x-direction.

Interpolation can be done in a one-dimensional way along each horizontal line,
giving coarse-grid correction equations of the form

vh
2i,j ← vh

2i,j + v2h
i,j , vh

2i+1,j ← vh
2i+1,j +

v2h
i,j + v2h

i+1,j

2
.

Semi-coarsening is not as “fast” as full coarsening: going from the fine to the coarse
grid, the number of points is reduced by a factor of about two with semicoarsening,
as opposed to the usual factor of about four. This means that W-cycles lose O(n)
complexity; however, V-cycle complexity remains O(n) (Exercise 12).

122 Chapter 7

0� 2� 4� 6� 8� 10� 12� 14� 16
–0.4�

–0.2�

0�

0.2�

0.4�

0.6�

0.8�

1�

l (wavenumber in y direction)�

0� 2� 4� 6� 8� 10� 12� 14� 16
–0.4�

–0.2�

0�

0.2�

0.4�

0.6�

0.8�

1�

k (wavenumber in x direction)�

Figure 7.2: The upper plot shows the eigenvalues of the Jacobi iteration matrix, with
ω = 2

3 , along lines of constant k (wavenumber in the x-direction). The upper curve
corresponds to k = 1 and the lower curve to k = n = 16. The lower plot shows the
same eigenvalues along lines of constant � (wavenumber in the y-direction). The
small parameter in (7.14) is ε = 0.05.

A Multigrid Tutorial 123

Figure 7.3: The original fine grid (left, solid and dashed lines) is semicoarsened in
the x-direction by deleting the dashed lines (right).

Line relaxation/full coarsening

Line (or block) relaxation can be developed by writing a system of linear equations
in block form. In the case of (7.14), if we order the unknowns along lines of constant
y (because strong coupling is in the x-direction), the matrix Ah can be written in
block form as

Ah =

D −cI
−cI D −cI
· −cI D −cI

· · · −cI
−cI D

 , (7.16)

where c = ε
h2 and I is the identity matrix. For this model problem, the diagonal

blocks D are tridiagonal and identical. Each block is associated with an individual
horizontal grid line and has the stencil 1

h2 (−1 2 + 2ε − 1).
One sweep of the block Jacobi method consists of solving a tridiagonal system

for each line of constant y. The jth system of the sweep has the form

Dvh
j = gh

j ,

where vh
j is the jth subvector of vh with entries

(
vh

j

)
i

= vh
i,j , and gh

j is the jth
right-side vector with entries(

gh
j

)
i
= fh

i,j +
ε

h2

(
vh

i,j−1 + vh
i,j+1

)
.

Because D is tridiagonal, these systems can be solved efficiently with some form
of Gaussian elimination. The operation count for relaxation remains O(n), and so
does the cost of either V- or W-cycle solvers. A weighted block Jacobi method
results from averaging the current approximation and a full Jacobi update using a
damping parameter ω.

To see exactly why line relaxation in the direction of strong coupling is effective,
we need to look at the convergence properties of the iteration matrix. A brisk

124 Chapter 7

0� 2� 4� 6� 8� 10� 12� 14� 16
–0.2�

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

l (wavenumber in y direction)�

0� 2� 4� 6� 8� 10� 12� 14� 16
–0.2�

0�

0.2�

0.4�

0.6�

0.8�

1�

1.2�

k (wavenumber in x direction)�

Figure 7.4: The upper plot shows the eigenvalues of the block Jacobi iteration matrix,
with ω = 2

3 , along lines of constant k (wavenumber in the x-direction). The upper
curve corresponds to k = 1 and the flattest curve to k = n = 16. The lower
plot shows the same eigenvalues along lines of constant � (wavenumber in the y-
direction). The upper curve corresponds to � = 1 and the lower curve corresponds
to � = n = 16. The small parameter in (7.14) is ε = 0.05.
calculation (Exercise 11) confirms that the eigenvalues of the block Jacobi iteration
matrix (with damping parameter ω) are given by

λk,� = 1 − 2ω

2 sin2(kπ
2n) + ε

(
sin2

(
kπ

2n

)
+ ε sin2

(
�π

2n

))
, 1 ≤ k, � ≤ n.

A Multigrid Tutorial 125

As before, k and � are the wavenumbers in the x- and y-directions, respectively. The
eigenvalues for the block Jacobi method (with ω = 2

3 and ε = 0.05) are displayed
in Fig. 7.4, which is analogous to Fig. 7.2 for the point Jacobi method. The top
figure shows the eigenvalues along lines of constant k; the lower figure shows the
same eigenvalues along lines of constant �. The most striking difference between
the eigenvalue plots for the two Jacobi methods is the reduction in the size of the
eigenvalues: the maximum magnitude of the eigenvalues of the point method is
0.98, while the maximum magnitude of the eigenvalues of the block method is 0.81.
This reduction in the size of the eigenvalues results in improved convergence. This
improvement is typical of block methods that collect additional coefficients in the
diagonal blocks. However, for anisotropic problems, the improvement occurs only
if the coefficients in the direction of strong coupling appear in the diagonal blocks.

Both of these strategies are effective for the anisotropic models. Either one
can be used when there is a weak connection in a coordinate direction that is
known beforehand. Choosing between the two often depends on the nature of
the application and the computer architecture involved. However, problems in
which the weak direction is unknown or changing within the domain may not be
efficiently handled by either method. For more robustness, we could use point
relaxation and alternate semicoarsening between the x- and y-directions. However,
the increased number of coarse grids that this approach requires is too awkward for
most applications. We could also choose to apply full coarsening and alternating
line relaxation that switches between x- and y-line relaxation. This approach can
also be a bit awkward for some applications, particularly as it extends to three
dimensions. Another choice is to apply both semi-coarsening and line relaxation.

Semicoarsening/line relaxation

Suppose we want to develop one method that can handle either of the following
stencils:

Ah
1 =

1
h2

 −ε

−1 2 + 2ε −1
−ε

 or Ah

2 =
1
h2

 −1

−ε 2 + 2ε −ε
−1

 .

Semi-coarsening in the x-direction could be used to handle Ah
1 and y-line relaxation

to handle Ah
2 . If we do both, the problem may be viewed as a stack of pencils in

the y-direction as shown in Fig. 7.5. Line relaxation in the y-direction is used to
solve the problem associated with each pencil, and coarsening is done simply by
deleting every other pencil. There is no assumption here about the direction of
weak connections; in fact, this approach applies well to the isotropic case. Again,
we lose the O(n) complexity of W-cycles, but V-cycle complexity remains O(n)
(Exercise 13).

Numerical example. Many of the above ideas can be illustrated with a fairly
simple example. Consider equation (7.14),

−uxx − εuyy = f,

with homogeneous Dirichlet boundary conditions. The discretized problem has
the stencil given by (7.15). We apply three different schemes to this problem for

126 Chapter 7

Figure 7.5: It is possible to combine line relaxation and semicoarsening. The origi-
nal grid (left) is viewed as a collection of pencils for line relaxation in the y-direction
(center) and semi-coarsened in the x-direction (right).

selected values of ε, ranging from large values, so that coupling is dominant in the
y-direction, to very small values, so that coupling is dominant in the x-direction.
Our example uses the right-side function

f(x, y) = 2(y − y2) + 2ε(x − x2),

which produces the exact solution

u(x, y) = (x − x2)(y − y2).

The first approach consists of a standard V(2,1)-cycle, based on Gauss–Seidel re-
laxation, full coarsening, full weighting, and linear interpolation. We do not expect
this method to be effective, except when ε ≈ 1. A simple demonstration pinpoints
the difficulty we expect to encounter in this experiment.

Letting ε = 0.001 and using a 16 × 16 grid with n = 16 points, we begin the
iteration with a random initial guess. Figure 7.6 shows a surface plot of the error
after 50 sweeps of Gauss–Seidel. We also show the error along a line of constant
y (middle figure) and a line of constant x (bottom figure). Relaxation apparently
smooths the error nicely in the x-direction, the direction of strong coupling, but
leaves highly oscillatory error in the y-direction. While it is easy to envision ap-
proximating the smooth error curve on a coarser grid, we could not hope to do so
with the oscillatory error. Therefore, we must keep all the points in the y-direction
if we wish to represent the error accurately in that direction.

These observations lead to the second approach, which is semicoarsening. Be-
cause smoothing in the y-direction with point Gauss–Seidel is ineffective when ε
is small, we coarsen only in the x-direction. This means that the coarse and fine
grids have the same number of points in the y-direction. Full weighting and linear
interpolation are used, but in a one-dimensional way that involves neighbors in
the x-direction only. Semicoarsening means that we do not use neighbors in the
y-direction for either restriction or interpolation.

It is important to notice that once the semicoarsening has been performed, the
discrete operator must be altered to fit the new geometry. That is, because the
grid spacing is no longer the same in the two directions, the residual and relaxation

A Multigrid Tutorial 127

0

5

10

15

0

5

10

15
0

0.02

0.04

0.06

0.08

0.1

0� 2� 4� 6� 8� 10� 12� 14� 16
0�

0.05�

0.1�

0.15�

0.2�

0.25�

0� 2� 4� 6� 8� 10� 12� 14� 16
0.1�

0.15�

0.2�

0.25�

Figure 7.6: Top: Error after 50 sweeps of pointwise Gauss–Seidel on the equation
−uxx − εuyy = 0, beginning with a random initial guess. Middle: Error in the
strongly coupled x-direction along a line of constant y. Bottom: Error along a line
of constant x, in the weakly coupled y-direction.

operators must use a stencil like

A =

− ε

h2
y

− 1
h2

x

(
2
h2

x

+
2ε

h2
y

)
− 1

h2
x

− ε

h2
y

,

128 Chapter 7

ε
Scheme 1000 100 10 1 0.1 0.01 0.001 0.0001 0

V(2,1)-cycles 0.95 0.94 0.58 0.13 0.58 0.90 0.95 0.95 0.95
Semi-C 0.99 0.99 0.98 0.93 0.71 0.28 0.07 0.07 0.07

Semi-C/line relax 0.04 0.08 0.08 0.08 0.07 0.07 0.07 0.08 0.08

Table 7.3: Convergence factors for the three different schemes for various values
of ε. The V(2,1) scheme is just standard multigrid, with Gauss–Seidel relaxation,
linear interpolation, and full weighting. The semi-C scheme uses semicoarsening
in the strongly coupled x-direction. The semi-C/line relax scheme combines semi-
coarsening in the x-direction with line relaxation in the y-direction.

where hx and hy are the grid spacings in the x- and y-directions, respectively. Our
earlier discussion suggests that this scheme will work well when the coupling is
dominant in the x-direction (small ε), but that it may work poorly otherwise.

The third approach we consider is appropriate when the size of ε is unknown,
so that the anisotropy could be in either coordinate direction. Here we use semi-
coarsening in the x-direction and line relaxation in the y-direction. Again, we
use full weighting and linear interpolation with neighbors in the x-direction only.
Semicoarsening should take care of strong coupling in the x-direction, while line
relaxation should handle strong coupling in the y-direction.

The asymptotic convergence factors for the three approaches and for various
choices of ε are displayed in Table 7.3. The standard V(2,1)-cycle approach works
well only when ε is very near 1. It converges poorly for values of ε that differ
from 1 by an order of magnitude or more. The semicoarsening approach performs
extremely well when ε is very small, but its convergence deteriorates even when
ε = 0.01 and 0.1. There is a subtle lesson here. Semicoarsening is effective provided
1

h2
x

remains larger than ε
h2

y
as hx is doubled. This means that the coarse grids

see much the same anisotropy as the fine grid. However, if 1
h2

x
and ε

h2
y

become
comparable in size during the x-coarsening process, then convergence rates will
decrease. This effect can be observed in Table 7.3. With n = 16 and ε = 0.1,
coarsening in the x-direction quickly produces coupling in the y-direction. Rather
than continue to semicoarsen in the x-direction, it is best to return to standard
coarsening in this situation.

Finally, the combination of semicoarsening with line relaxation is extremely
robust, giving excellent convergence results regardless of the degree of anisotropy.

��

Variable-Mesh Problems

Nonuniform grids are commonly used in practice to accommodate irregularities in
the problem domain or multiple scales in the emerging solution. To see how multi-
grid might handle such problems, consider the one-dimensional Poisson equation

−u′′(x) = f(x) , 0 < x < 1 , (7.17)
u(0) = u(1) = 0.

A Multigrid Tutorial 129

� � � � � � �

xh
0 xh

1 xh
2 xh

3 xh
4 xh

5 xh
6

x2h
0 x2h

1 x2h
2 x2h

3

Figure 7.7: With a variable mesh, the coarse grid is defined as the even-numbered
grid points of the fine grid.

With n a positive even integer, define a nonuniform grid on [0 , 1] by the points
xh

j , 0 ≤ j ≤ n, and mesh sizes hj+ 1
2
≡ xh

j+1 − xh
j , 0 ≤ j ≤ n − 1. Using second-

order finite differences, we can discretize (7.17) on this grid. The result is (Exercise
14)

−αh
j uh

j−1 +
(
αh

j + βh
j

)
uh

j − βh
j uh

j+1 = fh
j , 1 ≤ j ≤ n − 1 , (7.18)

where the coefficients are given by

αh
j =

2

hj− 1
2

(
hj− 1

2
+ hj+ 1

2

) , βh
j =

2

hj+ 1
2

(
hj− 1

2
+ hj+ 1

2

) , 1 ≤ j ≤ n − 1 .

(7.19)
Note that the operator in (7.18) reduces to the standard stencil 1

h2 (−1 2 − 1)
in the uniform grid case, hi+ 1

2
= h.

We can solve this discrete system by modifying the standard multigrid scheme
to accommodate variable-mesh sizes. The operator Ih

2h is again based on linear
interpolation, but it must now account for the nonuniformity of the grid. Choosing
the coarse grid (Fig. 7.7) to consist of every other fine-grid point, x2h

j ≡ xh
2j , 0 ≤

j ≤ n
2 , the interpolation process, vh = Ih

2hv
2h, is defined by

vh
2j = v2h

j , (7.20)

vh
2j+1 =

h2j+ 3
2
v2h

j + h2j+ 1
2
v2h

j+1

h2j+ 1
2

+ h2j+ 3
2

, 1 ≤ j ≤ n

2
− 1.

This formula comes from constructing a linear function in the interval [x2h
j , x2h

j+1]
that interpolates v2h at the end points (Exercise 15).

Another way to derive (7.20) is to apply operator interpolation. The basic idea
is to assume that relaxation does not significantly change the error, so that the
residual must be almost zero. Using (7.18) at xh

2j+1, we have

−αh
2j+1e

h
2j +

(
αh

2j+1 + βh
2j+1

)
eh
2j+1 − βh

2j+1e
h
2j+2 ≈ 0. (7.21)

Solving for eh
2j+1 yields

eh
2j+1 ≈

αh
2j+1e

h
2j + βh

2j+1e
h
2j+2

αh
2j+1 + βh

2j+1

.

This suggests that we define interpolation by the formula

vh
2j = v2h

j , (7.22)

vh
2j+1 =

αh
2j+1v

2h
j + βh

2j+1v
2h
j+1

αh
2j+1 + βh

2j+1

, 1 ≤ j ≤ n

2
− 1 .

130 Chapter 7

It is important that linear interpolation (7.20) and operator interpolation (7.22)
be identical for our one-dimensional model problem (Exercise 16). Note that both
(7.20) and (7.22) reduce to a simple average for the uniform grid case.

Full weighting can now be defined by the variational property

I2h
h ≡ 1

2
(
Ih
2h

)T

and the coarse-grid operator can be constructed from the Galerkin principle

A2h = I2h
h AhIh

2h .

This definition of A2h yields a stencil that is similar, but not identical, to the stencil
obtained by using (7.18)–(7.19) on the coarse grid. However, the Galerkin principle
does hold if this system is rescaled by (hj− 1

2
+ hj+ 1

2
)/2 (Exercise 17).

Variable-mesh problems in two dimensions can be handled in a similar way, but
the first issue in this case is the discretization itself. Forming an accurate discrete
approximation can be tricky on nonuniform grids in two and higher dimensions.
Moreover, if the grid is logically rectangular (it can be indexed simply by i, j), then
coarsening is generally straightforward; but unstructured grids can make coarsening
seem almost impossible. Instead of treating such cases here, we defer this issue to
our discussion of the algebraic multigrid algorithm (Chapter 8), which was designed
just for this purpose.

Variable-Coefficient Problems

Another common practical problem is the solution of variable coefficient differential
equations. Again we consider a simple case to see how multigrid might handle such
problems. Our model problem is the scalar elliptic equation

−(a(x)u′)′(x) = f(x) , 0 < x < 1 , (7.23)
u(0) = u(1) = 0,

where a(x) is a positive function on the interval (0 , 1). A conservative or self-adjoint
method for discretizing (7.23) is developed as follows.

Letting n be a positive even integer, consider the uniform grid defined by the
points xh

j = j
n , 0 ≤ j ≤ n. As usual, suppose that the vector vh approximates u

at these grid points, but that values of the coefficient a are taken at the cell centers
xh

j+ 1
2

= j+ 1
2

n ; thus, we have ah
j+ 1

2
= a(xh

j+ 1
2
) for 0 ≤ j ≤ n− 1. The discrete system

that results (Exercise 18) is

1
h2

(
−ah

j− 1
2
uh

j−1 + (ah
j− 1

2
+ ah

j+ 1
2
)uh

j − ah
j+ 1

2
uh

j+1

)
= fh

j , 1 ≤ j ≤ n − 1,

uh
0 = uh

n = 0. (7.24)

Note that (7.24) becomes the usual discretization in the case a(x) = 1.
For slowly varying a(x), we can use a standard multigrid scheme much like the

algorithm used for the model problem. One reasonable approach in this case is to
use linear interpolation for Ih

2h, full weighting for I2h
h , and the following stencil for

A2h:

A2h =
1

(2h)2
(
−a2h

j− 1
2

a2h
j− 1

2
+ a2h

j+ 1
2

− a2h
j+ 1

2

)
, 1 ≤ j ≤ n

2
− 1 , (7.25)

A Multigrid Tutorial 131

where the coefficients are determined by the simple averages

a2h
j+ 1

2
=

ah
2j+ 1

2
+ ah

2j+ 3
2

2
, 0 ≤ j ≤ n

2
− 1 . (7.26)

This same stencil can be obtained (Exercise 19) from the Galerkin principle

A2h = I2h
h AhIh

2h.

