Solution to 2131 HWS

Ex. 7.47(4)
We introduce
Ty, a Tp—1 + 3Yn—1 — 32n—1 1 3 -3
17n =1 Y |, 770 =0 ) Un = | 3x,_1+ 7yn71 =321 | = Aﬁn—h A=|-3 7 =3
Zn, c —6x, 1+ 6Yn_1 — 22,1 —6 6 —2

Then we have v,, = A™Z).

The characteristic polynomial

t—1 -3 3
det(tI —A)=det [ 3 t—-7 3 | =(@t—4)>*t+2)
6 —6 t+2

has two roots
M =4, =2

By finding the null space of the corresponding matrices, we have
Nul(A —47) =R(1,1,0) ® R(—1,0,1), Nul(A+2I)=1R(1,1,2).

To find v,,, we decompose 1, according to the basis of eigenvectors

a -1
S 3b—a— +c—>
vo=10b]= 2@ ¢ +(b—-a)| O ¢ ;
c 1

Then

1
1 -1 1
3b—a— —b
- ; ‘ol v p—aa |0 | +2 +; (—2)" | 1
0 1 2
221171 4 (_ )nanl)a + (22n71 + ( 2)n71 bh— 227171 + (_2)1171)0
1

1
= (2 '+ (—2)" Ya+ (3 x 22+ (-2
(=2)" —4")a+ (4" + (=2)" )b+ (—2)"c

Therefore, we conclude that
T, = (22n—1 4 (_1)n2n—1)a 4 (22n—1 4 (—2)n_1)b o (22n—1 4 (_z)n—l)q
Yp = (22n—1 4 (_2)n—1)a 4 (3 % 2277,—1 4 (_2)1’L—1)b - (22n—1 4 (_2)n—1)67
zn = ((=2)" —4")a+ (4" + (=2)" " )b+ (-2)"c.



Ex. 7.48
The recursive relation should be noted as

Tk = Qp_1Tp—1 T Ap—2Tp—2 + -+ A Tg_nt1 + QTk—_p

for any integer k > n. Inspired by Example 7.1.5, we introduce

Tk Zo
- Lk+1 - 1 . -
k= . ) 0= . y Tkl = Awk,
Lhin—1 Ln—1

and we can easily find out that A is

0000 0 ap \

1 000 0 a

0100 0 a

A=|0 0 1 0 0 as

0000 -+ 0 ap-e

0000 -+ 1 ap,q
Exercise 7.34 gives us that the characteristic polynomial of A is exactly t" — a,_1t" "' —--- — a;t — ap, thus
the eigenvalues of A are A\, Ag, ..., \,. To find z;, we have

- k= k— k— k=
fl?k:A $0:)\1@1+>\2U2+"'+)\n1}n

where we decompose T into eigenvectors v; corresponding to their eigenvalues. Picking the first coordinate
of @}, we conclude that
T = ] + ey + - e AE

Here ¢; is the first coordinate of #;, which can be calculated from xg, zq, ..., 2, 1.

The result can indeed be applied to Fibonacci numbers, by choosing n = 2 and a; = ag = 1. From
Example 7.1.17, the result is in the form of ¢; \} + oA}

Ex. 7.51
Note L; : Hy — H;y and Ly : Hy — Hy, then for any ﬁl, fl’l € H, and flg, E’Q € H,, we have

(L L Lo)(hy + ha), ly + hb) = (A1 + ha, (Ly L Lo)* (R + hb)).

On the other hand, we have

(L1 L Lo)(hy + ha), hty + Ry = (Ly(h1) + La(hs), By + hb)
= (Ly(hy), BY) 4 (Ly(hy), By 4 (Ly(hy), By) + (Ly(hy), hb)
= (Ly(h1),B)) + 0+ 0+ (Lo(hs), B))
= (hn, Li(RY)) + 0 + 0 + (ha, L (1)
= (h1, Ly (1)) + (ha, Ly (1)) + (ha, Ly(hY)) + (ho, (1))
= (hy + ha, L{(R}) + Li(h3)).

