
BAIRE’S THEOREM AND SETS OF DISCONTINUITY

1. Sets of discontinuity. For f : R→ R, we define

Df = {x ∈ R; f is not continuous at x}.

Example 1. (Dirichlet’s function) f(x) = 1, x ∈ Q; f(x) = 0, x ∈ I :=
R \Q. Here Df = R.

Example 2. (Thomae’s function) f(0) = 1; f(r) = 1/q, r ∈ Q if r =
p/q in lowest terms, with p 6= 0; f(x) = 0, x ∈ I. Here Df = Q.

Example 3. If f : R → R is monotone, one-sided limits exist (and are
finite) at each a ∈ R, all discontinuities are ‘jump type’ and and Df is
countable.(Proof: Define an injective map Df → Q by picking a rational
number in each ‘gap’ in the image of f (each point of discontinuity defines
such a gap, and the gaps are disjoint.)

Conversely, given a countable set D = {xn, n ≥ 1} ⊂ R, define:

f(x) =
∑

{n;xn<x}

1

2n
.

It is not hard to show that f is increasing and Df = D.

To understand Df for a general f : R→ R, define the oscillation ωf (x)
of f at x ∈ R via:

ωf (x, δ) = sup
y,z∈Iδ(x)

|f(y)− f(z)|; Iδ(x) = (x− δ, x+ δ).

ωf (x) = lim
δ→0+

ωf (x, δ) = inf
δ>0

ωf (x, δ)

(since ωf (x, δ) is increasing in δ). Clearly Df = {x ∈ R;ωf (x) > 0}, or:

Df =
⋃
n≥1

D1/n, where Dε = {x ∈ R;ωf (x) ≥ ε} for ε > 0.

Exercise 1: Dε is closed in R, for each ε > 0.
Hint: The complement of Dε is:

Dc
ε = {x ∈ R; (∃δ > 0)ωf (x, δ) < ε} = {x ∈ R; (∃δ > 0)(∀y, z ∈ Iδ(x))|f(y)−f(z)| < ε},

and this set is open.
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Definitions. A subset A ⊂ R is an Fσ if it is a countable union of closed
sets; A is a Gδ if it is a countable intersection of open sets.

Examples. A closed interval A = [a, b] = ∪n≥1(a − 1
n , b + 1

n) is both an
Fσ and a Gδ.

The complement of an Fσ is a Gδ, and vice-versa. The rationals Q, being
countable, are an Fσ, hence the irrationals I are a Gδ.

It will turn out (as a consequence of Baire’s theorem) that I is not an
Fσ, hence cannot be Df for any f : R→ R, since we just saw that:

Proposition. For any f : R→ R, Df is an Fσ.

Remark: Conversely, given any Fσ set D ⊂ R, there exists an f : R→ R
so that Df = D. [W.H. Young 1903].

2. Baire’s Theorem. We need some terminology.
Definitions. A subset A ⊂ R is dense if any open subset of R intersects

A. A is nowhere dense if any open interval I ⊂ R contains an open interval
J ⊂ I disjoint from A (J ∩A = ∅). (Careful: the complement of a dense set
is not necessarily ‘nowhere dense’, as shown by Q and I, both dense in R.)

Exercise 2. A ⊂ R is nowhere dense if and only if its closure has
empty interior: int(Ā) = ∅. Thus for a closed set A ⊂ R, ‘nowhere dense’ is
equivalent to ‘empty interior’. (In general, ‘nowhere dense’ implies empty
interior; but Q and I have empty interior, and are not nowhere dense.)

Exercise 3. The complement of an open and dense set D ⊂ R is a
closed, nowhere dense set (and conversely).

Remark: The statements in exercises 2 and 3 are also true in a general
complete metric space X; you may prove this more general case if you prefer.

Definitions. A set A ⊂ R is meager if it is a countable union of nowhere
dense sets. A is residual if it is a countable intersection of open dense sets.

(Another common name for ‘residual’ is ‘Gδ dense’. A residual set is
both Gδ and (by Baire’s theorem) dense. Conversely, if G = ∩n≥1Gn (with
each Gn open) is dense, then no Gn can omit an interval, or G would; so
each Gn is dense.)

Baire’s Theorem: The real line R is not meager.

Remark: This implies no interval I ⊂ R–open, closed, or half-open–is
meager, either.

Corollary. The irrationals I ⊂ R are not an Fσ.
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Proof. By contradiction, suppose I = ∪n≥1Cn, with each Cn ⊂ R closed.
Then each Cn has empty interior (since I has empty interior), and hence is
nowhere dense. Thus I would be meager, and since Q is meager (countable
union of one-point sets) their union R would also be meager, contradiction.

By complementation, the rationals Q are not a Gδ, in particular not a
residual subset of R (although they are dense in R). The irrationals, on the
other hand, are residual in R: letting (rn)n≥1 be an enumeration of Q, we
have: I = ∩n≥1Gn, where each Gn = R \ {rn} is open and dense in R. (So
the complement of any countable set is residual in R.)