The performance of such a standard multigrid scheme will degrade as a(x)
begins to vary significantly from cell to cell. One way to understand how this
degradation happens is to compare (7.24), the uniform mesh discretization of the
variable-coefficient problem, to (7.18)–(7.19), the variable-mesh discretization of
the constant coefficient Poisson problem. From the perspective of the fine-grid
point xh

2j+1, the variable coefficient problem can be viewed as a Poisson problem
with variable mesh sizes defined by

h2j+ 1
2

=
γh
2j+1

ah
2j+ 1

2

, h2j+ 3
2

=
γh
2j+1

ah
2j+ 3

2

, (7.27)

where

γh
2j+1 = h

√√√√ 2ah
2j+ 1

2
ah
2j+ 3

2

ah
2j+ 1

2
+ ah

2j+ 3
2

, (7.28)

(Exercise 20). The point that we should get from these rather cumbersome formulas
is that the variable-coefficient problem on a uniform mesh can be viewed locally as a
constant-coefficient equation on a nonuniform mesh. This relationship is important
because it says that standard multigrid for the variable-coefficient problem corre-
sponds to using interpolation based on simple averaging for the nonuniform mesh
problem. If the point xh

2j+1 of the variable mesh is close to xh
2j , but far from xh

2j+2,
then simple averaging cannot accurately represent smooth components (Exercise
21).

A simple remedy is to define interpolation for the variable-coefficient problem
guided by the variable-mesh case. The easiest way is to use operator interpolation,
which gives (Exercise 22)

vh
2j = v2h

j , (7.29)

vh
2j+1 =

ah
2j+ 1

2
v2h

j + ah
2j+ 3

2
v2h

j+1

ah
2j+ 1

2
+ ah

2j+ 3
2

, 1 ≤ j ≤ n

2
− 1.

Restriction and the coarse-grid operator can then be defined by the variational
relations

I2h
h =

1
2

(
Ih
2h

)T
and A2h = I2h

h AhIh
2h .

Variable-coefficient problems can be handled in two dimensions by an analogous,
but more complicated, operator interpolation scheme. The principle difficulty in ex-
tending the one-dimensional approach is that the two-dimensional version of (7.21)

132 Chapter 7

a(x) = 1 + ρ sin(kπx) a(x) = 1 + ρ rand(x)

ρ k = 3 k = 25 k = 50 k = 100 k = 200 k = 400

0 0.085 0.085 0.085 0.085 0.085 0.085 0.085
0.25 .084 .098 .098 .094 .093 .083 0.083
0.50 .093 .185 .194 .196 .195 .187 0.173
0.75 .119 .374 .387 .391 .390 .388 0.394
0.85 .142 .497 .510 .514 .514 .526 0.472
0.95 .191 .681 .690 .694 .699 .745 0.672

Table 7.4: Average convergence factors for 20 V-cycles of the variable-coefficient
method. With a(x) = 1 + ρ sin(kπx), there is strong dependence on ρ, but rela-
tive insensitivity to all but the smallest value of k. With a(x) = 1 + ρ rand(x),
convergence factors depend strongly on the amplitude ρ.

generally cannot be solved for the error corresponding to the fine-grid point in terms
of neighboring coarse-grid points alone. For example, for the nine-point stencil

Ah
i,j =

1
3h2

−1 −1 −1

−1 8 −1
−1 −1 −1

 (7.30)

with a fully coarsened grid (i.e., every other fine-grid line is deleted), the equation at
any fine-grid point involves at least four points that do not correspond to coarse-grid
points. This difficulty can be reduced by considering semicoarsening algorithms,
but the equations at fine-grid points still involve other fine-grid points that do not
belong to the coarse grid. Nevertheless, there are effective ways to deal with this
difficulty that involve collapsing the stencil to eliminate these troublesome fine-grid
couplings, which in turn allow approximate operator interpolation. We leave this
issue to the study of algebraic multigrid in the next chapter.

Numerical example. We illustrate the performance of a basic multigrid method
applied to two variable-coefficient problems. We solve the one-dimensional prob-
lem (7.23) using the discretization in (7.24) and coarse-grid operator (7.25). The
variable coefficient is

a(x) = 1 + ρ sin(kπx), (7.31)

for various choices of ρ > 0 and positive integers k, and

a(x) = 1 + ρ rand(x), (7.32)

where rand(x) returns a random number between –1 and 1. Noting that a(x) = 1
corresponds to the Poisson equation, these functions correspond to perturbations
of the model problem. By increasing the size of the perturbation and the amount of
local change in the perturbation, we are able to explore the behavior of the method
for a wide variety of situations.

The grid size in all tests is n = 1024, which we found to be representative of
the tests done over a wide range of n . We use V(2,1)-cycles based on Gauss–Seidel
relaxation, full weighting, and linear interpolation. The results are displayed in
Table 7.4.

For coefficients (7.31), the method depends strongly on the value of ρ, but very
little on the value of the wavenumber k. For ρ = 0.25, the method works very well,

A Multigrid Tutorial 133

with results akin to the model Poisson problem. However, with increasing ρ, per-
formance degrades rapidly until convergence becomes quite poor. This dependence
on ρ is to be expected: for ρ near 1, a(x) has significant variation, from values near
0 to values near 1. One might expect that performance would also depend strongly
on the wavenumber k. However, apart from the noticeable jump in convergence
factors between k = 3 and k = 25, this does not appear to be the case, suggesting
that standard multigrid methods are more sensitive to the amplitude of coefficient
variations than to their frequency.

For coefficient (7.32), we drop the regular oscillatory variation in a(x) in favor
of random jumps. The various amplitudes, ρ, of the coefficient match those in
the first case. Here, we again see a strong correlation between the amplitude and
the convergence factor. For small amplitudes, the method performs well, but the
performance degrades as ρ nears 1. It is interesting that the method seems relatively
unaffected by the random variations in the coefficient. It performs at least as well
with the random coefficients as it does with all but the lowest wavenumber case
(k = 3) of the smoothly varying coefficients. ��

These examples serve to highlight the point that a basic multigrid scheme may
be used quite effectively for the variable-coefficient problem, provided the variation
in the coefficient function is not too drastic. On the other hand, widely varying
coefficients require more sophisticated multigrid methods. One approach to such
problems is to use an algebraic multigrid method, which is the subject of the next
chapter.

Exercises

Neumann Boundary Conditions

1. Differential nonuniqueness. Show that Neumann problem (7.1) does not
have a unique solution by showing that if u solves (7.1), then u + c is also a
solution for any constant c. This means that if any particular solution exists,
then another can be constructed simply by adding a constant. Now show that
adding a general constant produces all solutions of (7.1). Hint: If u and v
solve (7.1), then (u − v)′′ = 0, so u − v = ax + c for some constants a and c;
now apply the boundary conditions.

2. Differential solvability. Show that Neumann problem (7.1) is solvable only
for the special source terms f that satisfy integral compatibility condition
(7.4). Hint: Assume u solves (7.1), then integrate both sides of the equation
and apply the boundary conditions.

3. Discrete null space. Show by inspecting (7.3) that the null space of Ah is
the set {c1h}.

4. Discrete nonuniqueness. Show that discrete system (7.2)–(7.3) does not
have a unique solution by proving that if uh is a particular solution, then
the general solution is uh + c1h. Hint: First use Exercise 3 to confirm that
uh + c1h is indeed a solution; then prove that any two solutions must differ
by a vector in the null space of Ah.

134 Chapter 7

5. Discrete solvability. Show that discrete system (7.9)–(7.10) is solvable only
for the special source terms f̂h that satisfy discrete compatibility condition
(7.7). Hint: Use Exercise 3, the fact that the range of a matrix is the or-
thogonal complement of the null space of its transpose, and the symmetry of
Âh.

6. Restriction at the boundary points. Using the interpolation operator at
the left boundary given in (7.12) and the variational condition I2h

h = 1
2

(
Ih
2h

)T ,
derive the restriction formula at the left boundary point, f2h

0 ← 1
2fh

0 + 1
4fh

1 .

7. Coarse-grid solvability. Consider the coarse-grid equation

A2hu2h = I2h
h

(
fh − Ahuh

)
.

(a) Show that interpolation preserves constants; that is, 1h = Ih
2h1

2h.

(b) Show that the variational property, Ih
2h = c(I2h

h)T , guarantees that the
discrete compatibility condition (7.7) is satisfied (that is, the coarse-grid
problem is solvable).

(c) The variational property is actually not necessary for the discrete com-
patibility condition to hold. Show that it is enough for restriction to
satisfy the property that its column sums equal a given constant γ (this
means that a fine-grid residual is distributed to coarse-grid points with
weights that sum to γ).

8. Inhomogeneous Neumann conditions. Consider the two-point boundary
value problem

−u′′(x) = f(x), 0 < x < 1 ,

u′(0) = g0 ,

u′(1) = g1 ,

where g0 and g1 are given constants. Modify the essential concepts developed
for (7.1) to accommodate this inhomogeneous case. In particular, show that

(a) compatibility condition (7.4) now involves a nonzero right side;

(b) the right side fh of (7.2) and f̂h of (7.9) change accordingly to incorpo-
rate g0 and g1;

(c) the rest of the development (the uniqueness condition of (7.5) and (7.10),
the discrete compatibility condition in (7.7), and the coarse-grid correc-
tion process) is essentially unchanged.

Anisotropic Problems

9. Two sources of anisotropy. Show that, after discretization of the two-
dimensional Poisson equation (7.14), the small parameter ε > 0 in front of
the uyy term is equivalent to using a mesh spacing of hx = h in the x-direction
and mesh spacing hy = h√

ε
in the y-direction.

A Multigrid Tutorial 135

10. Eigenvalues for point Jacobi method. Suppose the weighted point Ja-
cobi method is applied to the system of equations corresponding to (7.15).
Recall that Ah can be expressed as D −L−U , where D represents the diag-
onal elements of Ah and U and L represent the respective upper and lower
triangular parts of Ah. Then the weighted Jacobi iteration matrix is given by
PJ = I − ωD−1Ah.

(a) Write out a typical equation of the eigenvalue system PJv = λv.

(b) Assume an n × n grid and an eigenvector solution of the form

vij = sin
(

ikπ

n

)
sin

(
j�π

n

)
, 1 ≤ k, � ≤ n − 1.

Using sine addition rules, simplify this eigenvalue equation, cancel com-
mon terms, and show that the eigenvalues are given by

λk� = 1 − 2ω

1 + ε

(
sin2

(
kπ

2n

)
+ ε sin2

(
�π

2n

))
, 1 ≤ k, � ≤ n.

11. Eigenvalues for block Jacobi method. Consider Ah given in (7.16) and
write it in the form Ah = D − U − L, where D is the block diagonal matrix
consisting of the blocks D on the diagonal and U and L are the respective
lower and upper triangular parts of Ah.

(a) Show that the weighted block Jacobi iteration matrix can be written in
the form

PJ = D−1(U + L) = I − ωD−1Ah.

(b) Write out a typical equation of the eigenvalue system PJv = λv.

(c) Assume an n × n grid and an eigenvector solution of the form

vij = sin
(

ikπ

n

)
sin

(
j�π

n

)
, 1 ≤ k, � ≤ n − 1.

Using sine addition rules, simplify this eigenvalue equation, cancel com-
mon terms, and show that the eigenvalues are given by

λk,� = 1 − 2ω

2 sin2
(

kπ
2n

)
+ ε

(
sin2

(
kπ

2n

)
+ ε sin2

(
�π

2n

))
, 1 ≤ k, � ≤ n.

(d) Compare the magnitudes of the eigenvalues of the block Jacobi method
to those of the point Jacobi method (previous problem).

12. Semicoarsening/point relaxation complexity. Using the techniques of
Chapter 4, for an n× n grid, show that with semicoarsening and point relax-
ation, the computational cost of a W-cycle is larger than O(n2), but that a
V-cycle retains O(n2) complexity.

stevem
Pencil

stevem
Text Box
(1 - ω) I + ω

136 Chapter 7

13. Semicoarsening/line relaxation complexity. Modifying the argument of
the previous problem, show that with semicoarsening and line relaxation, the
computational cost of a V-cycle is O(n2).

Variable-Mesh and Variable-Coefficient Problems

14. Variable-mesh discretization. Show that when model problem (7.17)
is discretized using second-order finite difference approximations, difference
equations (7.18) and (7.19) result.

15. Linear interpolation for variable meshes. Show that linear interpolation
on a nonuniform grid leads to the formula expressed in (7.20). Hint: Construct
a linear function in the interval [x2h

j , x2h
j+1] that equals v2h at the end points,

then evaluate it at xh
2j+1 = x2h

j + h2j+ 1
2
.

16. Operator interpolation for variable meshes. Show that interpolation
formulas (7.20) and (7.22) are algebraically equivalent.

17. Galerkin operator for variable meshes. Show that the Galerkin principle
applied to problem (7.18)–(7.19) leads to a similar, but generally different
stencil. Show that the Galerkin principle does hold if (7.18) is multiplied on
both sides by (hj− 1

2
+ hj+ 1

2
)/2.

18. Variable-coefficient discretization. Verify that the discretization of the
variable-coefficient problem (7.23) results in the difference equation (7.24).

19. Galerkin operator for variable coefficients. Show that the Galerkin
coarse-grid operator for (7.24), using linear interpolation and full weighting,
is the same as operator (7.25)–(7.26) obtained by simple averages of the fine-
grid coefficients.

20. Variable-coefficient versus variable-mesh. Verify formula (7.27)–(7.28)
that relates the variable-coefficient problem on a uniform mesh to Poisson’s
equation on a nonuniform mesh.

21. Simple averaging for variable meshes. To see that interpolation defined
by simple averages can be ineffective for grids with widely varying mesh sizes,
consider the three grid points xh

0 = x2h
0 = 0, xh

1 = εh, and xh
2 = x2h

1 =
2h, where h and ε are small positive parameters. Note that the smooth
linear function u(x) = x

2h is 0 at xh
0 and 1 at xh

2 . Show that it cannot be
approximated well at xh

1 by the average of these end point values. Obtain an
expression for the error at xh

1 in terms of h and ε and discuss the behavior as
ε → 0.

22. Interpolation for variable-coefficient problems. Use the operator inter-
polation approach (assume the error satisfies the residual equation) to derive
interpolation formulas (7.29).

Chapter 8

Algebraic Multigrid (AMG)

A natural question arises: Can we apply multigrid techniques when there is no
grid? Suppose we have relationships among the unknowns that are similar to those
in the model problem, but the physical locations of the unknowns are themselves
unknown (or immaterial). Can we hope to apply the tools we have developed? A
related question is: Can we apply multigrid in the case where grid locations are
known but may be highly unstructured or irregular, making the selection of a coarse
grid problematic? These are the problems that are addressed by a technique known
as algebraic multigrid, or AMG [6]. We describe AMG using many of the concepts
and principles developed in [18]. For a theoretical foundation of general algebraic
methods, of which AMG is a part, see [5].

For any multigrid algorithm, the same fundamental components are required.
There must be a sequence of grids, intergrid transfer operators, a relaxation (smooth-
ing) operator, coarse-grid versions of the fine-grid operator, and a solver for the
coarsest grid.

Let us begin by deciding what we mean by a grid. Throughout this chapter,
we look to standard multigrid (which we refer to as the geometric case) to guide
us in defining AMG components. In the geometric case, the unknown variables
ui are defined at known spatial locations (grid points) on a fine grid. We then
select a subset of these locations as a coarse grid. As a consequence, a subset of
the variables ui is used to represent the solution on the coarse grid. For AMG, by
analogy, we seek a subset of the variables ui to serve as the coarse-grid unknowns.
A useful point of view, then, is to identify the grid points with the indices of the
unknown quantities. Hence, if the problem to be solved is Au = f and

u =

u1

u2

...
un

 ,

then the fine-grid points are just the indices {1, 2, . . . , n}.
Having defined the grid points, the connections within the grid are determined

by the undirected adjacency graph of the matrix A. Letting the entries of A be
aij , we associate the vertices of the graph with the grid points and draw an edge
between the ith and jth vertices if either aij �= 0 or aji �= 0. The connections in

137

138 Chapter 8

4�

1�

2�3�

5�
6�

X�X�X�
X�X�X�X�

X�X�X�X�

X�X�X�X�X�
X�X�X�X�

X�X�X�X�

A� =�

Figure 8.1: The nonzero structure of A, where X indicates a nonzero entry, is
shown on the left. The resulting undirected adjacency graph appears on the right.

the grid are the edges in the graph; hence, the grid is entirely defined by the matrix
A. A simple example of this relationship is given in Fig. 8.1.

Now that we can represent the fine grid, how do we select a coarse grid?
With standard multigrid methods, smooth functions are geometrically or physi-
cally smooth; they have a low spatial frequency. In these cases, we assume that
relaxation smooths the error and we select a coarse grid that represents smooth
functions accurately. We then choose intergrid operators that accurately transfer
smooth functions between grids.

