
Solution to 2131 HW8

Ex. 7.47(4)
We introduce

~vn =

xnyn
zn

 , ~v0 =

ab
c

 , ~vn =

 xn−1 + 3yn−1 − 3zn−1
−3xn−1 + 7yn−1 − 3zn−1
−6xn−1 + 6yn−1 − 2zn−1

 = A~vn−1, A =

 1 3 −3
−3 7 −3
−6 6 −2

 .

Then we have ~vn = An~x0.

The characteristic polynomial

det(tI − A) = det

t− 1 −3 3
3 t− 7 3
6 −6 t+ 2

 = (t− 4)2(t+ 2)

has two roots
λ1 = 4, λ2 = −2.

By finding the null space of the corresponding matrices, we have

Nul(A− 4I) = R(1, 1, 0)⊕ R(−1, 0, 1), Nul(A+ 2I) = R(1, 1, 2).

To find ~vn, we decompose ~v0 according to the basis of eigenvectors

~v0 =

ab
c

 =
3b− a− c

2

1
1
0

+ (b− a)

−1
0
1

+
a+ c− b

2

1
1
2

 .

Then

~vn =
3b− a− c

2
An

1
1
0

+ (b− a)An

−1
0
1

+
a+ c− b

2
An

1
1
2


=

3b− a− c
2

4n

1
1
0

+ (b− a)4n

−1
0
1

+
a+ c− b

2
(−2)n

1
1
2


=

 (
22n−1 + (−1)n2n−1

)
a+

(
22n−1 + (−2)n−1

)
b−

(
22n−1 + (−2)n−1

)
c(

22n−1 + (−2)n−1
)
a+

(
3× 22n−1 + (−2)n−1

)
b−

(
22n−1 + (−2)n−1

)
c(

(−2)n − 4n
)
a+

(
4n + (−2)n−1

)
b+ (−2)nc

 .

Therefore, we conclude that

xn =
(
22n−1 + (−1)n2n−1

)
a+

(
22n−1 + (−2)n−1

)
b−

(
22n−1 + (−2)n−1

)
c,

yn =
(
22n−1 + (−2)n−1

)
a+

(
3× 22n−1 + (−2)n−1

)
b−

(
22n−1 + (−2)n−1

)
c,

zn =
(
(−2)n − 4n

)
a+

(
4n + (−2)n−1

)
b+ (−2)nc.
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Ex. 7.48
The recursive relation should be noted as

xk = an−1xk−1 + an−2xk−2 + · · ·+ a1xk−n+1 + a0xk−n

for any integer k ≥ n. Inspired by Example 7.1.5, we introduce

~xk =


xk
xk+1

...
xk+n−1

 , ~x0 =


x0
x1
...

xn−1

 , ~xk+1 = A~xk,

and we can easily find out that A is

A =



0 0 0 0 · · · 0 a0
1 0 0 0 · · · 0 a1
0 1 0 0 · · · 0 a2
0 0 1 0 · · · 0 a3
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 an−2
0 0 0 0 · · · 1 an−1



T

.

Exercise 7.34 gives us that the characteristic polynomial of A is exactly tn−an−1tn−1−· · ·−a1t−a0, thus
the eigenvalues of A are λ1, λ2, . . . , λn. To find xk, we have

~xk = Ak~x0 = λk1~v1 + λk2~v2 + · · ·+ λkn~vn

where we decompose ~x0 into eigenvectors ~vi corresponding to their eigenvalues. Picking the first coordinate
of ~xk, we conclude that

xk = c1λ
k
1 + c2λ

k
2 + · · ·+ cnλ

k
n.

Here ci is the first coordinate of ~vi, which can be calculated from x0, x1, . . . , xn−1.

The result can indeed be applied to Fibonacci numbers, by choosing n = 2 and a1 = a0 = 1. From
Example 7.1.17, the result is in the form of c1λ

k
1 + c2λ

k
2

Ex. 7.51
Note L1 : H1 → H1 and L2 : H2 → H2, then for any ~h1,~h

′
1 ∈ H1 and ~h2,~h

′
2 ∈ H2, we have

〈(L1 ⊥ L2)(~h1 + ~h2),~h
′
1 + ~h′2〉 = 〈~h1 + ~h2, (L1 ⊥ L2)

∗(~h′1 + ~h′2)〉.

On the other hand, we have

〈(L1 ⊥ L2)(~h1 + ~h2),~h
′
1 + ~h′2〉 = 〈L1(~h1) + L2(~h2),~h

′
1 + ~h′2〉

= 〈L1(~h1),~h
′
1〉+ 〈L1(~h1),~h

′
2〉+ 〈L2(~h1),~h

′
1〉+ 〈L2(~h1),~h

′
2〉

= 〈L1(~h1),~h
′
1〉+ 0 + 0 + 〈L2(~h2),~h

′
2〉

= 〈~h1, L∗1(~h′1)〉+ 0 + 0 + 〈~h2, L∗2(~h′2)〉
= 〈~h1, L∗1(~h′1)〉+ 〈~h2, L∗1(~h′1)〉+ 〈~h1, L∗2(~h′2)〉+ 〈~h2, L∗2(~h′1)〉
= 〈~h1 + ~h2, L

∗
1(
~h′1) + L∗2(

~h′2)〉.