Main Lemma. Residual sets are dense: if A = ∩n≥1Gn with each Gn
open and dense in R, then A is dense in R.

Proof. Let I ⊂ R be a non-empty open set. We need to show I ∩A 6= ∅.
Since G1 is open and dense dense, I ∩ G1 6= ∅ is open; thus we may find a
compact interval I1 ⊂ I ∩ G1. Since G2 is open and dense, G2 ∩ int(I1) is
open and non-empty, hence contains a compact interval I2.

Proceeding in this fashion we find a nested sequence of non-empty com-
pact intervals In, with In+1 ⊂ int(In). Thus their intersection ∩n≥1In is
non-empty, and taking a point x in this intersection we see that x ∈ A.
Since also x ∈ I1 ⊂ I, it follows that x ∈ I ∩A.

Corollary. If F = ∪n≥1Cn, with each Cn closed and with empty interior,
then F has empty interior (and is meager, by definition).

Proof. By complementation: the Main Lemma implies F c is dense in R,
so F has empty interior.

Remark: Sets F as in the corollary are often called ‘Fσ meager’: a
countable union of closed sets of empty interior. The complement of a ‘Gδ
dense’ set is ‘Fσ meager’. (This can be confusing, since ‘Fσ meager’ is not
the same as ‘Fσ and meager’.)

Proof of Baire’s Theorem. By contradiction, suppose R = ∪n≥1En, with
each En nowhere-dense in R (Ēn has empty interior.) Then R is also the
union of their closures: R = ∪n≥1Ēn, that is, a countable union of closed
sets with empty interior. By complementation, we find ∩n≥1(Ēn)c = ∅, and
since each (Ēn)c is open and dense in R (see Exercise 3) this contradicts the
Main Lemma.

Remark 1. It is common to use “Baire’s Theorem” to refer to the Main
Lemma.

Remark 2. The Main Lemma (“Baire’s Theorem”) is valid in more gen-
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eral settings, with similar proofs: (i) in locally compact topological spaces
([Dugundji p. 249]); (ii) in complete metric spaces ([Dugundji] p. 299).

Remark 3. ‘Residual sets’ are one way to make precise the informal idea
of ‘generic behavior’ in Mathematics, one that has proved fruitful in many
infinite-dimensional settings: spaces of real-valued functions, of vector fields,
etc. Even better is when the behavior defines an open dense set: then it
is not only stable under perturbations (open), but any object in the class
(function, vector fields, etc.) may be approximated by one exhibiting the
behavior in question (dense).

3. Pointwise limits of continuous functions.

Theorem. If f : R → R is a pointwise limit of continuous functions,
then Df is Fσ meager (that is, a countable union of closed sets with empty
interior).

(In particular, by Baire’s theorem, f is continuous on a dense subset of
R.)

Proof. We know Df =
⋃
n≥1D1/n (see Section 1), so it suffices to show

that the closed sets Dε have empty interior, for any ε > 0. By contradiction,
suppose Dε contains an open interval I. We’ll find an open interval J ⊂ I
disjoint from Dε!

Let fn → f pointwise on R, with each fn : R→ R continuous. For each
N ≥ 1, consider the set:

CN = {x ∈ I; (∀m,n ≥ N)|fm(x)− fn(x)| ≤ ε/3}.

Clearly ∪N≥1CN = I (by pointwise convergence).
Exercise 4. Each CN is closed in I.

By Baire’s Theorem, some CN must have non-empty interior (otherwise
I is meager), so we have an open interval J ⊂ CN ⊂ I (for this N).

On the other hand, J ∩ Dε = ∅. To see this, taking limits m → ∞
(pointwise at each x ∈ CN ) in the inequality defining CN , we find that
x ∈ CN ⇒ |f(x)− fN (x)| ≤ ε/3.

Exercise 5. If |f − g| ≤ ε/3 in an open interval containing x, then
|ωf (x)− ωg(x)| ≤ 2ε/3.

Hint: Assume y, z ∈ Iδ(x), with f(y) ≥ f(z). Then

|f(y)−f(z)| = f(y)−f(z) ≤ g(y)−g(z)+2 sup
w∈Iδ(x)

|f(w)−g(w)| ≤ |g(y)−g(z)|+2ε/3,
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if δ is small enough. (If f(z) ≥ f(y), exchange y and z to get the same
estimate.)

Since |f − fN | ≤ ε/3 in the open interval J and ωfN (x) = 0∀x (by
continuity), it follows from Exercise 5 that ωf (x) ≤ 2ε/3 for each x ∈ J ;
thus J ∩Dε = ∅.

Corollary. Let f : R → R be differentiable on R. Then f ′ : R → R is
continuous on a dense set.

Proof: Consider the sequence of continuous functions gn : R→ R:

gn(x) =
f(x+ 1

n)− f(x)
1
n

.