With AMG, the approach is different. We first select a relaxation scheme that
allows us to determine the nature of the smooth error. Because we do not have
access to a physical grid, the sense of smoothness must be defined algebraically.
The next step is to use this sense of smoothness to select coarse grids, which will
be subsets of the unknowns. A related issue is the choice of intergrid transfer
operators that allow for effective coarsening. Finally, we select the coarse-grid
versions of the operator A, so that coarse-grid correction has the same effect that
it has in geometric multigrid: it must eliminate the error components in the range
of the interpolation operator.

Algebraic Smoothness

Having chosen a relaxation scheme, the crux of the problem is to determine what
is meant by smooth error. If the problem provides no geometric information (for
example, true grid point locations are unknown), then we cannot simply examine
the Fourier modes of the error. Instead, we must proceed by analogy. In the geo-
metric case, the most important property of smooth error is that it is not effectively
reduced by relaxation. Thus, we now define smooth error loosely to be any error
that is not reduced effectively by relaxation.

That was simple. Of course, we still need to figure out exactly what this def-
inition means. To do this in the simplest case, we focus on weighted point Jacobi
relaxation. We also assume that A is a symmetric M-matrix: it is symmetric
(AT = A) and positive-definite (uT Au > 0 for all u �= 0) and has positive diag-
onal entries and nonpositive off-diagonal entries. These properties are shared by
matrices arising from the discretization of many (not all) scalar elliptic differential
equations. These assumptions are not necessary for AMG to work. However, the

A Multigrid Tutorial 139

original theory of AMG was developed for symmetric M-matrices, and if A is far
from being an M-matrix, it is less likely that standard AMG will be effective in
solving the problem.

Recall from Chapter 2 that the weighted point Jacobi method can be expressed
as

v ← v + ωD−1(f − Av),

where D is the diagonal of A. As in previous chapters, v is a computed approx-
imation to the exact solution u. Remember that the error propagation for this
iteration can be written as

e ←
(
I − ωD−1A

)
e. (8.1)

Weighted Jacobi relaxation, as we know, has the property that after making
great progress toward convergence, it stalls, and little improvement is made with
successive iterations. At this point, we define the error to be algebraically smooth.
It is useful to examine the implications of algebraic smoothness. Because all of
AMG is based on this concept, the effort is worthwhile.

By our definition, algebraic smoothness means that the size of ei+1 is not sig-
nificantly less than that of ei. We need to be more specific about the concept of
size. A natural choice is to measure the error in the A-norm, which is induced by
the A-inner product. As defined in Chapter 5, we have

‖e‖A = (Ae, e)1/2.

Using this norm and (8.1), we see that an algebraically smooth error is characterized
by

‖
(
I − ωD−1A

)
e‖A ≈ ‖e‖A.

When we assume that ω = α‖D−1/2AD−1/2‖−1 for some fixed α ∈ (0, 2) and that
‖D−1/2AD−1/2‖ is O(1) (for the model problem, it is bounded by 2), it can be
shown (Exercise 1) that

(D−1Ae, Ae) � (e, Ae).

Writing this expression in components yields

n∑
i=1

r2
i

aii
�

n∑
i=1

riei.

This implies that, at least on average, algebraically smooth error e satisfies

|ri| � aii|ei|.

We write this condition loosely as

Ae ≈ 0 (8.2)

and read it as meaning that smooth error has relatively small residuals. We will
appeal to this condition in the development of the AMG algorithm. While our
analysis here is for weighted Jacobi, Gauss–Seidel relaxation is more commonly used
for AMG. A similar, though slightly more complicated analysis can be performed
for Gauss–Seidel relaxation and also leads to condition (8.2) (Exercise 11).

140 Chapter 8

One immediate implication of (8.2) is that ri ≈ 0, so

aiiei ≈ −
∑
j �=i

aijej ; (8.3)

that is, if e is a smooth error, then ei can be approximated well by a weighted
average of its neighbors. This fact gives us an important foothold in determining
an interpolation operator.

A short digression here should serve to clarify the difference between algebraic
and geometric smoothness. We consider a simple example due to Stüben in his
introduction to AMG [22]. Suppose the problem

−auxx − cuyy + buxy = f(x, y), (8.4)

with homogeneous Dirichlet boundary conditions, is discretized on the unit square
using a uniform grid and the finite-difference stencils

Dh
xx =

1
h2

(
1 −2 1

)
, Dh

yy =
1
h2

 1

−2
1

 ,

Dh
xy =

1
2h2

 −1 1

1 −2 1
1 −1

 . (8.5)

Also suppose that the coefficients a, b, and c are locally constant, but have different
values in different quadrants of the domain. Specifically, let the coefficients be
defined in the square domain as shown below:

a = 1
c = 1000

b = 0

a = 1
c = 1
b = 2

a = 1
c = 1
b = 0

a = 1000
c = 1
b = 0

Note that this discretization does not produce an M-matrix.
Using a zero right side and a random initial guess, the norm of the error es-

sentially stops changing after eight sweeps of Gauss–Seidel. By our definition, this
error is algebraically smooth. However, it does not appear to be smooth in the
geometric sense (Fig. 8.2). In fact, in three of the four quadrants it is geometrically
quite oscillatory! But because the iteration has stalled, this is precisely the error
AMG must account for in coarse-grid correction. We return to this example later.

Influence and Dependence

Most of AMG rests on two fundamental concepts. We have just discussed the first
concept, namely, smooth error. The second important concept is that of strong
dependence or strong influence. Because of the dominance of the diagonal entry (A
is an M-matrix), we associate the ith equation with the ith unknown; the job of
the ith equation is to determine the value of ui. Of course, it usually takes all of

A Multigrid Tutorial 141

Figure 8.2: Error that is algebraically smooth, but not geometrically smooth for
(8.4).

the equations to determine any given variable precisely. Nevertheless, our first task
is to determine which other variables are most important in the ith equation; that
is, which uj are most important in the ith equation in determining ui?

One answer to this question lies in the following observation: if the coefficient,
aij , which multiplies uj in the ith equation, is large relative to the other coefficients
in the ith equation, then a small change in the value of uj has more effect on the
value of ui than a small change in other variables in the ith equation. Intuitively, it
seems logical that a variable whose value is instrumental in determining the value
for ui would be a good value to use in the interpolation of ui. Hence, such a variable
(point) should be a candidate for a coarse-grid point. This observation suggests the
following definition.

Definition 1. Given a threshold value 0 < θ ≤ 1, the variable (point)
ui strongly depends on the variable (point) uj if

−aij ≥ θ max
k �=i

{−aik} . (8.6)

This says that grid point i strongly depends on grid point j if the coefficient aij is
comparable in magnitude to the largest off-diagonal coefficient in the ith equation.
We can state this definition from another perspective.

Definition 2. If the variable ui strongly depends on the variable uj ,
then the variable uj strongly influences the variable ui.

With the twin concepts of smooth error and strong influence/dependence in
hand, we can return to the task of defining the multigrid components for AMG.
As with any multigrid algorithm, we begin by defining a two-grid algorithm, then
proceed to multigrid by recursion. Having defined the relaxation scheme, we have
several tasks before us:

142 Chapter 8

• select a coarse grid so that the smooth components can be represented accu-
rately;

• define an interpolation operator so that the smooth components can be accu-
rately transferred from the coarse grid to the fine grid; and

• define a restriction operator and a coarse-grid version of A using the varia-
tional properties.

Defining the Interpolation Operator

Assume for the moment that we have already designated the coarse-grid points.
This means that we have a partitioning of the indices {1, 2, . . . , n} = C ∪F , where
the variables (points) corresponding to i ∈ C are the coarse-grid variables. These
coarse-grid variables are also fine-grid variables; the indices i ∈ F represent those
variables that are only fine-grid variables. Next, suppose that ei, i ∈ C, is a set of
values on the coarse grid representing a smooth error that must be interpolated
to the fine grid, C ∪ F . What do we know about ei that allows us to build an
interpolation operator that is accurate? With geometric multigrid, we use linear
interpolation between the coarse grid points. With an unstructured, or perhaps
nonexistent, grid, the answer is not so obvious.

If a C-point j strongly influences an F -point i, then the value ej contributes
heavily to the value of ei in the ith (fine-grid) equation. It seems reasonable that
the value ej in the coarse-grid equation could therefore be used in an interpolation
formula to approximate the fine-grid value ei. This idea can be strengthened by
noting that the following bound must hold for smooth error on average, that is, for
most i (Exercise 2):

∑
j �=i

(|aij |
aii

) (
ei − ej

ei

)2

� 1, 1 ≤ i ≤ n. (8.7)

The left side of the inequality is a sum of products of nonnegative terms. These
products must be very small, which means that one or both of the factors in each
product must be small. But if ei strongly depends on ej , we know that −aij could
be comparable to aii. Therefore, for these strongly influencing ej ’s, it must be true
that ei − ej is small; that is, ej ≈ ei. We describe this by saying that smooth error
varies slowly in the direction of strong connection. Thus, we have a justification
for the idea that the fine-grid quantity ui can be interpolated from the coarse-grid
quantity uj if i strongly depends on j.

For each fine-grid point i, we define Ni, the neighborhood of i, to be the set of all
points j �= i such that aij �= 0. These points can be divided into three categories:

• the neighboring coarse-grid points that strongly influence i; this is the coarse
interpolatory set for i, denoted by Ci;

• the neighboring fine-grid points that strongly influence i, denoted by Ds
i ; and

• the points that do not strongly influence i, denoted by Dw
i ; this set may con-

tain both coarse- and fine-grid points; it is called the set of weakly connected
neighbors.

A Multigrid Tutorial 143

The goal is to define the interpolation operator Ih
2h (although physical grids

may not be present, we continue to denote fine-grid quantities by h and coarse-grid
quantities by 2h). We require that the ith component of Ih

2he be given by

(
Ih
2he

)
i
=

ei if i ∈ C,∑
j∈Ci

ωijej if i ∈ F, (8.8)

where the interpolation weights, ωij , must now be determined.
Recall that the main characteristic of smooth error is that the residual is small:

r ≈ 0. We can write the ith component of this condition as

aiiei ≈ −
∑
j∈Ni

aijej .

Splitting the sum into its component sums over the coarse interpolatory set, Ci,
the fine-grid points with strong influence, Ds

i , and the weakly connected neighbors,
Dw

i , we have
aiiei ≈ −

∑
j∈Ci

aijej −
∑

j∈Ds
i

aijej −
∑

j∈Dw
i

aijej . (8.9)

To determine the ωij , we need to replace the ej in the second and third sums on
the right side of (8.9) with approximations in terms of ei or ej , where j ∈ Ci.

Consider the third sum over points that are weakly connected to point i. We
distribute these terms to the diagonal coefficient; that is, we simply replace ej in
the rightmost sum by ei, giving

aii +
∑

j∈Dw
i

aij

 ei ≈ −

∑
j∈Ci

aijej −
∑

j∈Ds
i

aijej . (8.10)

We can justify this distribution in the following way. Suppose we have underesti-
mated the dependence, so that ei does depend strongly on the value of the points
in Dw

i . Then the fact that smooth error varies slowly in the direction of strong
dependence means that ei ≈ ej and the distribution to the diagonal makes sense.
Alternatively, suppose the value of ei does not depend strongly on the points in
Dw

i . Then the corresponding value if aij will be small and any error committed in
making this assignment will be relatively insignificant.

Treating the second sum over Ds
i is a bit more complicated because we must

be more careful with these strong connections. We might simply distribute these
terms to the diagonal, and, indeed, this would work nicely for many problems.
However, experience has shown that it is better to distribute the terms in Ds

i to
Ci. Essentially, we want to approximate the ej ’s in this sum with weighted sums of
the ek for k ∈ Ci. That is, we want to replace each ej , where j is a fine-grid point
that strongly influences i, with a linear combination of values of ek from the coarse
interpolatory set of the point i. We do this, for each fixed j ∈ Ds

i , by making the
approximation

ej ≈

∑
k∈Ci

ajkek∑
k∈Ci

ajk

. (8.11)

144 Chapter 8

i-n+1�

i+n+1i+n-1�

i-n�i-n-�1�

i+n�

i+1�i-1�

i�

Figure 8.3: Strong and weak influences on the point i. Coarse-grid points are
shown as open circles. C-points with a strong influence on i are indicated with
solid lines, F -points that strongly influence i with dashed lines, and F -points that
weakly influence i with dotted lines.

The numerator is appropriate because the ej are strongly influenced by the ek in
proportion to the matrix entries ajk. The denominator is chosen to ensure that
the approximation interpolates constants exactly. Notice that this approximation
requires that if i and j are any two strongly connected fine-grid points, then they
must have at least one point common to their coarse interpolatory sets Ci and Cj .

If we now substitute (8.11) into (8.10) and engage in a spate of algebra (Exercise
3), we find that the interpolation weights are given by

ωij = −

aij +
∑

m∈Ds
i

 aimamj∑

k∈Ci

amk

aii +
∑

n∈Dw
i

ain

. (8.12)

The calculation of the interpolation weights can be illustrated with a simple
example. Consider the operator A, defined on a uniform n × n grid, by the stencil

 − 1
2 −2 − 1

2
−1 29

4 −1
− 1

8 −2 − 1
8

 .

Assume that the partition of the grid into the C- and F -points corresponds to red-
black coarsening. For a typical interior fine-grid point i, the four points directly
north, south, east, and west are the coarse interpolatory set Ci. Using θ = 0.2 as
the dependence threshold, the strong and weak influences on i are shown in Fig.
8.3.

The points northwest and northeast of i form the set Ds
i (fine-grid points with

strong influence), while the points to the southeast and southwest form the set Dw
i

A Multigrid Tutorial 145

(points with weak influence). For this example, (8.9) becomes

29
4

ei = 2ei+n + 2ei−n + ei−1 + ei+1︸ ︷︷ ︸
Ci

+
1
2
ui+n−1 +

1
2
ei+n+1︸ ︷︷ ︸

Ds
i

+
1
8
ei−n−1 +

1
8
ei−n+1︸ ︷︷ ︸

Dw
i

.

Substituting ei for the Dw
i points, ei−n+1 and ei−n−1, in the rightmost sum yields(

29
4

− 1
8
− 1

8

)
ei = 2ei+n + 2ei−n + ei−1 + ei+1︸ ︷︷ ︸

Ci points

+
1
2
ui+n−1 +

1
2
ei+n+1︸ ︷︷ ︸

Ds
i

. (8.13)

Point i depends strongly on i + n − 1, which is itself strongly dependent on points
i − 1 and i + n in Ci. Similarly, i depends strongly on i + n + 1, which in turn
depends strongly on i + 1 and i + n from the coarse interpolatory set Ci. Using
(8.11), we obtain the approximations

ei+n−1 ≈ −2ei−1 − ei+n

−(2 + 1)
, ei+n+1 ≈ −2ei+1 − ei+n

−(2 + 1)
,

which we can substitute into the sum over the strong F -points in (8.13). After all
the algebra is done, (8.13) reduces to the interpolation formula

ei =
7
21

ei+n +
6
21

ei−n +
4
21

ei+1 +
4
21

ei−1.

It is worth noting that, as in many good interpolation formulas, the coefficients
are nonnegative and sum to one. A worthwhile exercise is to show that under
appropriate conditions, this must be the case (Exercise 4).

Selecting the Coarse Grid

The preceding discussion of the interpolation operator assumed that we had already
designated points of the coarse grid. We must now turn our attention to this critical
task. We use the twin concepts of strong influence/dependence and smooth error,
just as we did in defining interpolation. As in the geometric problem, we rely on
the fundamental premise that the coarse grid must be one

• on which smooth error can be approximated accurately,

• from which smooth functions can be interpolated accurately, and

• that has substantially fewer points than the fine grid, so that the residual
problem may be solved with relatively little expense.

stevem
Pencil

stevem
Pencil

stevem
Pencil

stevem
Pencil

146 Chapter 8

The basic idea is straightforward. By examining the suitability of each grid
point to be a point of one of the Ci sets, we make an initial partitioning of the grid
points into C- and F -points. Then, as the interpolation operator is constructed, we
make adjustments to this partitioning, changing points initially chosen as F -points
to be C-points in order to ensure that the partitioning conforms to certain heuristic
rules.

Before we can describe the coarsening process in detail, we need to make two
more definitions and to introduce these heuristics. Denote by Si the set of points
that strongly influence i; that is, the points on which the point i strongly depends.
Also denote by ST

i the set of points that strongly depend on the point i. Armed with
these definitions, we describe two heuristic criteria that guide the initial selection
of the C-points:

H-1: For each F -point i, every point j ∈ Si that strongly influences i either should
be in the coarse interpolatory set Ci or should strongly depend on at least
one point in Ci.

H-2: The set of coarse points C should be a maximal subset of all points with the
property that no C-point strongly depends on another C-point.

To motivate heuristic H-1, we examine the approximation (8.11) that was made
in developing the interpolation formula. Recall that this approximation applies to
points j ∈ Ds

i that consist of F -points strongly influencing the F -point i. Because
ei depends on these points, their values must be represented in the interpolation
formula in order to achieve accurate interpolation. But because they have not
been chosen as C-points, they are represented in the interpolation formula only by
distributing their values to points in Ci using (8.11). It seems evident that (8.11)
will be more accurate if j is strongly dependent on several points in Ci. However,
for the approximation to be made at all, j must be strongly dependent on at least
one point in Ci. Heuristic H-1 simply ensures that this occurs.

Heuristic H-2 is designed to strike a balance on the size of the coarse grid.
Multigrid efficiency is generally controlled by two properties: convergence factor
and number of WUs per cycle. If the coarse grid is a large fraction of the total
points, then the interpolation of smooth errors is likely to be very accurate, which,
in turn, generally produces better convergence factors. However, relatively large
coarse grids generally mean a prohibitively large amount of work in doing V-cycles.
By requiring that no C-point strongly depends on another, H-2 controls the size
of the coarse grid because C-points tend to be farther apart. By requiring C to be
a maximal subset (that is, no other point can be added to C without violating the
ban on mutual strong dependence), H-2 ensures that C is big enough to produce
good convergence factors.

