
Math1024 Answer to Homework 1
Exercise 2.6.1 (3)

f ′(x) = log x + 1, f ′′(x) = 1
x
.

Letf ′(x) = log x + 1 = 0⇒ x = e−1 is a candidate of local extrema. f ′′(e−1) = e > 0, then
we could use Taylor expansion of f(x) at x = e−1 here, which is

f(x) = x log x = −e−1 +
e

2
(x− e−1)2 + o((x− e−1)2)

From Theorem 2.6.1, we know that now x = e−1 is a local minimum.

Exercise 2.6.2
Differentiate x3 + y3 = 6xy, we have 3x2 + 3y2y′ = 6y + 6xy′, move terms and simplify it,

we can get (y2 − 2x)y′ = 2y − x2.
Then the implicit function is well-defined when y2− 2x 6= 0. Under this condition, the first

order derivative is

y′ =
2y − x2

y2 − 2x
.

Combine 2y − x2 = 0 and x3 + y3 = 6xy, that is, by solving system

x3 + y3 = 6xy

2y − x2 = 0

We can find P = ( 3
√

16, 3
√

32) is the only candidate for local extrema of the implicit function.
Finally, differentiate 3x2 + 3y2y′ = 6y + 6xy′, we have

y′′ =
2x + 2y(y′)− 4y′

2x− y2
.

Since y′(P ) = 0, y′′(P ) < 0⇒ P is a local maximum.

Exercise 2.6.5 (2)
f ′(x) = x sinx, f ′(0) = 0. f ′′(x) = sinx + x cosx, f ′′(0) = 0. f ′′′(x) = 2 cos x − x sinx,

f ′′′(0) = 2 6= 0, then 0 is not a local extrema.

Exercise 2.6.5 (4)
f ′(x) = 1

2!
x2ex, f ′(0) = 0. f ′′(x) = x2ex + 1

2!
x2ex, f ′′(0) = 0. f ′′′(x) = e2 + 2x2ex + 1

2!
x2ex,

f ′′′(0) = 1 > 0, then 0 is not a local extrema.

Exercise 2.6.6 (2)
For x 6= 0 close to 0, we have
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f(x) =
1

x + bx3

(
x− x3

6
+

x5

120
+ o(x6)

)
=

1

1− (−bx2)

(
1− x2

6
+

x4

120
+ o(x5)

)
=
(
1− bx2 + b2x4 + o(x5)

)(
1− x2

6
+

x4

120
+ o(x5)

)
= 1−

(
b +

1

6

)
x2 +

(
b2 +

b

6
+

1

120

)
x4 + o(x5).

Since f(0) = 1, the 4-th order approximation also holds for x = 0.
Then, if b > −1

6
, 0 is a local maximum; if b < −1

6
, 0 is a local minimum; if b = −1

6
, the

coefficient of x4 equals 1
120

> 0, then 0 is a local minimum.

Exercise 2.6.7 (10)
f(x) = xx is well-defined when x > 0.

LetF (x) = log f(x) = x log x, thenF ′(x) = f ′(x)
f(x)

= log x + 1, f ′(x) = xx(log x + 1).

f ′′(x) = xx(log +1)2 + xx−1 > 0 and thus f(x) is convex in (0,+∞).

Exercise 2.6.8
Recall that in (0,+∞), xp is convex when p > 1 or p < 0, and is concave when 0 < p < 1.
Here, we find the condition on A and B such that f(x) is convex on the whole real line.

Then the domain of f(x) should be (−∞,+∞) and f(x) is continuous in the domain. So we
have p > 0 and q > 0, f(0) = 0. Note that if f(x) is convex, then cf(x) is concave where c is
a negative constant.

(1) p > 1, q > 1.
If A > 0 or B > 0, f(x) is differentiable and f ′(x) is increasing, so f(x) is convex.

If either A < 0 and B < 0, then f(x) is strictly concave in a interval(concave but not a linear
function), not convex.

(2) p > 1, q = 1.
If A > 0 and B > 0, f(x) is not differentiable at the origin. Since for any x < 0, y > 0,

f(x) > 0 and f(y) > 0, then Lx,y(0) > f(0) = 0. Thus Lx,y(z) > L0,y(z) for any z ∈ [(0,+∞),
and Lx,y(z) > Lx,0(z) for any z ∈ (−∞, 0). But L0,y(z) > f(0) for any z ∈ (0,+∞) and
Lx,0(z) > f(0) for any z ∈ (−∞, 0) because of the condition of A and B, so Lx,y(z) > f(z) for
any z in R. f(x) is convex.