It suffices to observe that gn → f ′ pointwise on R.

Baire’s hierarchy. (See [W. Dunham, The Calculus Gallery])

Definition. Let f : R → R. f is class 0 if it is continuous on R. f is
class 1 if it is a pointwise limit of continuous functions, but not continuous.
f is class 2 if it is a pointwise limit of class 1 functions, but not in class 0
or class 1. And so on...

Example. Dirichlet’s function is neither in class 0 or class 1 (since it is
discontinuous everywhere, and class 1 functions are continuous on a dense
set.) But it is in class 2. Consider:

D(x) = lim
k→∞

[ lim
j→∞

(cos k!πx)2j ].

If x = p/q is rational (in lowest terms), then k!x is an integer as soon as
k ≥ q, so | cos k!πx| = 1 for k ≥ q, and D(x) = 1. But if x is irrational, k!x is
never an integer, so | cos k!πx| < 1 and limj(cos k!πx)2j = 0, thus D(x) = 0.
This shows D(x) is Dirichlet’s function.

For each k ≥ 1, the function gk(x) = limj(cos k!πx)2j is in class 1: it is
a pointwise limit of continuous functions, but not continuous! (Verify that.)
And D(x) = limk gk(x) (pointwise), showing D(x) is in class 2.

Remark. It has been shown that all Baire classes are non-empty, and
that functions belonging to no Baire class exist (H. Lebesgue 1905.)

4. Generic continuous functions are nowhere differentiable.

Theorem. Let X = C[0, 1] (continuous, real-valued functions on the unit
interval), a complete metric space endowed with the sup norm. Then:

D = {f ∈ X;∃x ∈ [0, 1] so that f is differentiable at x}.
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is contained in a countable union of closed sets with empty interior in X.
In particular, its complement Dc (the set of continuous functions which are
nowhere differentiable) contains a set which is residual in X (and therefore
Dc is dense in X, by Baire’s Theorem): any continuous function in [0, 1] is
the uniform limit of continuous, nowhere differentiable functions!

Proof. (Outline; based on Abbott’s Understanding Analysis, p. 227.)

For each n ≥ 1,m ≥ 1, define, with mf (x, y) = (f(x)− f(y))/(x− y):

Am,n = {f ∈ X; (∃x ∈ [0, 1])(∀y)0 < |x− y| ≤ 1

m
⇒ |mf (x, y)| ≤ n}.

Step 1. D ⊂
⋃
m,n≥1Am,n.

Step 2. Each Am,n is closed in X: if fk → f uniformly in [0, 1] with
fk ∈ Am,n, then f ∈ Am,n.

Thus it suffices to show each Am,n has empty interior in X: if f ∈ Am,n
and ε > 0 is arbitrary, the open ball Bε(f) = {g ∈ X; ||g− f || < ε} contains
functions which are not in Am,n. In fact we’ll show that the complement of
Am,n is (open and) dense in X.

Step 3. Given f ∈ X, approximate f uniformly in [0, 1] by a continuous,
piecewise linear function p ∈ X, so that ||f − p|| < ε/2. Then if h ∈ X with
||h|| ≤ 1, we have g = p+ ε

2h ∈ X satisfies ||f − g|| < ε.

Step 4. We seek h piecewise linear so that g is not in Am,n:

(Am,n)c = {g ∈ X; (∀x ∈ [0, 1])(∃y ∈ [0, 1])0 < |x−y| ≤ 1/m and |mg(x, y)| > n}.

Here mg(x, y) denotes the slope of the secant to the graph of g defined by
the points x, y ∈ [0, 1], and clearly:

mg(x, y) = mp(x, y) +
ε

2
mh(x, y), so |mg(x, y)| ≥ ε

2
|mh(x, y)| − |mp(x, y)|,

and we seek h with ||h|| ≤ 1 so that:

(∀x ∈ [0, 1])(∃y ∈ [0, 1])(0 < |x−y| ≤ 1/m and |mh(x, y)| ≥ 2

ε
(|mp(x, y)|+n).

Since p is piecewise linear, there exists a finite partition of [0, 1] (into, we
may assume, sub-intervals of length less than 1/m) with p of constant slope
on each subinterval Ij . So we construct h with constant absolute slope |mh|
in each Ij , so that |mh| satisfies this inequality in each Ij . (Then given
x ∈ [0, 1], take any y in the same Ij as x.)
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To ensure h is continuous in [0, 1] and remains bounded by 1 in absolute
value, we start and end h at 0 (at each endpoint of an Ij), and alternate
between positive and negative slope. (So the graphs of h and g will be
‘jagged’, but the graph of g stays uniformly close to that of f .)

Remark. An explicit example of a continuous, nowhere differentiable
function was given by Weierstrass (1872), see [Dunham]:

f(x) =

∞∑
k=0

bk cos(πakx), where 0 < b < 1, a ≥ 3, ab > 1 +
3π

2
.
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