It is not always possible to enforce both H-1 and H-2 (see Exercise 5). Because
the interpolation formula depends on H-1 being satisfied, we choose to enforce H-1
rigorously, while using H-2 as a guide. While this choice may lead to larger coarse
grids than necessary, experience shows that this trade-off between accuracy and
expense is generally worthwhile.

The basic coarse-point selection algorithm proceeds in two passes. We first
make an initial coloring of the grid points by choosing a preliminary partition into
C- and F -points. The goal in the first pass is to create a set of C-points that
have good approximation properties and also tend to satisfy H-2. Once the initial

A Multigrid Tutorial 147

assignments have been made, we make a second pass, changing initial F -points to
C-points as necessary to enforce H-1.

The Coloring Scheme

The first pass begins by assigning to each point i a measure of its potential quality
as a C-point. There are several ways we can make this assessment, but the simplest
is to count the number of other points strongly influenced by i. Because those points
are the members of ST

i , this count, λi, is the cardinality of ST
i . Once the measures

λi have been determined, we select a point with maximum λi value as the first
point in C.

The point we just selected strongly influences several of the other points and
should appear in the interpolation formula for each of them. This implies that the
points that depend strongly on i should become F -points. We therefore assign all
points in ST

i to F , which is permissible because we already have a C-point, i, that
strongly influences them. It is logical to look at other points that strongly influence
these new F -points as potential C-points, because their values could be useful for
accurate interpolations. Therefore, for each new F -point j in ST

i , we increment the
measure, λk, of each unassigned point k that strongly influences j; this would be
each unassigned member of k ∈ Sj .

The process is then repeated. A new unassigned point i is found with maximum
λi and it is assigned to C. The unassigned points j ∈ ST

i are then assigned to F
and the measures of the unassigned points in Sj are incremented by 1. This process
continues until all points have been assigned to C or F .

It is useful to observe that the coarsening determined by this method depends
on several factors. Among the most influential is the order in which the grid points
are scanned when seeking the next point with maximal λ. Because many, if not
most, of the grid points will have the maximal value at the start, any of them
could be selected as the first coarse point. Once the first point is selected, the rest
proceeds as outlined. Again, any time there is more than one point having the
maximal value, there are many possible coarsenings. The heuristics ensure that
whatever specific coarse grid is obtained, it will have the desired properties: it
provides a good representation of smooth error components, while keeping the size
of the coarse grid reasonably small.

This coloring algorithm is best illustrated by an example. The upper left draw-
ing in Fig. 8.4 shows the graph of the matrix for a nine-point stencil representing
the Laplacian operator on a uniform grid. The operator stencil is

1
h2

 −1 −1 −1

−1 8 −1
−1 −1 −1

 . (8.14)

For this example, the dependence threshold is immaterial; for any θ, every con-
nection is one of strong dependence. Hence, each point strongly influences, and
depends strongly upon, each of its neighbors. Initially, all interior points have a
measure of λ = 8, all points along the side of the grid have a measure of λ = 5,
and the four corner points of the grid have a measure of λ = 3. We also assume
the points are stored in lexicographic order.

148 Chapter 8

Figure 8.4: Sequence of coloring steps for the nine-point Laplacian on a uniform
grid. The upper left diagram is the original grid, the lower right the final coloring.

The remaining drawings in Fig. 8.4 show the coloring of the grid as it evolves.
At each step, newly designated C-points are shown in black; newly designated F -
points are shown in white with a heavy border; and “undecided” neighbors of the
new F -points whose λ values are updated are shaded in gray. Edges of the graph
are removed as the algorithm accounts for the dependencies of the new C- and
F -points. The lower right drawing of the figure displays the completed coloring.

A Multigrid Tutorial 149

It is useful to observe that for this example, coarse-grid selection is complete
after this pass. A careful examination of the lower right drawing in the figure
reveals that, because of the high connectivity of the graph, both H-1 and H-2 are
satisfied by the C/F coloring produced. In addition, the coarse grid produced is
exactly the standard full coarsening that one would use for a geometric multigrid
method for this problem.

It is also instructive to examine the application of this coarsening to the five-
point Laplacian stencil on a uniform grid. Once again, the first pass of the process
not only produces a coloring satisfying both heuristics, but one that is very common
in geometric solutions to the problem as well (Exercise 6).

It is not difficult to concoct an example that does not work so well. One example
is illustrated in Fig. 8.5. Again, the nine-point Laplacian stencil (8.14) is used on an
n×n uniform grid, but now we add the periodic boundary conditions ui,j = ui±n,j±n

with n = 7. Note that the initial measure is λ = 8 for all grid points. The thin lines
indicate the extent of the grid with the first periodic replication shown outside the
lines. At each step, newly designated C-points are shown in black; newly designated
F -points are shown in white with a heavy border; and “undecided” neighbors of
the new F -points whose λ values are updated are shaded in gray. Edges of the
graph are removed as the algorithm accounts for the dependencies of the new C-
and F -points. The final first-pass coloring (lower right of figure) violates H-1, with
a large number of F -F dependencies between points not sharing a C-point.

This is an example of a problem for which it is impossible to satisfy both H-1
and H-2. Because the coloring algorithm satisfies H-2 and we have determined that
we must satisfy H-1, a second pass for the coarsening algorithm must be done. In
this pass, we examine each of the F -points in turn and determine if there are F -F
dependencies with points not depending strongly on a common C-point. If this is
the case, then one of the two F -points is tentatively changed into a C-point, and
the examination moves on to the next F -point. When further F -F dependencies
are encountered, we first attempt to satisfy H-1 using points on the list of tentative
points. The idea is to satisfy H-1 by converting a minimal number of F -points into
C-points.

Figure 8.6 displays the coarsening produced for the periodic nine-point Lapla-
cian after the second pass of the coloring algorithm. The extra C-points are shaded
black with a rim of dark gray. It can be seen that while the coloring now satisfies
H-1, it no longer satisfies H-2. The coarse grid has a few more points, but the
interpolation formula can be built for each F -point. The details of the second-pass
algorithm are left as an exercise (Exercise 7).

Two examples highlight some important features of the coarsening algorithm.
First, consider the problem

−uxx − uyy = f(x, y), (8.15)

with homogeneous Dirichlet boundary conditions. Suppose (8.15) is discretized by
finite elements using regular quadrilaterals of dimension hx × hy. If hy/hx → 0,
then the finite element stencil approaches

 −1 −4 −1
2 8 2

−1 −4 −1

 .

While this stencil does not correspond to an M-matrix, the AMG coarsening algo-

150 Chapter 8

Figure 8.5: Sequence of coloring steps for the nine-point Laplacian on a uniform
grid with periodic boundary conditions. The upper left diagram is the original grid,
the lower center the final coloring (first coloring pass). The gray circles in the lower
right diagram are points that violate heuristic H-1.

rithm performs quite well on this problem and is very instructive. Note that the
problem is essentially equivalent to the discretization of

−εuxx − uyy = f,

A Multigrid Tutorial 151

Figure 8.6: Second coloring pass for the nine-point Laplacian problem with periodic
boundary conditions. The added C-points are shown in the final coloring as black
dots with thick gray outlines.

Figure 8.7: Semi-coarsening produced for a stretched mesh (or anisotropic) problem.
Shown on the left is the grid with only the strong dependencies indicated. On the
right, the final coarsening is displayed.

where ε is very small. The important feature is that the problem shows strong
dependence in the y-direction, and little or no strong dependence in the x-direction.
There are several subtle nuances associated with this discretization; our interest
here, however, is in the coarse-grid selection.

The coloring produced for this problem is shown in Fig. 8.7. The algorithm
generates a semicoarsened grid that is coarsened only in the y-direction. Again,
this is precisely the coarse grid that would be used by a geometric semicoarsening
method for this problem. Perhaps the most important observation is that the
grid has been coarsened only in the direction of strong dependence. This makes
sense: because smooth error varies slowly in the direction of strong dependence,
interpolation can be performed accurately in that direction. AMG coarsening must
exhibit this critical property.

Consider the nine-point Laplacian (Fig. 8.4) and the five-point Laplacian (Exer-
cise 6). The coarsening for the five-point operator is called the red-black coarsening.

stevem
Stamp

stevem
Text Box
This is a new figure.

stevem
Stamp

stevem
Stamp

stevem
Stamp

stevem
Stamp

stevem
Stamp

stevem
Stamp

stevem
Stamp

152 Chapter 8

Figure 8.8: Coarsening of problem (8.4) is shown on the left. Observe how the
coarsening is in the direction of strong dependence in each of the four quadrants of
the grid (right).

The operator exhibits dependence in both the x- and y-directions, and the red-black
coarsening is the only pattern that coarsens each grid line in both the x- and y-
directions. The nine-point operator exhibits dependence in all directions: x, y, and
diagonal directions. The resulting coarsening, known as full coarsening, coarsens in
each of these directions. It is not possible to coarsen along x, y, and the diagonal
grid line simultaneously; the algorithm instead coarsens every other line in each
direction, with the intervening lines not represented on the coarse grid. The strong
connectivity of this operator ensures that there are sufficient points available to
interpolate the intervening lines well.

That AMG automatically coarsens in the directions of dependence is made
apparent by the coarsening produced for the problem given in (8.4). The coarsening
is shown in Fig. 8.8. Observe that in the upper left quadrant, where a = 1, c = 1000,
and b = 0, the strong dependence is in the y-direction, and, in that region, the grid
is coarsened primarily in the y-direction. Similarly, in the lower right quadrant
where the coefficients are a = 1000, c = 1, and b = 0, the strong dependence
is in the x-direction, and the grid is coarsened in the x-direction. In the lower
left quadrant, the problem is just the normal Laplacian, and the coarsening is the
standard full coarsening we observed for the nine-point Laplacian operator. Finally,
in the upper right quadrant, where a = 1, c = 1, and b = 2, the coarsening is in the
northwest/southeast direction, which is the direction of strong dependence for the
stencil given in (8.5).

Coarse-Grid Operators

Recall that although physical grids may not be present, we continue to denote
fine-grid quantities by h and coarse-grid quantities by 2h. Once the coarse grid is
chosen and the interpolation operator Ih

2h is constructed, the restriction operator

A Multigrid Tutorial 153

I2h
h is defined using the usual variational property

I2h
h =

(
Ih
2h

)T
.

The coarse-grid operator is constructed using the Galerkin condition

A2h = I2h
h AhIh

2h. (8.16)

The reason for defining interpolation and the coarse operator by these variational
principle is that the resulting coarse-grid correction is optimal in the Ah-norm
(Exercise 8).

Cycling Algorithms

We have now defined all the components necessary to create a two-grid correction
algorithm for AMG: a relaxation scheme, a set of coarse-grid points C, a coarse-
grid operator A2h, and intergrid transfer operators I2h

h and Ih
2h. Although we

have discussed weighted Jacobi, Gauss–Seidel relaxation is often preferred. The
two-grid correction algorithm appears exactly as it did for geometric multigrid, as
shown below.

AMG Two-Grid Correction Cycle

vh ← AMG(vh, fh).

• Relax ν1 times on Ahuh = fh with initial guess vh.

• Compute the fine-grid residual rh = fh − Ahvh and restrict it to the coarse
grid by r2h = I2h

h rh.

• Solve A2he2h = r2h on Ω2h.

• Interpolate the coarse-grid error to the fine grid by eh = Ih
2he

2h and correct
the fine-grid approximation by vh ← vh + eh.

• Relax ν2 times on Ahuh = fh with initial guess vh.

Having defined the two-grid correction algorithm, we can define other multigrid
cycling schemes for AMG guided by geometric multigrid. For example, to create a
V-cycle algorithm, we simply replace the direct solution of the coarse-grid problem
with a recursive call to AMG on all grids except the coarsest grid, where we use
a direct solver. W-cycles, µ-cycles, and FMG-cycles can also be created by strict
analogy to the geometric multigrid case.

Costs of AMG

How expensive is the AMG algorithm? The geometric case has regular and pre-
dictable costs, both in terms of the storage and floating-point operation counts. By
contrast, there are no predictive cost analyses available for AMG. This is because we
do not know, in advance, the ratio of coarse- to fine-grid points. Furthermore, this
ratio is unlikely to remain constant as the grid hierarchy is established. However, we

154 Chapter 8

have two simple tools that provide a posteriori cost estimates. Such estimates are
useful in analyzing the performance of AMG and in building confidence that AMG
is an effective tool for many problems. Additionally, they are extremely useful in
debugging, code tuning, and algorithm development.

Definitions. Grid complexity is the total number of grid points, on all
grids, divided by the number of grid points on the finest grid. Operator
complexity is the total number of nonzero entries, in all matrices Akh,
divided by the number of nonzero entries in the fine-grid operator Ah.

Thus, in the geometric case on the model problem, we have grid complexities of
about 2, 4

3 , and 8
7 for the one-, two-, and three-dimensional problems, respectively.

Grid complexity gives an accurate measure of the storage required for the right sides
and approximation vectors and can be directly compared to geometric multigrid.

Operator complexity indicates the total storage space required by the operators
Akh over all grids, which is generally not necessary in the geometric case. But it
also has another use. Just as in the geometric case, the work in the solve phase
of AMG is dominated by relaxation and residual computations, which are directly
proportional to the number of nonzero entries in the operator. Hence, the work
of a V-cycle turns out to be essentially proportional to the operator complexity.
This proportionality is not perfect, but operator complexity is generally considered
a good indication of the expense of the AMG V-cycle.

Performance

By its very nature, AMG is designed to apply to a broad range of problems, many
far removed from the partial differential equations for which geometric multigrid
was developed. The performance of AMG will naturally depend in large part on
the peculiarities of the problem to which it is applied. Hence, we cannot hope to
give a complete discussion of AMG performance. Accordingly, we close this chapter
by discussing two numerical PDE examples.

Numerical example. Because it is helpful to illustrate the similarities and dif-
ferences between the geometric and algebraic approaches, the first example is that
of Chapter 4:

−uxx − uyy = 2[(1 − 6x2)y2(1 − y2) + (1 − 6y2)x2(1 − x2)] in Ω,
u = 0 on ∂Ω,

(8.17)

where Ω is the unit square. Finite differences are applied on a uniform grid, with
n = 16, 32, and 64 grid lines in each coordinate direction. We use a V(1,1)-cycle
with Gauss–Seidel relaxation, sweeping first over the C-points, then over the F -
points. This C − F relaxation is the AMG analogue of a red-black Gauss–Seidel
sweep. The results of the three experiments are shown in Table 8.1. Note that
we use the standard (unscaled) Euclidean norm because we do not presume any
geometric structure. In other words, we do not necessarily have the concept of
mesh size. Also, we measure the residual only because the error is not ordinarily
available.

In reality, AMG is unnecessary for this problem because it is precisely the case
for which the geometric case was designed; nonetheless, the analysis of the perfor-
mance of AMG on this problem is illuminating. We observe first that AMG exhibits

A Multigrid Tutorial 155

V- Ratio of Ratio of Ratio of
cycle N ||r||2 ||r||2 N ||r||2 ||r||2 N ||r||2 ||r||2

0 16 1.73e + 01 – 32 3.49e + 01 – 64 7.01e+01 –
1 16 6.29e − 01 0.03 32 2.52e + 00 0.07 64 6.88e + 00 0.10
2 16 1.44e − 02 0.02 32 9.63e − 02 0.03 64 2.92e − 01 0.04
3 16 3.56e − 04 0.02 32 3.84e − 03 0.03 64 1.28e − 02 0.04
4 16 9.52e − 06 0.03 32 1.54e − 04 0.04 64 5.68e − 04 0.04
5 16 2.55e − 07 0.03 32 6.24e − 06 0.04 64 2.55e − 05 0.04
6 16 6.87e − 09 0.03 32 2.52e − 07 0.04 64 1.16e − 06 0.05
7 16 1.85e − 10 0.03 32 1.02e − 08 0.04 64 5.38e − 08 0.05
8 16 4.95e − 12 0.03 32 4.12e − 10 0.04 64 2.52e − 09 0.05
9 16 1.37e − 13 0.03 32 1.66e − 11 0.04 64 1.19e − 10 0.05
10 16 5.44e − 14 0.46 32 7.29e − 13 0.04 64 6.34e − 12 0.05
11 16 4.36e − 14 0.80 32 3.37e − 13 0.46 64 2.58e − 12 0.41
12 32 3.17e − 13 0.93 64 2.69e − 12 1.04

Table 8.1: The table shows the results of AMG V-cycles applied to boundary value
problem (8.17). The 2-norm (Euclidean norm) of the residual after each V-cycle and
the ratio of the residual norms on successive V-cycles are tabulated for n = 16, 32,
and 64.

Number Number of Density Average entries
Aph of rows nonzeros (% full) per row
Ah 4096 20224 0.001 4.9
A2h 2048 17922 0.004 8.8
A4h 542 4798 0.016 8.9
A8h 145 1241 0.059 8.6
A16h 38 316 0.219 8.3
A32h 12 90 0.625 7.5
A64h 5 23 0.920 4.6

Table 8.2: Properties of Aph, p = 2k, k = 0, 1, . . . , 6, for AMG applied to a two-
dimensional problem.

the same type of convergence that was observed in Chapter 4 with geometric multi-
grid. The residual norm decreases by a relatively constant factor with each V-cycle.
This continues until it levels off after about 12 V-cycles near 10−13, where round-off
error is on the order of the residual norm itself. Although we do not show the er-
ror, we would find that, as in the geometric case, the level of discretization error is
reached after about six V-cycles. The errors would also exhibit the same reduction
by a factor of four with each doubling of the resolution, as in the geometric case.