By comparison, since all the vectors above are arbitrary, we conclude that
(Ly L Ly)"=L7 L L3
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Ex. 7.53
Since (L*)* = L, we clearly have

L'L =LL" < L*(L")" = (L")"L".
This means 1. and 2. are equivalent.
We have

L@ = [IL*(@)]], V7 = L( ) L(©)) = (L*(0), L*(0)), Vv
> (U, LL(V)) = (V), LL*(0)), Vv
— (1, (L*L LL*)(V)) =0, VU
— (L*L - LL*)(?) =0, V&
<— L'L-LL"=0 < L'L=LL".

This means 1. and 3. are equivalent.

We have

DL = (Li+ L)Ly + Ly) = LiLy + LiLo + LyLy + LyLo = L+ LiLy — Lo Ly — Ly,

Then it is easy to verify that
LiLy =17l — L*L=LL".

This means 1. and 4. are equivalent.
In conclusion, all four statements are equivalent.

Ex. 7.55
1. Exercise 6.24 gives that

(Ker L) = Ran L*, (Ker L*)* = Ran L

and Exercise 7.54 gives that
Ker L = Ker L*.

We then clearly have
Ran L = (Ker L*)* = (Ker L)* = Ran L*.

2. Proposition 4.3.6 remains valid in complex inner product spaces with Hermitian inner product. By
the proposition, we easy derive that

V =KerL L (Ker L)* = Ker L 1 Ran L.

3. For any integer £ > 1 and any vector ¥ € V, since L is an linear operator, L¥~! is also a linear operator
and we have LF¥=1(%) € V. Therefore

L¥(@) = L(L*(¥)) € Ran L.
Since v is arbitrary, by the definition of range, we conclude that

Ran L* = Ran L.



Since L* is still a linear operator, we use 2. to find out that

Ker L* = Ker L.

4. Since L* is a linear operator on V, we have (L*)* is also a linear operator, thus for any vector 7 € V
we have . A .
L(L*)¥(@) = L7 ((L*)*(9)) € Ran L/
and therefore . '
Ran L’(L*) = Ran L’ = Ran L.

Since L7(L*)* is still a linear operator, we use 2. and 3. to find out that

Ker L7 (L*)* = Ker L.

Ex. 7.56
L is orthogonally diagonalisable and

L=XMI_1MNIL1- X\l

with respect to

Moreover, we have B _ _

Exercise 7.56 gives us that H is in the form of
H=W, 1L Wy L. .- LW,
where W; C H;. For any vector heH , we decompose it into
h =1 + Wy + - - - + Wy

and then o B B

Therefore, we conclude that H is an invariant subspace of L*. By Proposition 4.3.6, we can easily deduce
that H+ is in the form of
H =U LU, L--- LU

where U; C H; and W; L U; = H;. Then similarly we conclude that H+ is an invariant subspace of L and
L*.

Ex. 7.57
1. Note L :V — V. Notice that

(I -P)LP=0 <= LP=PLP.
For any vector 7 € V, we note P(¥) = h € H, then
H is an invariant subspace of L <= L(h) € H <= LP(0) € H < PLP(?) = P(LP(v)) = LP(?).
Therefore, we conclude that H is an variant subspace of L if and only if (I — P)LP = O.
2. We have
X =PL(I—P)=PL—PLP = X" =L*P*— P'L*P* = *P — PL*P = (I — P)L*P,
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and
XX*=PL(I-P)I—-P)L"P=PL(I —P)L"P=PLL*P— PLPL"P.

From 1. we know that LP = PLP, and we also notice that P? = P, tr AB = tr BA and tr(A — B) =
tr A — tr B. Using all these equalities, we have

tr XX* = tr(PLL*P — PLPL*P) = tr(PLL*)P — tr(PLPL*)P = tr P2LL* — tr P’LPL*
— tr PLL* — tr(PLP)L* = tr PLL* — tr(LP)L* = tr PLL* — tr L(PL")
=tr PLL* —tr PL*L = tr P(LL* — L*L) = tr PO = tr O = 0.