If A > 0 and B = 0, f(x) is differentiable and f ′(x) is increasing, so f(x) is convex.
If A < 0, then f(x) is strictly concave in a interval, not convex. If A > 0 and B < 0, then

you can easily find two point x < 0 and y > 0, let Lx,y represent the corresponding linear
function, Lx,y(0) < f(0) = 0, so f(x) is not convex. How to find such two point? Let me just
take the case A > 0 and B < 0 as example. Fix a point x > 0 on the negative part of the graph
of f(x), and the line passing x and origin will intersect a point z on the positive part. Take a
point x between origin and z. x and y are what we want.
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Similarly, you can deal with case of p = 1, q > 1.

(3) p > 1, 0 < q < 1.
If A < 0 or B > 0, then f(x) is strictly concave in a interval,, not convex.
If A > 0 and B = 0, f(x) is differentiable and f ′(x) is increasing, so f(x) is convex.
If A > 0 and B < 0, similar argument as in (2) shows that you can easily find two point

x < 0 and y > 0, Lx,y(0) < f(0) = 0 f(x) is not convex.
Similarly, you can deal with case of 0 < p < 1, q > 1.

(4) p = 1 and q = 1.
In this case, on the graph is that two rays are connected at the origin. A and −B are the

slopes. You can easily check A + B > 0 in order to f(x) is convex.

(5) p = 1 and 0 < q < 1.
If B > 0, then f(x) is strictly concave in a interval, not convex.
If B = 0, it is similar to case (4), but now B = 0, then A > 0 in order to make f(x) convex.
If B < 0, no matter for any value of A, similar argument as in (2) shows that f(x) is not

convex.
Similarly, you can deal with case of 0 < p < 1, q = 1,

(6) 0 < p < 1, 0 < q < 1.
Then we have to let A 6 0 and B 6 0.
If either A 6= 0 and B 6= 0, similar argument as in (2) shows that f(x) is not convex. so

A = B = 0.

(7) p > 0, q = 0.
Then we have to let B = 0, otherwise f(x) is not continue. Similar argument as in all cases

above shows that: If p > 1, q = 0, then A > 0. If 0 < p < 1, q = 0, then A = 0.

Exercise 2.6.9
By concavity of log x, we have: for p, q > 0 satisfying 1

p
+ 1

q
= 1, and ∀x, y > 0,

log

(
x

p
+

y

q

)
>

1

p
log x +

1

q
log y.

Replace x and y respectively by xp and yq, then

log

(
xp

p
+

yq

q

)
>

1

p
log xp +

1

q
log yq = log xy.

By the fact that log x is a increasing function, we have

xp

p
+

yq

q
> xy.

Exercise 2.6.13 (3)

Exercise 2.6.14 (5)
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Figure 1: Exercise 2.6.13(3)

Exercise 2.6.18
When c = 0, d 6= 0, the function ax+b

cx+d
would become a linear function, whose graph is just

a line.
when c 6= 0, d 6= 0,

ax + b

cx + d
=

a
c
(cx + d) + b− ad

c

cx + d
=

a

c
+

b− ad
c

cx + d
=

a

c
+

bc−ad
c2

x + d
c

.

From this form, the function could be seen as the shift and scaling of 1
x
.

Without loss of generality, we assume that a > 0, b > 0, c > 0, d < 0, then the graph of ax+b
cx+d

would look like Figure 5.

Exercise 2.6.19 (4)
The function x3

(x−1)2 is not defined at 1 and has limit

lim
x→1

x3

(x− 1)2
=∞

We can know the function information as following:

Exercise 2.7.1 (3)
We know from the Taylor Expansion that we could use

Tn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n
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Figure 2: Exercise 2.6.14(5), 0 < a < 1

Table 1: Result of 2.6.19 (4)
x (∞, 0) 0 (0, 1) 1 (1, 3) 3 (3,∞)

f = x3

(x−1)2 −∞← 0 ∞ 27
4

→∞

f ′ = x2(x−3)
(x−1)3

+ − 0 +
↗ ↘ min ↗

f ′′ = 6x
(x−1)4 − inflection +

as n-th order approximation of a function f(x) when it has n-th order derivative at x0. We
just use linear approximation of n

√
an + x at x = 0 here, which is

n
√
an + x ≈ n

√
an + 0 +

1

n
(an + 0)

1
n
−1(x− 0) = a +

x

nan−1

for a > 0. Thus for 5
√

39, we just take n = 5, a = 2, x = 7. Then 5
√

39 = 2 + 7
5·24 = 2.0875.

Exercise 2.7.3 (1)
The Taylor expansion of sinx tells us

sin 1 = 1− 1

3!
13 + R3(1).

where

|R3(1)| = sin(4)(c)

4!
14 ≤ sin 1

4!
, 0 < c < 1

Therefore sin 1 = 1− 1
6

= 0.833 · · · and the error is sin 1
4!