In terms of solver performance, AMG appears to be equivalent to geometric
multigrid for this problem. However, there are other factors to be considered in
examining AMG. These include the time required to do the setup and the storage
required by the method.

We first examine the storage requirements. For the above experiment with n =
64, the operators Aph, where p = 2k on levels k = 0, 1, . . . , 6, have the properties
shown in Table 8.2. Several observations are in order here. First, the initial coarse
grid, Ω2h, has 2048 points, exactly half the number on the finest grid. This occurs

stevem
Pencil

stevem
Pencil

156 Chapter 8

because the five-point Laplacian operator yields the red-black coarsening described
earlier (and in Exercise 6). However, each succeeding coarse grid has approximately
one-fourth the number of points as the next finer grid. This may be understood by
observing that the average number of nonzeros per row, which is 4.9 on the fine grid
with the five-point operator (boundary points account for the average being below
5), increases to 8.8 on Ω2h and remains above 8 for the next few grids. Evidently,
the Galerkin coarse grid operators have become, effectively, nine-point Laplacian
operators! The nine-point Laplacian operator yields full coarsening, in which each
succeeding grid has one-fourth the number of points as the next finer grid. It is
illuminating (Exercise 9) to examine the interpolation stencils and the formation of
the coarse-grid operators to discover why the five-point operator becomes a nine-
point operator on the coarse grid.

Summing the number of rows of all operators and dividing by the number of
rows in the fine grid matrix (4096) shows that the grid complexity for this problem
is 1.68. Thus, we know that storage of the vector of unknowns and the right sides
require 1.68 times the space required for the fine-grid quantities. By contrast,
the geometric approach has a grid complexity of about 4

3 . The difference can be
explained by the fact that the first coarse grid produced by AMG is the red-black
grid, while the geometric approach does full coarsening on all grids.

Summing the number of nonzeros in all operators and dividing by the number
of nonzeros in the fine-grid operator shows that the operator complexity is 2.205.
Thus, the matrices on all levels require just over twice the storage of the original
operator Ah. In many cases, operators do not need to be stored in the geometric
approach, so there is no explicit operator complexity to be considered. On the
other hand, operator complexity also reflects the cost of one relaxation sweep on
all grids, so a V(1,1)-cycle of AMG on this problem costs about 4.4 WUs (2.2 WUs
on the descent and the ascent). This figure should be compared to 8

3 WUs in the
geometric case (neglecting the cost of intergrid transfers, as before).

Turning to the cost of performing the setup phase, we noted earlier that it
is difficult to predict or even account for the amount of arithmetic involved. We
can, however, make an observation about the “wall clock time” taken by the setup
phase. In the n = 64 example, the setup phase required 0.27 seconds, while the
solution phase required 0.038 seconds per V-cycle. The setup phase, then, required
approximately the same amount of time as seven V-cycles.

These experiments show that AMG performs quite well on a model problem, but
that it is more expensive in terms of storage, computation, and time than geometric
multigrid. However, AMG is not intended for use on nicely structured problems; it
is intended for problems on which geometric multigrid cannot be applied. We close
our discussion with such an example. ��

Numerical example. Consider the problem

−∇ · (a(x, y)∇u) = f(x, y) (8.18)

in a domain Ω with u = 0 on ∂Ω. Specifically, let Ω = ([0, 10] × [0, 5.5])/B, where
B is the disk of radius 1

2 centered on (1.25, 2.75) shown in Fig. 8.9. The problem is
discretized on the unstructured triangulation shown in Fig. 8.10. The discontinuous

A Multigrid Tutorial 157

0� 1� 2� 3� 4� 5� 6� 7� 8� 9� 10
0�

1�

2�

3�

4�

5�

Figure 8.9: The computational domain for (8.18).

Figure 8.10: The discretization mesh for (8.18).

diffusion coefficient is given by

a(x, y) =

0 if
√

(x − 1.25)2 + (y − 2.75)2 < 1
2 (interior of hole)

1 if 1
2 ≤

√
(x − 1.25)2 + (y − 2.75)2 < 2

1000 if 2 ≤
√

(x − 1.25)2 + (y − 2.75)2 < 6

1 else.

If (x, y) is between the circles, centered about the point (1.25, 2.75), of radius 2

158 Chapter 8

Number Number of Density Average entries
Level of rows nonzeros (% full) per row

0 4192 28832 0.002 6.9
1 2237 29617 0.006 13.2
2 867 14953 0.020 17.2
3 369 7345 0.054 19.9
4 152 3144 0.136 20.7
5 69 1129 0.237 16.4
6 30 322 0.358 10.7
7 20 156 0.390 7.8
8 18 125 0.383 6.9
9 3 9 1.000 3

Table 8.3: Statistics on coarsening for AMG applied to (8.18).

Ratio of
V-cycle ||r||2 ||r||2

0 1.00e + 00 –
1 4.84e − 02 0.05
2 7.59e − 03 0.16
3 1.72e − 03 0.23
4 4.60e − 04 0.27
5 1.32e − 04 0.29
6 3.95e − 05 0.30
7 1.19e − 05 0.30
8 3.66e − 06 0.31
9 1.12e − 06 0.31
10 3.43e − 07 0.31
11 1.05e − 07 0.31
12 3.22e − 08 0.31

Table 8.4: Convergence of AMG V-cycles applied to (8.18) in terms of the 2-norm
(Euclidean norm) of the residual.

and 6, then the diffusion coefficient is three orders of magnitude larger than it is
elsewhere.

This problem has features that would challenge a geometric multigrid algorithm.
First, and most important, it is discretized on an unstructured grid. It is not at all
obvious how to generate a sequence of coarse grids for this problem. In addition,
the discontinuous coefficient causes real difficulty. Since the jump follows circular
patterns and is not grid aligned, it is not possible to overcome this problem either
by semicoarsening or by line relaxation.

To understand how AMG performs on this problem, we first examine the coars-
ening statistics in Table 8.3. One interesting phenomenon is that the relative den-
sity of the operators (percentage of nonzeros) increases as the grids become coarser.
This increasing density can be seen in the last column, where the average number
of entries per row increases through several coarse levels. Fortunately, the operator
complexity is not adversely affected: a short calculation shows that the operator
complexity is 2.97, while the grid complexity is 1.89. It is also interesting to note
that the first coarse-grid operator has more actual nonzero coefficients than does
the fine-grid operator. This is relatively common for AMG on unstructured grids.

A Multigrid Tutorial 159

The convergence of the method is summarized in Table 8.4. Using the standard
2-norm, we see that after 11 V-cycles, the residual norm reached 10−7 and the
process attained an asymptotic convergence factor of 0.31 per V-cycle. Clearly,
AMG does not converge as rapidly for this problem as for the previous model
problem, where we saw a convergence factor of about 0.1. Nevertheless, in light
of the unstructured grid and the strong, non-aligned jump discontinuities in the
coefficients, the convergence properties are quite acceptable. ��

Exercises

1. Smooth error. Under the assumptions that ω = ‖D−1/2AD−1/2‖−1 and
‖D−1/2AD−1/2‖ is O(1), show that an implication of the smooth error con-
dition, ‖

(
I − ωD−1A

)
e‖A ≈ ‖e‖A, is that

(D−1Ae, Ae) � (e, Ae).

Show that this property can be expressed as

||r||D−1 � ||e||A.

2. Smooth error. Show that for a symmetric M-matrix A, smooth error varies
slowly in the direction of strong influence as follows. Assume ‖r‖D−1 � ‖e‖A.

(a) Show that ||e||A << ||e||D. Hint: ||e||2A = (Ae, e) = (D−1/2Ae, D1/2e) ≤
||r||D−1 ||e||D.

(b) Show that if (as is often true)
∑

j �=i |aij | ≈ aii, then∑
i

∑
j �=i

|aij |(ei − ej)2 <<
∑

i

aiie
2
i .

Hint: Show that (Ae, e) = 1
2

∑
ij(−aij)(ei − ej)2 +

∑
ij aije

2
i .

(c) Conclude that (8.7) must hold on average, that is, for most i.

3. Deriving interpolation weights. Carry out the calculation that leads to
expression (8.12) for the interpolation weights.

4. Properties of interpolation weights. Let A be an M-matrix whose rows
sum to zero for interior points, and let the ith row represent an interior point.
Show that substituting ej = ei in the sum over Ds

i in (8.9) and in the sum
over Dw

i in (8.11) produces interpolation coefficients ωij that are nonnegative
and sum to unity.

5. Enforcing the heuristics. Construct a simple one-dimensional example in
which the two heuristics H-1 and H-2 cannot be simultaneously enforced.
Hint: Use periodic boundary conditions and odd n.

6. Coarse-grid selection. Show that the first pass of the coarsening algorithm
(the initial coloring phase) applied to the five-point Laplacian stencil

1
h2

 −1

−1 4 −1
−1

produces standard red-black coarsening (the C-points are the red squares on
a checkerboard; the F -points are the black squares).

stevem
Pencil

stevem
Pencil

stevem
Pencil

160 Chapter 8

7. Second coloring pass. The central idea behind the second-pass coloring
algorithm is to test each F -point, i, in turn, to ensure that each point in Ds

i

depends strongly on at least one point in Ci. When an F -point, i, is found to
depend strongly on another F -point, j, that does not depend strongly on a
point in Ci, then j is made (tentatively) into a C-point; testing of the points
in Ds

i then begins again. If all those points now depend strongly on points
in Ci, then j is put permanently in C. However, if some other point in Ds

i is
found that does not depend strongly on a point in Ci, then i itself is placed in
C and j is removed from the tentative C-point list. The process is repeated
for the next F -point and continues until all F -points have been treated.

Apply this second-pass algorithm to the nine-point Laplacian operator with
periodic boundaries (Figure 8.5) and determine the final coarsening. Observe
that the final coarsening depends on the order in which the F -points are
examined.

8. Using variational properties. Show that using the variational properties
to define interpolation and the coarse-grid operator is optimal in the following
way. The two-grid correction scheme, given in the text, corrects the fine-grid
approximation vh by a coarse-grid interpolant Ih

2hv
2h that gives the least

error in the sense that

‖eh − Ih
2hv

2h‖Ah = min
w2h

‖eh − Ih
2hw

2h‖Ah ,

where eh = uh − vh is the error in vh.

9. Coarsening the five-point operator. Examine the five-point Laplacian
operator on a uniform two-dimensional grid, and determine why the Galerkin
process alters it to the nine-point operator on the coarse grid. Hint: This can
be done symbolically by examining which entries of the stencil will be used
to interpolate the various points and then by symbolically carrying out the
Galerkin multiplication A2h = I2h

h AhIh
2h.

10. Smooth error implications. Show that if A = D−L−U is a symmetric M-
matrix and Q = D+L (Gauss–Seidel) or Q = D (Jacobi), then the quantities
(Q−1Ae, r) and (e, r) are nonnegative.

11. Smooth error. Show that if A = D − L − U is a symmetric M-matrix and
Gauss–Seidel produces errors that satisfy∥∥(

I − (D + L)−1A
)
e
∥∥

A
≈ ‖e‖A,

then
||r||D−1 � ||e||A.

Hint: Show first that ‖(D + L)−1Ae‖A � ‖e‖A. Then show and use the fact
that (D + LT)−1A(D + L)−1 ≤ D−1.

12. V-cycle costs. Let the grid complexity be denoted σΩ and the operator
complexity be denoted σA. In addition, define the following quantities: κA,
the average number of nonzero entries per row over all levels; κI , the average
number of interpolation points per F -point; nA

m, the number of nonzero entries
in Am; and nC

m and nF
m, the number of C- and F -points, respectively, on grid

Ωm.

A Multigrid Tutorial 161

(a) Show that the number of floating-point operations on level m for one
relaxation sweep, residual transfer, and interpolation are 2nA

m, 2nA
m +

2κInF
m, and nC

m + 2κInF
m, respectively.

(b) Noting that ∑
m

nF
m ≈ n,

show that the total flop count for a V(ν1, ν2)-cycle is given approximately
by

n(2(ν + 1)κAσΩ + 4κI + σΩ − 1),

where ν = ν1 + ν2.

Chapter 9

Multilevel Adaptive Methods

Numerical problems often exhibit special features in small local regions that require
resolution and accuracy well beyond what is required in the rest of the domain. In
numerical weather modeling, isolated phenomena such as tornados or storm fronts
may demand substantially enhanced accuracy. The numerical simulation of the
flight of an aircraft may require especially accurate approximations around the
fuselage or wings. In these and many other cases, it is wasteful to let local accuracy
requirements dictate the global discretization and solution process. The goal of
this chapter is to understand how to treat local demands in a multilevel context
without overburdening the overall computation.

There is a wide variety of methods that effectively treat local demands. Here
we consider the so-called fast adaptive composite grid method (FAC) [14]. Its dis-
tinctive features are that it always works with uniform grids and subgrids, and it
is in tune with the variational theme that appears throughout this book. We begin
with a one-dimensional example.

Consider the two-point boundary value problem

−u′′(x) = f(x), 0 < x < 1 ,

u(0) = u(1) = 0.

To keep matters simple, assume that a local fine grid with mesh size h = 1
8 is needed

on the interval (1
2 , 1) to resolve some special feature near x = 3

4 , but that a mesh
size of 2h = 1

4 is deemed adequate for the rest of the domain. This need might
arise, for example, in the presence of a source term f that is nonzero only near
x = 3

4 (Fig. 9.1).
Imagine first that we solve the problem on a global grid, Ωh, with mesh size

h = 1
8 , using a two-grid method based on linear interpolation, full weighting, and the

variational properties as described in Chapter 5. We write the discrete problem as

Ahuh = fh . (9.1)

In component form, we have

−uh
i−1 + 2uh

i − uh
i+1

h2
= fh

i , 1 ≤ i ≤ n ,

uh
0 = uh

n+1 = 0,

where n = 7 for this case.

163

164 Chapter 9

0� 0.1� 0.2� 0.3� 0.4� 0.5� 0.6� 0.7� 0.8� 0.9� 1
0�

0.5�

1�

1.5�

Figure 9.1: Graph of a sharply peaked impulse function centered at x = 3
4 .

This simple uniform grid involves unnecessary computation: the accuracy re-
quired locally at x = 3

4 dictates the global mesh size h = 1
8 , forcing us to solve the

problem with too many grid points. To reduce this waste, we can start by elimi-
nating relaxation (the most expensive multigrid process) at fine-grid points where
it is not needed, that is, in [0, 1

2]. However, we can do better. As we will see, it is
possible to reduce costs further by selectively eliminating interpolation, restriction,
and the computation of residuals.

Consider Fig. 9.2, which shows the fine grid Ωh with n = 7 interior points and
the underlying coarse grid Ω2h with n−1

2 = 3 interior points. Regular multigrid
relaxes on all fine-grid points, denoted by ∗, •, and ◦, then performs coarse-grid
correction based on the points denoted by ×.

With this notation, let us see how we might eliminate points of Ωh in [0, 1
2).

Restricting relaxation to the local fine grid in (1
2 , 1) means that the Ωh residuals

change at ∗ and • points, because the approximation vh changes at ∗ points. How-
ever, fine-grid residuals do not change at ◦ points between successive coarse-grid
solves. Similarly, the coarse-grid residual does not change at × = 1

4 because it is
obtained by restriction from ◦ points.

For the moment, suppose that we continue to store vh at ◦ points, just for
convenience. We must be sure that the algorithm starts with the correct right
sides, f2h

i , on the coarse grid, particularly at the point × = 1
4 . We begin with a

zero initial guess, vh = 0, so the residual at the coarse-grid point × = 1
4 is just the

restriction of the fine-grid source term fh
i . With this observation, we can give our

first scheme:

• Initialize vh = 0 and f2h
1 ≡

(
I2h
h fh

)
1

= fh
1 +2fh

2 +fh
3

4 .

• Relax on vh on the local fine grid {xh
5 , xh

6 , xh
7} = { 5

8 , 3
4 , 7

8}.

A Multigrid Tutorial 165

Ω2h x2h
0 x2h

1 x2h
2 x2h

3 x2h
4

Ω2h × × ×� �

x = 0 1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

Ωh � ◦ ◦ ◦ • ∗ ∗ ∗ �

Ωh xh
0 xh

1 xh
2 xh

3 xh
4 xh

5 xh
6 xh

7 xh
8

Figure 9.2: Local fine-grid points on Ωh are denoted by ∗ and the interface point
is denoted by (•). Computation at the remaining fine-grid points (◦) is eliminated.
The coarse-grid points (×) comprise Ω2h, while � represents boundary points.

• Compute fine-grid residual rh = fh −Ahvh and transfer it to the coarse grid:

f2h
2 ← rh

3 + 2rh
4 + rh

5

4
, f2h

3 ← rh
5 + 2rh

6 + rh
7

4
.

• Compute an approximation v2h to the coarse-grid residual equation A2hu2h =
f2h.

• Update the residual at × = 1
4 for use in later cycles: f2h

1 ← f2h
1 −−v2h

0 +2v2h
1 −v2h

2
(2h)2 .

• Interpolate the correction and update the approximation: vh ← vh + Ih
2hv

2h.

At this point, reducing the number of computations further becomes a little
tricky. It might seem at first glance that the fine-grid approximation, vh, is never
used outside of [12 , 1], but this is not quite true: the residual transfer in the third
step involves the residuals rh at • = 1

2 and ◦ = 3
8 , which in turn involve vh at

◦ = 1
4 and ◦ = 3

8 . Thus, we need to store vh at these two border points just outside
the local fine grid. On the other hand, we do not need to store vh

1 at ◦ = 1
8 .