3. It is known that (by the positivity of Hermitian inner product)
trXX"=0 < X=0.
By Proposition 4.3.7, we know that P’ = I — P is the orthogonal projection to H+. Then from 1. we have

X =PL(I—-P)=(I—-P)LP =0 <= H~ is an invariant subspace of L.

Ex. 7.60
Exercise 7.59 gives us that L is Hermitian if and only if

(L(v),7) = (U, L(¥)) = (L(V),?), VT <= (L(?),7) € R
and we derive the result.
Ex. 7.61

A Hermitian operator L is of course orthogonally diagonalisable. Suppose L = AT 1L Aol L --- N\l
with respect to V = H; | Hy L --- L Hj. Then Exercise 7.17 gives that

det L = \{im i ydim Ho .y dim i

Since we have B B B
LY =XM1 L )Xo L --- N1,

we clearly derive that B
Therefore, we conclude that

det [ = \JimHiydim o ydimHi

Ex. 7.63
By proposition 7.2.7, we have the matrix A has orthogonal diagonalisation

A=UDU ' =UDU"

where
10 0 2 2 g
D=0 2 0], U=|[+v2 _v2 y
2 2
00 3 0 0 =z
By UUT = I we have
@ ? x @ ‘/75 0 1+2* 2y a2 1 00
ﬁ_ﬁy V2 _v2 | = xy 149> yz| =101 0
2 2 2 2 5
0 0 =z T y oz xz yz oz 0 01



We derive that

Choose z = 1 and we conclude that

22 0\ /1 00\ (2 £ 0 5 -3 0
A=UDU" = |2 _v2 o (0202 _v2 g|=(-% % 0
o o0 1/ \0 03 0 0 1 0 0 3

Ex. 7.65
By proposition 7.2.7, we have the matrix A has orthogonal diagonalisation

A=UDU' = A3=UD3U™', A2=UD*U".
If A3 = O, then D? = O and we easily derive that D = O, which means A = O.

If A2 = I, we have
A=UDU'=] =UDU''U=U = UD*=U = D?*=1 = D =diag[+]].

Ex. 7.67
We have ] ]
L= 5(L+L*)+§(L—L*) =Ly + Lo.
Since
1 1 1
Ly= 5 (L= L) = (L = (L)) = 51" = L) = ~La,

we indeed have L, is Hermitian and L, is skew Hermitian. This prove that any linear operator L can be
expressed as that. Now we prove that the expression is unique. Suppose L = Ly + Ly = L} + Li, where
Ly, L} are Hermitian and Lo, L), are skew Hermitian. We have

s .

Hence the expression is unique. The latter result is the same as the four statement in Exercise 7.53.

Ex. 7.68
Note that L is skew-Hermitian if and only if ¢L is Hermitian. Suppose L = A1 1L Aol L --- A1, then
we have L = —iA\ I L —iXol L --- —iAgl with respect to V = Hy L Hy 1 --- 1 Hj, where \; are real

numbers. Then Exercise 7.17 gives that
det L — (_Z’)\l)dimHl(_i)\Q)dimHg . <_2)\k)dlmHk — (_Z>n)\(]:_hmHl>\§hmH2 . )\ilmHk

Here n = dim H; + dim Hs + - - - + dim H; = dim V. Therefore, we conclude that if n is even, then det L
is real; if n is odd, then det L is purely imaginary (here we consider 0 as a purely imaginary number).

For skew-symmetric real operator, it of course is skew-Hermitian. Also, its determinant is always real.
Then if n is odd, its determinant can only be 0.

Ex. 7.71
By Proposition 7.2.9, an orthogonal operator on R? is either identity, rotation or reflection. In terms

of matrix, we have
(L]ow = (COSQ —sin 0) or [Lla = (cos@ sin ) '

sinf@ cosd sinf —cosf

Note that identity is contained in the first case.