= 0.03506 · · ·
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Figure 3: Exercise 2.6.14(5), a > 1

Exercise 2.7.4 (1)
In order to find approximate values of sin1 accurate up to the 10-th digit, we would use

|Rn(1)| = |sin
(n+1)(c)

(n + 1)!
1n+1|,where 0 < c < 1

to control the error.
When n=13,

|R13(1)| = |sin
(14)(c)

14!
1| ≤ sin1

14!
= 9.65× 10−12,

Thus

sin 1 ≈ 1− 1

3!
+

1

5!
− 1

7!
+

1

9!
− 1

11!
+

1

13!
= 0.8414709848

Exercise 2.7.8
For the function f(x) = ex− x− 2, we know it should have the unique solution on (1, 2) by

f(1) = e − 1 − 2 = e − 3 < 0 and f(2) = e2 − 2 − 2 = e2 − 4 > 0. Then take 1 as an initial
value, just keep using the iteration induced by the Newton’s method,

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

exn − xn − 2

exn − 1
.

We would find the sequence just converges very close to the exact root of f(x). Actually we
can write some simple codes by Matlab or other math softwares to get the iterative result for
these questions. Here is a sample of Matlab codes and the corresponding result(values accurate
up to 8-th digit) for this question:
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Figure 4: Graph of ax+b
cx+d

when a > 0, b > 0, c > 0, d < 0

x = 1;

err = 10^(-10); %the value of error we hope to reach

n = 1;

f = exp(1) - 1 -2;

%The next three lines are used to print result

fprintf(’step x f(x) \n’)

fprintf(’---- ---------- -----------\n’)

fprintf(’%3i %8.8f %8.8f \n’, n, x, f)

while (abs(f) > err)

n = n + 1;

fprime = exp(x) - 1;

y = x - f/fprime;

x = y;

f = exp(x) - x -2;

fprintf(’%3i %8.8f %8.8f \n’, n, x, f)

end

Exercise 2.7.10
To find the approximate value of

√
4.05 is equivalent to find the root of f(x) = x2 − 4.05

and to find the approximate value of e−1 is equivalent to find the root of g(x) = log(x) + 1.
Similarly, we run some codes of Newton’s method to get the approximate value by starting
from 2 and 0.5 respectively. Here are results of iteration:

Thus the approximate value of
√

4.05 is 2.0124611798 and the approximate value of e−1 is
0.3678794412.
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Figure 5: Graph of x3

(x−1)2

Table 2: Result of 2.7.8
Step x f(x)

1 1.00000000 -0.28171817
2 1.16395341 0.03861595
3 1.14642119 0.00048934
4 1.14619326 0.00000008
5 1.14619322 0.00000000

Exercise 2.7.12
This is exactly the recursive relation induced by Newton’s method. Cause getting the value

of
√
a for a > 0 equals to finding the root of f(x) = x2 − a.

From Newton’s method, we know that xn+1 = xn − f(xn)
f ′(xn)

= xn − x2
n−a
2xn

= 1
2
(xn + a

xn
), which

is just the recursive relation used by the ancient Babylonians to compute
√
a.

Exercise 2.7.15
1. For 3

√
x = 0, we could get the iteration expression of Newton’s method,

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x
1/3
n

1
3
x
−2/3
n

= xn − 3xn = −2xn.

This means that the iterative sequence would diverge if not starting from x0 = 0. Thus
Newton’s method would fail when starting at any x0 6= 0.
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Table 3: Result of 2.7.10 for
√

4.05
Step x f(x)

1 2.00000000000 -0.05000000000
2 2.01250000000 0.00015625000
3 2.01246118012 0.00000000151
4 2.01246117975 0.00000000000

Table 4: Result of 2.7.10 for e−1

Step x g(x)
1 0.50000000000 0.30685281944
2 0.34657359028 -0.05966010114
3 0.36725020573 -0.00171190374
4 0.36787890273 -0.00000146364
5 0.36787944117 -0.00000000000

2. For sign(x)
√
|x| = 0, which is {√

x x ≥ 0,

−
√
−x x < 0.

when written in the piecewise function. Then by Newton’s method,

when xn ≥ 0, xn+1 = xn −
√
xn

1
2

1√
xn

= −xn,

when xn < 0, xn+1 = xn −
−
√
−xn

1
2

1√
−xn

= xn + 2
√
−xn

√
−xn = −xn.

This also imply that the iterative sequence would diverge if not starting from x0 = 0 which
actually just jumps between the starting point and the negative of it. Thus Newton’s method
would fail when starting at any x0 6= 0.
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