This observation suggests introducing a new variable w2h
1 that accumulates the

coarse-grid solution at × = 1
4 , which underlies the fine-grid point ◦ = 1

4 . We can
identify w2h

1 = vh
2 , allowing us to keep track of the solution at this border point.

The solution at the other border point, ◦ = 3
8 , will be found by interpolation. The

improved algorithm now appears as follows:

• Initialize vh = 0, w2h
1 = 0, and f2h

1 ≡
(
I2h
h fh

)
1

= fh
1 +2fh

2 +fh
3

4 .

• Relax on vh on the local fine grid {xh
5 , xh

6 , xh
7} = { 5

8 , 3
4 , 7

8}.

• Compute fine-grid residual rh = fh −Ahvh on the local fine grid, its interface
point xh

4 = 1
2 , and the border point xh

3 = 3
8 , and transfer it to the coarse grid:

f2h
2 ← rh

3 + 2rh
4 + rh

5

4
, f2h

3 ← rh
5 + 2rh

6 + rh
7

4
.

166 Chapter 9

• Compute an approximation v2h to the coarse-grid residual equation A2hu2h =
f2h.

• Update the residual at × = 1
4 for use in later cycles: f2h

1 ← f2h
1 −−v2h

0 +2v2h
1 −v2h

2
(2h)2 .

• Update the coarse-grid approximation at × = 1
4 : w2h

1 ← w2h
1 + v2h

1 .

• Interpolate the correction and update the approximation: vh ← vh + Ih
2hv

2h

everywhere except at ◦ = 1
8 , 1

4 .

Note that we do not interpolate to ◦ = 1
4 , because the solution at this point is held

in w2h
1 , nor to ◦ = 1

8 , because a fine-grid solution is not needed at this point.
We have devoted an absurd amount of effort here to avoiding computation at

the single point ◦ = 1
8 . However, it is important to imagine situations in which the

local fine grid comprises a very small fraction of the domain. In such situations,
points like ◦ = 1

8 predominate and the savings can be significant. As we see shortly,
the savings can be even greater for two-dimensional problems.

We can take one more step and effectively remove the border points from the
computation. Consider the residual f2h

2 at the interface point • = 1
2 ; it is obtained

by full weighting the fine-grid residuals rh
3 , rh

4 , and rh
5 . Because w2h

1 accumulates
the solution at ◦ = 1

4 , we have vh
2 = w2h

1 ; and because the solution at ◦ = 3
8

is determined by interpolation, we have vh
3 = (w2h

1 + vh
4)/2. Thus, the fine-grid

residuals that contribute to f2h
2 are computed as follows:

rh
3 = fh

3 − −vh
2 + 2vh

3 − vh
4

h2

= fh
3 − −w2h

1 + w2h
1 + vh

4 − vh
4

h2

= fh
3 , (9.2)

rh
4 = fh

4 − −(w2h
1 + vh

4)/2 + 2vh
4 − vh

5

h2

= fh
4 − − 1

2w2h
1 + 3

2vh
4 − vh

5

h2
, (9.3)

rh
5 = fh

5 − −vh
4 + 2vh

5 − vh
6

h2
. (9.4)

Writing g2h
2 ≡ 1

4

(
fh
3 + 2fh

4 + fh
5

)
, a bit of algebra yields the residual f2h

2 at the
interface point:

f2h
2 ≡ 1

4
(
rh
3 + 2rh

4 + rh
5

)
(9.5)

= g2h
2 − −w2h

1 + 2vh
4 − vh

6

(2h)2
.

Note that the stencil on the right side of (9.5) corresponds to the usual Ω2h stencil
for the residual. This is a result of the variational properties at work. Yet, even in
more general cases, it is possible to compute the result of transferring the fine-grid
residual to the interface point(s). In turn, this allows us to eliminate the border
points. These simplifications lead to our final algorithm.

A Multigrid Tutorial 167

Fast Adaptive Composite Grid Method (FAC)

• Initialize vh = 0, w2h
1 = 0, and f2h

1 ≡
(
I2h
h fh

)
1

= fh
1 +2fh

2 +fh
3

4 .

• Relax on vh on the local fine grid {xh
5 , xh

6 , xh
7} = { 5

8 , 3
4 , 7

8}.

• Compute the right sides for the local coarse grid: f2h
2 ← g2h

2 − −w2h
1 +2vh

4 −vh
6

(2h)2 ,

f2h
3 ← rh

5 +2rh
6 +rh

7
4 .

• Compute an approximation v2h to the coarse-grid residual equation A2hu2h =
f2h.

• Update the residual at × = 1
4 for use in later cycles: f2h

1 ← f2h
1 −−v2h

0 +2v2h
1 −v2h

2
(2h)2 .

• Update the coarse-grid approximation at × = 1
4 : w2h

1 ← w2h
1 + v2h

1 .

• Interpolate the correction and update the approximation: vh ← vh + Ih
2hv

2h

at the local fine grid and the interface points { 1
2 , 5

8 , 3
4 , 7

8}.

Summary of FAC Terms

• The local fine grid is the finest grid used for computation; it covers only
that part of the domain where additional resolution is needed. FAC avoids
computation on a global fine grid.

• The global coarse grid, Ω2h, is the finest grid used for computation that
covers the entire domain. The notation suggests a mesh refinement factor
of two, but larger factors are permitted.

• Interface points are the boundary points of the local fine grid.

• Border points are fine-grid points that lie outside the local fine grid. They
are used temporarily to develop special interface stencils.

• Boundary points are the usual points of the domain where boundary con-
ditions apply.

• Slave points, which appear only in two and higher dimensions, are inter-
face points that do not correspond to coarse-grid points.

• The composite grid is the combination of the fine- and coarse-grid points
on which the discrete solution is ultimately determined.

It is important to see FAC from a different perspective. We developed the
scheme by eliminating the ◦ points from the fine grid and producing the top two
uniform grids (Ωh and Ω2h) shown in Fig. 9.3. The question we need to ask now
is: At what points are we actually approximating the solution? When we use FAC,
the solution is approximated at the composite grid (Ωc in Fig. 9.3) consisting of

168 Chapter 9

Ωh � • ∗ ∗ ∗ �

Ω2h × × ×� �

Composite grid Ωc � × • ∗ ∗ ∗ �

vc
0 vc

1 vc
2 vc

3 vc
4 vc

5 vc
6

Figure 9.3: FAC is done entirely on uniform grids, such as the top two grids shown
above. However, the solution is in effect determined on the nonuniform composite
grid shown at the bottom.

• local fine-grid points (∗),

• interface points (•), and

• coarse-grid points that do not lie under the local fine-grid or interface points
(× points in (0, 1

2)).

FAC operates only on uniform grids, but it effectively solves problems on com-
positive grids. It is fully consistent with multigrid principles because, in the vari-
ational case, FAC is equivalent to solving the problem by multigrid using global
grids, but local relaxation. This property distinguishes FAC from other adaptive
methods.

While we never need to construct the composite grid, it serves as an important
conceptual tool for understanding the refinement algorithm that we just developed.
For example, because FAC is a method for solving the problem on the composite
grid, we should be able to derive the associated composite-grid equations. This will
allow us to see what algebraic problem FAC actually solves.

To derive these composite-grid equations, first consider the composite-grid ap-
proximation vc that FAC produces (we include the boundary points vc

0 and vc
6 for

completeness):

vc
0 = 0 , vc

1 = w2h
1 , vc

2 = vh
4 , vc

3 = vh
5 , vc

4 = vh
6 , vc

5 = vh
7 , vc

6 = 0 .

We also need to define the source vector f c. Leaving the definition of fc
2 aside for

the moment, we have

fc
1 =

fh
1 + 2fh

2 + fh
3

4
, fc

3 = fh
5 , fc

4 = fh
6 , fc

5 = fh
7 .

Now imagine that the FAC scheme has converged, by which we mean that vc

does not change from one cycle to the next. Inspecting the algorithm shows that
the stencils in the uniform regions (× and ◦ points) are the usual ones with the
appropriate mesh sizes:

−vc
0 + 2vc

1 − vc
2

(2h)2
= fc

1 ,

−vc
i−1 + 2vc

i − vc
i+1

h2
= fc

i , 3 ≤ i ≤ 5 . (9.6)

A Multigrid Tutorial 169

The difficult stencil is the one at the interface point • = 1
2 . Consider (9.5) and

remember we are assuming that FAC has converged, so relaxation does not change
vh
5 . This means that rh

5 must be zero. Using this observation and substituting (9.2)
and (9.3) into (9.5) gives us

f2h
2 =

1
4

(
rh
3 + 2rh

4

)
=

1
4

(
fh
3 + 2fh

4

)
− (−w2h

1 + 3vh
4 − 2vh

5)/(2h)2 .

We must have f2h
2 = 0, or else the FAC coarse-grid step would compute a nonzero

correction to vc and we could not have converged. We thus conclude that the stencil
at • = 1

2 is
−w2h

1 + 3vh
4 − 2vh

5

(2h)2
=

1
4

(
fh
3 + 2fh

4

)
.

In composite-grid terms, with fc
2 ≡ 1

4

(
fh
3 + 2fh

4

)
, we have

−vc
1 + 3vc

2 − 2vc
3

(2h)2
= fc

2 . (9.7)

One of the main concerns in the design of any numerical algorithm is how
to measure the error. This is a complex issue that involves various error sources
(discretization error, algebraic error, and floating-point errors), the choice of norms,
and various ways to approximate the error. Most of these issue are beyond the scope
of this book, but a few brief comments are in order:

• Estimating discretization error is of particular interest in adaptive methods
because it can be used to decide where to refine. There are many conven-
tional approaches that involve solving local problems or estimating higher
derivatives of the emerging solution. However, the presence of several levels
of discretization enables multilevel methods to use extrapolation: you can
compare the approximations on two or more levels to predict the error on
the finest level. For this purpose, it is convenient to have the full approxima-
tions available on each level, so it can be useful to rewrite the FAC correction
scheme that we have presented as an FAS scheme (Exercise 1).

• The algebraic error can also be estimated in several ways, but a natural es-
timate is to apply a norm to the residual of the composite-grid equations.
Remember, the composite grid consists of the uniform fine grid in the refine-
ment region, so any point within this region has a standard fine-grid equa-
tion. Similarly, points outside the refinement region have standard coarse-grid
equations. But the interface has special equations (9.7) that require special
residuals. Putting this together for our example gives

rc
1 =

1
4

(
fh
1 + 2fh

2 + fh
3

)
− 2w2h

1 − vh
4

(2h)2
, standard coarse-grid residual;

rc
2 =

1
4

(
fh
3 + 2fh

4

)
− −w2h

1 + 3vh
4 − 2vh

5

(2h)2
, interface residual from (9.7);

rc
i = fh

i − −vh
i+1 + 2vh

i+2 − vh
i+3

h2
, 3 ≤ i ≤ 5, standard fine-grid residual.

170 Chapter 9

• Scaling the error norms is particularly important in adaptive methods because
of the presence of different levels of resolution. The proper scales depend on
the discretization and other factors. For our example, you can think of the
residual rc as a source term that is constant in a neighborhood of each node.
Thus, rc

1 represents the value in the interval (1
4 − h , 1

4 + h), rc
2 represents the

value in the interval (1
2 −h , 1

2 + h
2), and rc

i represents the value in the interval
(i+2

8 − h
2 , i+2

8 + h
2) for i = 3, 4, 5. (This does not cover the interval [0, 1], but

we can simply assume that the source is zero in [0, 1
16) and (15

16 , 1].) Using the
premise that the residual represents a piecewise constant source term, we can
obtain the norm of rc by taking the integral of the square of the source term
defined on (0, 1), which yields

‖rc‖ =

√√√√2h(rc
1)2 +

3
2
h(rc

2)2 + h

5∑
3

(rc
i)2 .

Two-Dimensional Problems

With some modification, the above ideas can be extended to two-dimensional prob-
lems. Figure 9.4 shows a square domain in the plane with a local fine grid in the
northeast corner. There are many points in this two-dimensional grid that are anal-
ogous to ◦ = 1

8 , at which fine-grid computations can be neglected. For this reason,

• • • ••

•

•

•

� � � �
�

�

�

�

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗

Figure 9.4: Composite grid on a two-dimensional domain. The coarse-grid points
are at the intersection of the solid horizontal and vertical lines. The local fine grid
consists of ∗ points. Interface points coinciding with coarse-grid points are marked
by •. The new slave points (�) are interface points that do not overlay a fine-grid
point. Boundary points have been omitted.

A Multigrid Tutorial 171

the FAC scheme shows substantial savings over standard multigrid on a global fine
grid.

A new type of point arises in two-dimensional problems. Denoted by � in Fig.
9.4, the slave points are interface points that do not correspond to a coarse-grid
point. These points are needed to provide a complete set of boundary points for
the local fine grid. They are determined simply by averaging the two neighboring
interface point values. For example, in Fig. 9.4, a typical slave point on a horizontal
interface would be determined by

vh
i+1,j =

vh
i,j + vh

i+2,j

2
.

The one-dimensional FAC method can be generalized in all respects to two
dimensions. Special restriction formulas at the interface points corresponding to
(9.5) can be used to eliminate border points. Similarly, with some additional work,
it is possible to find the coarse-grid and interface equations as was done in one
dimension (Exercise 4). However, our goal is not to expose these details (which can
be found in [14]). Rather, we will only outline the flow of the two-dimensional FAC
method in fairly qualitative terms.

Fast Adaptive Composite Grid Method (FAC)
in Two Dimensions

• Initialize vh = 0. Initialize w2h = 0 and f2h = I2h
h fh at coarse-grid points

outside the local fine grid.

• Relax on vh on the local fine grid.

• Compute the right sides for the local coarse grid using special stencils at
the interface points and the usual residual transfer f2h = I2h

h fh at points
underlying the local fine grid.

• Compute an approximation v2h to the coarse-grid residual equation A2hu2h =
f2h.

• Update the coarse-grid residual for use in later cycles: f2h ← f2h − A2hv2h

at points outside the local fine grid.

• Update the coarse-grid approximation: w2h ← w2h+v2h at coarse-grid points
outside the local fine grid.

• Interpolate the correction and update the approximation: vh ← vh + Ih
2hv

2h

at the local fine grid and interface points. Interpolate to the slave points from
their interface neighbors.

We have presented FAC as a two-grid scheme. Like other multigrid methods,
it is done recursively in practice: in the fourth step of the above algorithm, the
solution of the global coarse-grid problem is done using further applications of the
basic two-grid scheme. This procedure leads to V-cycles defined on a sequence of
grids, possibly involving several global coarse grids together with several telescoping
finer grids.

172 Chapter 9

An FMG–FAC scheme is more subtle. One could apply a straightforward FMG
cycling scheme to the uniform grids that are used in the V-cycle process. However,
this would be too costly when there are many levels with few points per level
(Exercise 3). A more efficient approach is to use a sequence of increasingly coarse
composite grids as the basis for FMG, a strategy that takes us beyond the scope of
this book.

The fundamental basis for FAC is the composite grid. In fact, probably the
most effective way to apply FAC to a given problem is to start by developing ac-
curate composite-grid equations. The FAC algorithm is then a natural extension
of multigrid, where the finest level is the composite grid, relaxation is simply re-
stricted to the local fine grid, and coarsening is based on restricting the composite
grid residual to the global coarse grid.

A popular alternative to FAC is the multilevel adaptive technique, or MLAT
[3]. Although these two approaches can lead to similar algorithms in the end, the
basis for their development is very different. While FAC is based on the composite
grid, MLAT comes from generalizing the full approximation scheme (FAS). A little
inspection of FAS, as developed in Chapter 6, shows that the finest grid need not be
global: one can relax only on a local fine grid and correct the coarse-grid equations
by FAS only at points that lie under it. MLAT can thus be developed from a global-
grid FAS code, and it often proves effective for handling adaptive refinement.

Numerical example. To illustrate FAC performance in a simple setting, FAC is
applied to Poisson’s equation with homogeneous Dirichlet boundary conditions on
the unit square in the plane. The exact two-spike solution, as shown in Fig. 9.5,
has values of magnitude 1 but opposite sign at (1

4 , 1
4) and (3

4 , 3
4), falls off steeply

in the neighborhood of these points, and is zero at the boundary. In the tests, we
used composite grids constructed from a global grid of mesh size h and refinement

Figure 9.5: Two-spike solution of the composite grid problem based on a 63 × 63
interior global grid, with mesh size h = 1

64 , and 51×51 patches of mesh size h
2 = 1

128
centered at (1

4 , 1
4) and (3

4 , 3
4).

A Multigrid Tutorial 173

Figure 9.6: Aerial view of a composite grid based on a 31 × 31 interior global grid
of mesh size h = 1

32 and 27×27 patches of mesh size h
2 = 1

64 centered at (1
4 , 1

4) and
(3
4 , 3

4).

patches of size h
2 in the subregions [1

32 , 15
32] × [1

32 , 15
32] and [1732 , 31

32] × [1732 , 31
32]. Tests

were done for h = 1
32 , 1

64 , 1
128 , with the case h = 1

64 shown in Fig. 9.6.
Table 9.1 contains the results of applying a V(1,0)-cycle to each of the three

composite grids. The convergence factor was obtained by applying many cycles
to the homogeneous problem (with zero right side), starting with a random initial
guess, and observing the worst-case composite-grid residual reduction factor. Note

Global h Convergence factor Discrete L2 norm of discretization error
1/32 0.362 2.34e − 2
1/64 0.367 5.742 − 3
1/128 0.365 1.43e − 3

Table 9.1: Estimates for asymptotic V(1,0)-cycle convergence factors and discrete
L2 norm of the discretization errors. FAC was applied using composite grids with
three different global grids of mesh size h, each with two local patches of mesh
size h

2 .

174 Chapter 9

Figure 9.7: Side view of a global 15× 15 grid with two coarser supporting grids and
three successively finer local grids.

the apparent h-independence of these convergence factors. These factors are quite
acceptable considering the fact that V(1,0)-cycles were used. Also shown are the
discretization error estimates, obtained by applying several V(1,0)-cycles to the
two-spike problem and measuring the difference, in the discrete L2 norm, between
the computed and the exact solutions, evaluated on the composite grid. Note the
apparent O(h2) behavior of the discretization error.

Another illustration of the grids that comprise the composite grids is given in
Fig. 9.7. Here we show a side view of a global grid of mesh size h = 1

8 and local
grids of mesh size h

8 = 1
64 in the subregions [18 , 3

8] × [18 , 3
8] and [58 , 7

8] × [58 , 7
8]. Note

that the effective refinement factor (ratio of mesh sizes of the finest patch and finest
global grid) is eight. Large refinement factors are permissible with FAC because
local grids with factors of two are included between the global and finest local grids.
For similar reasons, the finest global grid is supported by a full sequence of coarser
global grids, as shown. ��

Exercises

1. FAS version of FAC. The FAC algorithm we have described is a correction
scheme in which the coarse-grid problem is the residual equation. Rewrite
FAC for the one-dimensional model problem as an FAS scheme in which the
full approximation equations are solved on the coarse grid.

2. Higher mesh refinement factors. We developed the FAC scheme assum-
ing a mesh refinement factor of two: the global coarse-grid mesh size is 2h,
while the local fine-grid mesh size is h. Rewrite FAC for solving the one-
dimensional model problem when the coarse-grid mesh size is 4h = 1

4 and the
fine-grid mesh size is h = 1

16 . Assume that the local fine grid covers (1
2 , 1) as

A Multigrid Tutorial 175

before. (For full efficiency, FAC should include the intermediate grid of mesh
size 2h that covers (1

2 , 1), but the two-grid scheme suffices here.)

3. Cycling cost. Show that V-cycles maintain O(n) complexity for locally
refined grids in the sense that the cost of an FAC V-cycle is proportional
to the number, n, of composite-grid points. For concreteness, consider a
sequence of q grids on the unit square in the plane, constructed by starting
from a global m × m grid and refining successive grids by a factor of two in
the northeast quadrant (so that each grid is m×m). Now show that W-cycles
do not maintain O(n) complexity. Similarly, show that FMG based on these
uniform grids also does not maintain O(n) complexity. Finally, show that
FMG based on coarsened composite grids does maintain O(n) complexity.
(Coarse composite grids are formed by coarsening all grids in the sequence,
so the first coarse composite grid is formed from q grids of size m

2 × m
2 .)

4. Two-dimensional interface source terms. Deriving the Ω2h and Ωc inter-
face equations is somewhat complicated in two dimensions. Take the first step
in this direction by forming the source term for Ω2h and Ωc at the interface
corner point in Fig. 9.4.

5. Symmetry. Show that the composite-grid matrix Ac is nonsymmetric by
showing that the coefficient in (9.6) that connects vc

2 to vc
3 is not equal to

the corresponding coefficient in (9.7). Show, however, that symmetry can be
retained by rescaling: the matrix DcAc is symmetric, where Dc is the 5 × 5
diagonal matrix with entries dc

1 = dc
2 = 2h and dc

3 = dc
4 = dc

5 = h.

6. Neumann problem. Rederive FAC applied to Neumann problem (7.1) of
Chapter 7. Show that the principles of Neuman boundary conditions apply by
showing that the null space and range of the rescaled composite-grid matrix,
DcAc of Exercise 5, are equal and consist of scalar multiples of the constant
vector 1.

Chapter 10

Finite Elements

Until now, our development of multigrid methods has relied on finite differences.
However, there are several other discretization methods, all of which have their
place in computation. We now turn to the finite element method. This approach
may seem more abstract and less direct at the outset, but its use of variational
properties provides a powerful framework that is well suited to developing and
analyzing multigrid methods. It is impossible to cover finite elements completely
in this short chapter, so we focus instead on surveying the critical ideas, leaving
the important details to the exercises and further study.

Said simply, finite difference methods replace the problem domain by a grid and
produce a vector whose components are approximations to the solution at the grid
points. On the other hand, finite element methods partition the problem domain
into subregions and produce a simple function in each subregion that approximates
the solution. Finite element methods can be applied to two major categories of
problems: differential equations and functional minimization. When the differential
equation is defined in terms of a self-adjoint linear operator and the functional
is defined appropriately, these two categories coincide. To exploit this fortunate
duality between differential equations and functional minimization, we focus on the
self-adjoint case.

Let Ω be a suitably nice bounded domain in the plane with boundary ∂Ω. Con-
sider the following Poisson equation with homogeneous Dirichlet boundary condi-
tions:

Lu ≡ −uxx − uyy = f in Ω,

u = 0 on ∂Ω.

We first need to introduce some new tools and notation. Most of our time will
be spent in the space L2(Ω) of square integrable functions on Ω (functions that
satisfy

∫
Ω

u2 dΩ < ∞) equipped with the L2(Ω) inner product (·, ·) defined by

(u, v) =
∫

Ω

uv dΩ.

Because we will be taking partial derivatives, it is not enough for the functions we
consider just to be L2(Ω) integrable. We need to know that they are differentiable.
We will be vague about this for the moment and just assume that the functions

177

178 Chapter 10

reside in a subspace H ⊂ L2(Ω) that contains suitably differentiable functions. We
also assume that the functions in H vanish on ∂Ω so that they satisfy the boundary
conditions.

There are two important properties of the operator L that we need (Exercise
2):

• L is self-adjoint in the sense that (Lu, v) = (u, Lv) for any u, v ∈ H; and

• L is positive in the sense that (Lu, u) > 0 for any nonzero u ∈ H.

It is worth noting that if L is a matrix, u and v are vectors, and (·, ·) is the usual
Euclidean inner product, then self-adjoint and positive correspond to symmetric
and positive definite, respectively (Exercise 3).

With these properties in hand, we can demonstrate the crucial duality mentioned
earlier: solving the differential equation Lu = f is formally equivalent to minimizing
the functional

F (u) ≡ 1
2
(Lu, u) − (f, u)

over u ∈ H. The functional F is quadratic in u and it has instructive scalar and
matrix analogues (Exercises 4 and 5). The minimization of F is often written in
the compact notation

u = argminv∈H F (v), (10.1)

which means “find the argument that minimizes F over all functions in H.” This
link between the differential equation and the minimization problem lies at the
heart of the finite element formulation. It is so important that we should study it
for a moment to understand it.

Suppose u is a candidate function for minimizing F and v �= 0 is any other
function in H. Consider the value of F at the point u + v. Using the linearity of L
and the bilinearity of the inner product, we see that

F (u + v) =
1
2
(L(u + v), u + v) − (f, u + v)

=
1
2

((Lu, u) + (Lu, v) + (u, Lv) + (Lv, v)) − (f, u) − (f, v)

= F (u) +
1
2

((Lu, v) + (u, Lv) + (Lv, v)) − 〈f, v〉 .

Because L is self-adjoint, we know that (u, Lv) = (Lu, v). This allows us to
simplify the above expression further:

F (u + v) = F (u) + (Lu, v) − (f, v) +
1
2
(Lv, v)

= F (u) + (Lu − f, v) +
1
2
(Lv, v)︸ ︷︷ ︸

positive

.

The last term in this expression is positive because L is a positive operator. There-
fore, we see that if Lu = f , then F (u + v) ≥ F (u) for all v ∈ H, which means
that u minimizes F over H. Conversely, if u minimizes F , then it follows that
(Lu − f, v) = 0 for all v ∈ H, which means that

(Lu, v) = (f, v) for all v ∈ H . (10.2)

A Multigrid Tutorial 179

Ω

�

i − 1 i i + 1

j − 1

j

j + 1

Figure 10.1: A domain Ω showing the four elements surrounding grid point (i, j).

This condition, which is useful for implementing finite elements, is essentially an-
other way of saying that Lu = f . Thus, we have shown that the differential equation
and minimization problem are essentially equivalent.

The finite element discretization of the problem can now be described. Suppose
that the domain is the unit square, Ω = (0, 1)× (0, 1), on which we place a uniform
(n + 1) × (n + 1) grid, Ωh, with mesh size h = 1

n . As before, let (xi, yj) be
the grid point with coordinates (ih, jh). However, we now focus not on the grid
points, but on the square regions surrounding each grid point; these small regions
are called elements (Fig. 10.1). Notice that there are four elements surrounding
each grid point. The sets of four elements corresponding to neighboring grid points
overlap in one or two elements. (Everything that follows can also be carried out on
nonuniform grids.)

We begin with a common choice of approximating functions. Let Hh be the
subspace of H consisting of piecewise bilinear functions uh: each uh ∈ Hh is zero
on ∂Ω, continuous on Ω, and bilinear within each element. This means that a
typical function in Hh has the form uh(x, y) = axy + bx + cy + d on each element,
as depicted in Fig. 10.2. The level h discretization of (10.1) is

uh = argminvh∈Hh F (vh). (10.3)

We have seen that the minimization problem on H is equivalent to solving (10.2)
for u ∈ H. This equivalence is also true on Hh. Thus, the discrete minimization
problem (10.3) is equivalent to finding uh ∈ Hh so that

(Luh, vh) = (f, vh) for all vh ∈ Hh. (10.4)

180 Chapter 10

0�

5�

10�

15�

20�

0�

5�

10�

15�

20�
–0.05�

0�

0.05�

0.1�

0.15�

Figure 10.2: A typical function in the space Hh used to approximate the solution
to the problem. It is zero on ∂Ω, continuous on Ω, and bilinear within each of the
nine elements pictured.

Finite Element Terminology. The terminology associated with finite ele-
ment methods is not entirely standard and can get confusing. The discretization
of the minimization problem is generally called the Rayleigh–Ritz formulation.
The finite element method also has a Galerkin form, which starts not from the
minimization problem (10.1), but from the equation Lu = f . As with Rayleigh–
Ritz, the idea behind the Galerkin form is to approximate the solution u ∈ H by
uh ∈ Hh. However, the Galerkin approach requires the residual Luh − f to be
orthogonal to every vh ∈ Hh. This condition also leads to (10.4). Thus, when L
is a positive, self-adjoint, linear operator, and F is quadratic, the Rayleigh–Ritz
and Galerkin formulations are essentially the same.

The practical solution of (10.4) requires several additional considerations. First,
we need to choose a local basis for Hh consisting of functions, each of which is
nonzero on its own particular patch of four elements. Specifically, let εh

i,j(x, y)
denote the piecewise bilinear function in Hh that is centered on an interior grid
point (xi, yj); it has the value 1 at (xi, yj) and is zero at all other grid points (Fig.
10.3). Any uh ∈ Hh can then be expanded as

uh(x, y) =
n−1∑
i,j=1

uh
i,jε

h
i,j(x, y). (10.5)

The nodal value uh
i,j gives the value of uh at (xi, yj); for this reason, (10.5) is called

a nodal basis expansion.

A Multigrid Tutorial 181

Figure 10.3: A typical basis function εh
i,j(x, y) for the space Hh. It is nonzero, only

on the patch of four elements that have (xi, yj) as a node.

The next step is to substitute expansion (10.5) into expression (10.4). However,
this task leads to a paradox: the operator L is second order and the approximating
function uh is linear in x and y, so Luh = 0 in each element! How can Luh be zero
when we know generally that (Luh, uh) > 0? The answer is that Luh is not zero on
Ω. In fact, Luh does not even make sense on Ω because uh is not suitably smooth:
the first partials of uh are piecewise smooth and therefore square integrable, but
their discontinuities at the element boundaries prevent second derivatives from
being square integrable. This means that we really cannot substitute (10.5) into
(10.4). Fortunately, there is a way out of this dilemma: we just rewrite (10.4) in a
form that requires fewer derivatives. This is done by applying the Gauss divergence
theorem (the analogue of integrating by parts) to (Lu, v), where u, v ∈ H, and using
the fact that u and v vanish on ∂Ω (Exercise 1):

(Lu, v) =
∫

Ω

(−uxx − uyy)v dΩ

=
∫

Ω

(uxvx + uyvy) dΩ

= (∇u,∇v) .

This maneuver replaces the second-order derivatives in the problem by first-order
derivatives. Making this replacement in (10.4), we are led to the weak form

(∇uh,∇vh) = (f, vh) for all vh ∈ Hh. (10.6)

Strictly speaking, this new problem is more general or weaker than the differential
equation: a solution may exist, but it may not be twice differentiable, which the

182 Chapter 10

classical solution of Lu = f requires. We stay with the weak form for the remainder
of the chapter, so we are now free to be specific about what suitably smooth means:
H ⊂ L2(Ω) is assumed to consist of functions that vanish on ∂Ω and that have first
partials in L2(Ω).

With the weak form of the problem, we can now substitute the expansion (10.5)
into (10.6). Furthermore, we choose the so-called trial functions vh to be the basis
functions εi,j . The result of this substitution is a linear system whose unknowns
are the nodal values uh

i,j . The matrix coefficients in this system are inner products
of the form (∇εh

i,j ,∇εh
k,�) and the right-side values are (f, εh

i,j). Note that with
our chosen bilinear basis functions, only neighboring basis functions overlap; thus,
the inner products (∇εh

i,j ,∇εh
k,�) are zero unless k = i or i ± 1 and � = j or j ± 1.

Evaluating the nine inner products associated with the (i, j) patch results in a row
of the stiffness matrix (Exercise 6) given by the stencil

Ah
i,j =

1
3

−1 −1 −1

−1 8 −1
−1 −1 −1

 . (10.7)

This is the just the nine-point finite difference stencil scaled by 1
3 (instead of the

usual 1
3h2).

The inner products (f, εh
i,j) involve the integrals

(f, εh
i,j) =

∫ xi+1

xi−1

∫ yi+1

yi−1

fεh
i,j dxdy,

which are generally approximated numerically. The simplest numerical integration
scheme amounts to replacing the function f by its value f(xi, yj) (Exercise 7):

(f, εh
i,j) =

∫ xi+1

xi−1

∫ yi+1

yi−1

fεh
i,j dxdy

≈ f(xi, yj)
∫ xi+1

xi−1

∫ yi+1

yi−1

εh
i,j dxdy

=
h2

4
f(xi, yj). (10.8)

When all rows of stiffness matrix (10.7) and corresponding right sides (10.8) are
assembled, the result is the matrix equation

Ahuh = fh. (10.9)

Here we have introduced the source vector (fh)i,j =
(

h2

4 f(xi, yj)
)

and the solution

vector (uh)i,j =
(
uh

i,j

)
∈ Ωh.

This discretization shows that finite elements and finite differences boil down to
similar matrix problems. But it is important to keep in mind that the methodology
used to obtain them is quite different. Practical implementation of a multigrid
scheme for finite elements can be done easily if we are guided by—and remain
faithful to—the basic principle of functional minimization. For example, it may
seem convenient to rescale (10.9) by dividing both sides by h2, but this would
change the relationship between the various grids used in the multigrid scheme,
and it could easily introduce conceptual errors into the overall process.

A Multigrid Tutorial 183

We develop the multigrid scheme in the abstract by focusing on the functions
uh that solve (10.3) and (10.4), rather than their nodal values uh. First consider
relaxation, whose goal is to provide an inexpensive method for eliminating oscilla-
tory errors in the approximation, vh. We can do this by making local changes of
the form

vh ← vh − sεh
i,j , (10.10)

where s ∈ R is a suitably chosen step size. But how should s be chosen? Our plan
of being faithful to the minimization principle gives us the answer: choose the best
step size in the sense that it minimizes the functional over all possible choices. The
mathematical statement is

s = argmint∈R F (vh − tεh
i,j). (10.11)

This gives us the following relaxation scheme, which amounts to using (10.10) and
(10.11) to sweep over the grid points:

For each i, j = 1, 2, ..., n − 1:

compute s = argmint∈R F (vh − tεh
i,j) and make the replacement vh ← vh − sεh

i,j .

For our special functional F , this coordinate relaxation scheme is none other than
Gauss–Seidel applied to (10.7) (Exercise 8).

The coarse-grid correction process is also easy to formulate in the abstract. We
define the coarse-grid space H2h ⊂ Hh as the set of piecewise bilinear functions
associated with the standard coarse grid Ω2h formed by deleting the odd-numbered
lines of Ωh. The goal is to change the approximation vh by a function v2h ∈ H2h

that approximates the presumably smooth error. The form of this correction is
vh ← vh + v2h. But how should v2h be chosen? Again, being faithful to the mini-
mization principle gives us the answer: choose the best coarse-grid correction in the
sense that it minimizes the functional over all possible choices. The mathematical
statement is

v2h = argminw2h∈H2h F (vh + w2h). (10.12)

The coarse-grid correction scheme is

Compute v2h = argminw2h∈H2h F (vh + w2h) and set vh ← vh + v2h.

This correction step, together with the coordinate relaxation scheme defined above,
constitutes the core of the multigrid method. We can design practical algorithms
based on this core just as we did in Chapter 3.

Our development of the finite element coarse-grid correction step appears sim-
pler than it was for finite differences, because it comes naturally from the mini-
mization principle. However, this simplicity is somewhat deceptive because it must
still be expressed in terms of nodal vectors, and this requires intergrid transfer and
coarse-grid operators. We will see that there are no choices that need to be made
here: these operators are determined by the spaces and bases that we have already
selected.

184 Chapter 10

�� � ��
�

�
�

�
�

�
�

�
�

2i 2i + 1 2(i + 1)

�
�

�

x

Figure 10.4: Cross-section of the grid along a line of constant y showing the coarse-
grid points (2i, 2j) and (2(i+1), 2j) and the intermediate fine-grid point (2i+1, 2j).
The coarse-grid element is linear in x between the two coarse-grid points.

Consider first the process of adding an Ω2h function, v2h ∈ H2h, to an Ωh

function. This process requires that we take the Ω2h nodal representation for v2h,

v2h(x, y) =

n
2 −1∑

i,j=1

v2h
i,jε

2h
i,j(x, y) ,

and convert it to a Ωh nodal representation,

v2h(x, y) =
n∑

i,j=1

vh
i,jε

h
i,j(x, y) .

In other words, we must find the coefficients vh
i,j that allow us to write v2h as a

function in Hh. We know that we can do this because H2h is a subset of Hh, so
v2h must be in Hh. What we are looking for here is really just the interpolation
operator Ih

2h that allows us to determine vh = Ih
2hv

2h.
Consider the grid Ω2h node with indices (i, j) that is located at the point

(i(2h), j(2h)). This point is also the grid Ωh node ((2i)h, (2j)h) with indices (2i, 2j).
Remembering that the coefficients in the nodal representations are just the function
values at the nodes, we have

vh
2i,2j = v2h((2i)h, (2j)h) = v2h(i(2h), j(2h)) = v2h

i,j .

This says that vh
2i,2j = v2h

i,j .
Consider now the fine-grid node at point ((2i + 1)h, (2j)h) (see Fig. 10.4). This

node is halfway between nodes ((2i)h, (2j)h) and (2(i+1)h, (2j)h) along a horizontal
grid line. This line segment is part of a single coarse-grid element in which v2h is
bilinear and y is constant; thus, v2h must be linear in x along this line. This leads
us to conclude that

vh
2i+1,2j =

1
2

(
v2h

i,j + v2h
i+1,j

)
.

For similar reasons, we have

vh
2i,2j+1 =

1
2

(
v2h

i,j + v2h
i,j+1

)

A Multigrid Tutorial 185

and
vh
2i+1,2j =

1
4

(
v2h

i,j + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1

)
.

As you can see, we have just reinvented the interpolation operator Ih
2h introduced

in Chapter 3.
The next task is to determine the coarse-grid version of the operator Ah, which

will eventually be called A2h. It is most easily discovered by working with the nodal
vectors and translating the minimization principle into matrix terms. As we have
seen, discrete minimization principle (10.3) is equivalent to discrete equation (10.4),
which in turn is equivalent to matrix equation (10.9). Similar reasoning shows that
matrix equation (10.9) is equivalent to the matrix minimization principle

uh = argminvh∈Ωh Fh(vh) , (10.13)

where
Fh(vh) ≡ 1

2
(Ahvh,vh) − (fh,vh)

(Exercise 5). Furthermore, similar reasoning also shows that coarse-grid correction
problem (10.12) is equivalent to the matrix problem

v2h = argminw2h∈Ω2h Fh(vh + Ih
2hw

2h).

We use this form of the coarse-grid correction problem to carry out an informative
calculation. Using the properties of inner products, we have (read this one with a
pencil and paper!)

Fh(vh + Ih
2hw

2h)

=
1
2

(
Ah

(
vh + Ih

2hw
2h

)
,vh + Ih

2hw
2h

)
− (fh,vh + Ih

2hw
2h)

=
1
2
(Ahvh,vh) +

1
2
(AhIh

2hw
2h,vh) +

1
2
(vh, AhIh

2hw
2h)

+
1
2
(AhIh

2hw
2h, Ih

2hw
2h) − (fh,vh) − (fh, Ih

2hw
2h)

=
1
2
(Ahvh,vh) − (fh,vh)

+
1
2
(AhIh

2hw
2h, Ih

2hw
2h) + (vh, AhIh

2hw
2h) − (fh, Ih

2hw
2h)

= Fh(vh) +
1
2

(

Ih
2h

)T
AhIh

2h︸ ︷︷ ︸
A2h

w2h,w2h

 −

(

Ih
2h

)T︸ ︷︷ ︸
I2h

h

(
fh − Ahvh

)
,w2h

 .

Notice that the first underbraced item,
(
Ih
2h

)T
AhIh

2h, is a matrix that operates
on a coarse-grid vector. Furthermore, the role it plays in the inner product is
analogous to the role played by Ah in the functional Fh. This suggests that we let
A2h =

(
Ih
2h

)T
AhIh

2h, the coarse-grid version of Ah.

The second underbraced item,
(
Ih
2h

)T , must take a fine-grid vector into a coarse-
grid vector; that is, it plays the role of a restriction operator. It therefore makes
sense to let I2h

h =
(
Ih
2h

)T .

186 Chapter 10

With these operators identified, we may conclude the calculation. Letting rh =
fh − Ahvh and f2h =

(
I2h
h

)
rh, we have

Fh(vh + Ih
2hw

2h) = Fh(vh) +
1
2

(
A2hw2h,w2h

)
−

((
I2h
h

)
rh,w2h

)
= Fh(vh) + F 2h(w2h) .

We should stand back and see what we have done. First, because Fh(vh) is
independent of w2h, the minimization of Fh(vh + Ih

2hw
2h) is equivalent to the

minimization of F 2h(w2h) over vectors w2h ∈ Ω2h; this is just the coarse-grid
correction scheme introduced in Chapter 3.

Equally important, we have seen the variational properties of Chapter 5 emerge
rather naturally through the minimization principle. They bear repeating:

A2h = I2h
h AhIh

2h (Galerkin property),

I2h
h =

(
Ih
2h

)T
.

Thus, the finite element coarse-grid correction scheme amounts to choosing bi-
linear interpolation, its transpose for restriction, and the Galerkin property for
determining the coarse-grid operator. Except for scaling differences, we have rein-
vented the transfer operators, coarse-grid operators, and the coarse-grid correction
scheme developed in the previous chapters. It is important to keep in mind that
for positive self-adjoint problems, we now have the option of developing multigrid
solvers directly from the differential equations, as we did before, or using the min-
imization principle, as we did here. The differential equations may provide more
flexibility simply because you do not have to adhere to optimality, but the choice
to follow the minimization principle may give guidance and assurance that is less
forthcoming from the differential equations.

Exercises

1. Weak form. For functions u, v that are sufficiently smooth on Ω and vanish
on ∂Ω, show that (Lu, v) = (∇u,∇v). Hint: First apply the divergence
theorem to the product v∇ · u, where u is a vector-valued function and v is
a scalar. Then remember that Lu = −∆u = −∇ · (∇u).

2. L is self-adjoint and positive. Let u, v be sufficiently smooth functions
that vanish on ∂Ω. Show that the Poisson operator L = − ∂2

∂x2 − ∂2

∂y2 is self-
adjoint in the sense that (Lu, v) = (u, Lv). Hint: Use Exercise 1. Show
that L is positive in the sense that (Lu, u) > 0 for u �= 0. Hint: Show that
(Lu, u) = 0 implies u is constant.

3. Self-adjoint and positive for matrices. Show that if L is a matrix, u and
v are vectors, and (·, ·) is the usual vector dot product, then self-adjoint and
positive correspond to symmetric and positive definite, respectively.

4. Scalar analogue. Show that if L > 0 and f are scalars and (·, ·) is just scalar
multiplication, then (Lu, u) is a quadratic function. Furthermore, 1

2 (Lu, u)−
(f, u) is minimized by the solution of Lu = f , which is u = f/L.

A Multigrid Tutorial 187

5. Matrix analogue. Suppose that L is a symmetric positive-definite n × n
matrix, u and f are n-vectors, and (·, ·) is the usual vector dot product.
Show that 1

2 (Lu, u) − (f, u) is minimized by the solution of Lu = f , which is
u = L−1f .

6. Stiffness matrices. For fixed indices i and j, show that the inner products
(∇εh

i,j ,∇εh
k,�) for k = i or i±1 and � = j or j±1 give the 3×3 stencil (10.7).

7. Right-side inner products. Show that∫ xi+1

xi−1

∫ yi+1

yi−1

εh
i,jf dxdy ≈ h2

4
f(xi, yj),

where the region of integration is a single element.

8. Gauss–Seidel. Show that minimization problem (10.11) results in Gauss–
Seidel applied to (10.9).

9. Variational property. Verify each of the steps in the simplification of
Fh(vh + Ih

2hw
2h) that led to the variational properties.

Bibliography

The ultimate resource for multigrid methods is the MG-Net website, located at
http://www.mgnet.org. The site is maintained by Craig Douglas and sponsored
by Yale University, CERFACS, the University of Kentucky, and the NSF. The
site features an extensive bibliography (over 3200 citations), links to free soft-
ware (at least 22 packages at last count), information on conferences, and issues of
the Multigrid Newsletter (back to 1991). To subscribe to the newsletter, write to
mgnet@cs.yale.edu.

The Copper Mountain Conferences on Multigrid Methods have been held bi-
ennially since 1983. There have also been six European multigrid conferences.
Proceedings of recent conferences are available via MG-Net.

[1] R.E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differ-
ential Equations. Users’ Guide 7.0, vol. 15, Frontiers in Applied Mathematics,
SIAM, Philadelphia, 1994.

[2] J.H. Bramble, Multigrid Methods, vol. 294, Pitman Research Notes in Math-
ematical Sciences, Longman Scientific and Technical, Essex, England, 1993.

[3] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math.
Comput., 31, 1977, pp. 333–390.

[4] A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid
Dynamics, GMD-Studien Nr. 85, Gesellschaft für Mathematik und Datenver-
arbeitung, St. Augustin, Bonn, 1984.

[5] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math.
Comput., 19, 1986, pp. 23–56.

[6] A. Brandt, S.F. McCormick, J. Ruge, Algebraic multigrid (AMG) for
sparse matrix equations, in Sparsity and its Applications, D.J. Evans, ed.,
Cambridge University Press, Cambridge, UK, 1984, pp. 257–284.

[7] J.W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[8] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations, vol. 16, Classics in Applied Mathematics,
SIAM, Philadelphia, 1996.

[9] G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins Univer-
sity Press, Baltimore, MD, 1996.

189

190 Bibliography

[10] W. Hackbusch, Multigrid Methods and Applications, vol. 4, Computational
Mathematics, Springer-Verlag, Berlin, 1985.

[11] W. Hackbusch and U. Trottenberg, Multigrid Methods, vol. 960, Lecture
Notes in Mathematics, Springer-Verlag, Berlin, 1982.

[12] D. Jespersen, Multigrid methods for partial differential equations, in Studies
in Numerical Analysis, vol. 24, Studies of Mathematics, MAA, Washington
D.C., 1984, pp. 270–318.

[13] S.F. McCormick, ed., Multigrid Methods, vol. 3, Frontiers in Applied Math-
ematics, SIAM, Philadelphia, 1987.

[14] S.F. McCormick, Multilevel Adaptive Methods for Partial Differential Equa-
tions, vol. 6, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1989.

[15] S.F. McCormick, Multilevel Projection Methods for Partial Differential
Equations , vol. 62, CBMS-NSF Regional Conference Series in Applied Math-
ematics, SIAM, Philadelphia, 1992.

[16] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equa-
tions in Several Variables, Academic Press, San Diego, 1970. Reprinted as vol.
30, Classics in Applied Mathematics, SIAM, Philadelphia, 2000.

[17] U. Rüde, Mathematical and Computational Techniques for Multilevel Adaptive
Methods, vol. 13, Frontiers in Applied Mathematics, SIAM, Philadelphia, 1993.

[18] J. W. Ruge and K. Stüben, Algebraic multigrid, in Multigrid Methods, vol.
3, Frontiers in Applied Mathematics, S. F. McCormick, ed., SIAM, Philadel-
phia, 1987, pp. 73–130.

[19] V. V. Shaidurov, Multigrid Methods for Finite Elements, vol. 318, Mathe-
matics and Its Applications, Kluwer, Dordrecht, 1995.

[20] G.W. Stewart, Introduction to Matrix Computations, Academic Press, New
York, 1973.

[21] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-
Hall, Englewood Cliffs, NJ, 1973.

[22] K. Stüben, Algebraic Multigrid (AMG): An Introduction with Applications,
GMD-Studien Nr. 53, Gesellschaft für Mathematik und Datenveranbeitung,
St. Augustin, Bonn, 1999.

[23] L.N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadel-
phia, 1997.

[24] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ,
1962.

[25] P. Wesseling, An Introduction to Multigrid Methods, John Wiley and Sons,
Chichester, 1992.

[26] D. Young, Iterative Solution of Large Linear Systems, Academic Press, New
York, 1971.

Index

A-inner product, 77, 139
A-norm, 77, 139
A-orthogonal, 77

algebraic error, 7, 76
algebraic multigrid, 4, 137
aliasing, 19, 32, 80
alternating direction method, 64
AMG costs, 153
AMG two-grid correction cycle, 153
amplification factor, 49
anisotropic problems, 120
asymptotic convergence factor, 48, 66

bilinear functions, 179
block Jacobi method, 123
border points, 165, 167
boundary points, 167
boundary value problems, 1

coarse-grid correction, 84, 87, 93
coarse interpolatory set, 142
coloring, 146
compatibility condition, 114
complementary modes, 80, 92
composite grid, 167
condition number, 29
conservative method, 130
convection-diffusion equation, 5, 72
convergence factor, 17, 66, 75, 93
convergence rate, 17, 71
coordinate relaxation, 183
correction scheme, 33
cubic interpolation, 66
cyclic reduction, 4

damped Jacobi method, 9, 22, 28, 93
data structure, 46, 69
diagonally dominant, 3
direct methods, 4

discrete L2 norm, 55
discretization error, 77

eigenvectors, 18, 28
elements, 179
energy inner product, 77
energy norm, 77, 91
essential boundary conditions, 113

Fast adaptive composite grid method
(FAC), 76, 163, 167

fast Fourier transform, 4
finite difference method, 1
finite element method, 177
FMG, 78, 91
FMG cycle, 42, 48, 67, 72, 77
Fourier analysis, 48
Fourier modes, 12, 28, 31
full approximation scheme (FAS), 98
full coarsening, 152
full multigrid (FMG), 42, 43, 48, 68,

72, 75, 78
full multigrid V-cycle, 42, 48, 67, 72,

77, 91
full weighting operator, 36, 43, 44, 71,

72, 79, 80, 84, 92, 93

Galerkin, 180
Galerkin condition, 75, 153
Gauss divergence theorem, 181
Gauss–Seidel method, 4, 10, 11, 22,

28, 29, 71
Gaussian elimination, 4
ghost points, 113
global coarse grid, 167
global grid, 163
Gram–Schmidt method, 117
grid complexity, 154

half-injection, 66, 71

191

192 Index

Helmholz equation, 2
high-frequency modes, 19, 86

immediate replacement algorithm, 61
inexact Newton’s method, 105
injection, 35, 43, 71
inner product, 28, 77, 91
interface points, 167
interpolation, 34, 36, 43, 71, 72, 80,

81, 92, 143
interpolation weights, 144
iteration matrix, 9, 11, 16, 19, 28
iterative method, 4

Jacobi method, 4, 8
Jacobian, 96

Klauss Stüben, 140

level of discretization error, 60, 67, 76,
91

lexicographic ordering, 2
line relaxation, 64
line relaxation/full coarsening, 123
linear stationary iteration, 43
local fine grid, 163, 167
local mode analysis, 48
low-frequency modes, 19, 86

µ-cycle, 42
M-matrix, 3, 138
matrix norm, 16
multilevel methods, 4

neighborhood, 142
nested iteration, 33
Neumann boundary conditions, 4, 113
Newton’s method, 96, 97
Newton-multigrid, 96
nodal basis expansion, 180
nonlinear Gauss–Seidel, 95
norm, 7, 64
normal mode analysis, 48
null space, 34, 36, 79, 80, 85–87, 92,

93

operator complexity, 154
operator interpolation, 129
orthogonality, 77, 86
oscillatory modes, 19, 21, 80, 81, 83

periodic boundary conditions, 5
Poisson equation, 2
positive definite, 2, 3, 28, 91
positive operator, 178
prolongation, 34

quadratic functional, 178

range of interpolation, 73, 81, 84–86,
93

rank, 34, 36, 79
rate of convergence, 17
Rayleigh–Ritz, 180
red-black coarsening, 144, 152
red-black Gauss–Seidel, 11, 44, 64, 71
relaxation method, 4, 7, 87
residual, 7, 32, 33, 74
residual equation, 8, 73, 74
restriction operator, 35, 36, 79
Richardson iteration, 28, 29

self-adjoint, 130, 177, 178
semi-coarsening/line relaxation, 125
semi-coarsening/point relaxation, 121
slave points, 167
smooth modes, 19, 21, 80, 83
smoothing factor, 22, 48, 49
smoothing property, 25, 83
smoothing rate, 75
spectral radius, 16, 29
square integrable functions, 177
stationary linear iteration, 10, 11, 43
stiffness matrix, 182
storage, 46
strong dependence, 140
strong influence, 140
symmetric Gauss–Seidel, 11
symmetric positive definite, 2, 28, 91

tau correction, 98
Taylor series, 96
two-grid correction, 37, 38, 78, 82, 91
two-point boundary value problem, 1

undirected adjacency graph, 137

V-cycle, 40, 42, 43, 46, 47, 61, 64, 71,
72, 77, 90, 91

variable-coefficient problems, 130
variable-mesh problems, 128

Index 193

variational property, 36, 75, 84, 153,
166, 177, 186

W-cycle, 42
wavenumber, 12
weak form, 181
weakly connected neighbors, 142
weighted Jacobi method, 9, 11, 12, 19,

22, 28, 29, 37, 71, 138
work units, 47, 61, 68

zebra relaxation, 64

View publication statsView publication stats

https://www.researchgate.net/publication/220690328