By comparison, since all the vectors above are arbitrary, we conclude that

(L1 ⊥ L2)
∗ = L∗1 ⊥ L∗2.
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Ex. 7.53
Since (L∗)∗ = L, we clearly have

L∗L = LL∗ ⇐⇒ L∗(L∗)∗ = (L∗)∗L∗.

This means 1. and 2. are equivalent.

We have

||L(~v)|| = ||L∗(~v)||, ∀~v ⇐⇒ 〈L(~v), L(~v)〉 = 〈L∗(~v), L∗(~v)〉, ∀~v
⇐⇒ 〈~v, L∗L(~v)〉 = 〈~v), LL∗(~v)〉, ∀~v
⇐⇒ 〈~v, (L∗L− LL∗)(~v)〉 = 0, ∀~v
⇐⇒ (L∗L− LL∗)(~v) = ~0, ∀~v
⇐⇒ L∗L− LL∗ = O ⇐⇒ L∗L = LL∗.

This means 1. and 3. are equivalent.

We have

L∗L = (L∗1 + L∗2)(L1 + L2) = L∗1L1 + L∗1L2 + L∗2L1 + L∗2L2 = L2
1 + L1L2 − L2L1 − L2

2,

LL∗(L1 + L2)(L
∗
1 + L∗2) = L1L

∗
1 + L1L

∗
2 + L2L

∗
1 + L2L

∗
2 = L2

1 − L1L2 + L2L1 − L2
2.

Then it is easy to verify that
L1L2 = L2L1 ⇐⇒ L∗L = LL∗.

This means 1. and 4. are equivalent.

In conclusion, all four statements are equivalent.

Ex. 7.55
1. Exercise 6.24 gives that

(KerL)⊥ = RanL∗, (KerL∗)⊥ = RanL

and Exercise 7.54 gives that
KerL = KerL∗.

We then clearly have
RanL = (KerL∗)⊥ = (KerL)⊥ = RanL∗.

2. Proposition 4.3.6 remains valid in complex inner product spaces with Hermitian inner product. By
the proposition, we easy derive that

V = KerL ⊥ (KerL)⊥ = KerL ⊥ RanL.

3. For any integer k > 1 and any vector ~v ∈ V , since L is an linear operator, Lk−1 is also a linear operator
and we have Lk−1(~v) ∈ V . Therefore

Lk(~v) = L
(
Lk−1(~v)

)
∈ RanL.

Since ~v is arbitrary, by the definition of range, we conclude that

RanLk = RanL.

3



Since Lk is still a linear operator, we use 2. to find out that

KerLk = KerL.

4. Since L∗ is a linear operator on V , we have (L∗)k is also a linear operator, thus for any vector ~v ∈ V
we have

Lj(L∗)k(~v) = Lj
(
(L∗)k(~v)

)
∈ RanLj

and therefore
RanLj(L∗) = RanLj = RanL.

Since Lj(L∗)k is still a linear operator, we use 2. and 3. to find out that

KerLj(L∗)k = KerL.

Ex. 7.56
L is orthogonally diagonalisable and

L = λ1I ⊥ λ2I ⊥ · · ·λkI

with respect to
V = H1 ⊥ H2 ⊥ · · · ⊥ Hk.

Moreover, we have
L∗ = λ̄1I ⊥ λ̄2I ⊥ · · · λ̄kI.

Exercise 7.56 gives us that H is in the form of

H = W1 ⊥ W2 ⊥ · · · ⊥ Wk

where Wi ⊂ Hi. For any vector ~h ∈ H, we decompose it into

~h = ~w1 + ~w2 + · · ·+ ~wk

and then
L∗(~h) = λ̄1 ~w1 + λ̄2 ~w2 + · · ·+ λ̄k ~wk ∈ W1 ⊥ W2 ⊥ · · · ⊥ Wk = H.

Therefore, we conclude that H is an invariant subspace of L∗. By Proposition 4.3.6, we can easily deduce
that H⊥ is in the form of

H⊥ = U1 ⊥ U2 ⊥ · · · ⊥ Uk

where Ui ⊂ Hi and Wi ⊥ Ui = Hi. Then similarly we conclude that H⊥ is an invariant subspace of L and
L∗.

Ex. 7.57
1. Note L : V → V . Notice that

(I − P )LP = O ⇐⇒ LP = PLP.

For any vector ~v ∈ V , we note P (~v) = ~h ∈ H, then

H is an invariant subspace of L ⇐⇒ L(~h) ∈ H ⇐⇒ LP (~v) ∈ H ⇐⇒ PLP (~v) = P
(
LP (~v)

)
= LP (~v).

Therefore, we conclude that H is an variant subspace of L if and only if (I − P )LP = O.

2. We have

X = PL(I − P ) = PL− PLP =⇒ X∗ = L∗P ∗ − P ∗L∗P ∗ = L∗P − PL∗P = (I − P )L∗P,
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and
XX∗ = PL(I − P )(I − P )L∗P = PL(I − P )L∗P = PLL∗P − PLPL∗P.

From 1. we know that LP = PLP , and we also notice that P 2 = P , trAB = trBA and tr(A − B) =
trA− trB. Using all these equalities, we have

trXX∗ = tr(PLL∗P − PLPL∗P ) = tr(PLL∗)P − tr(PLPL∗)P = trP 2LL∗ − trP 2LPL∗

= trPLL∗ − tr(PLP )L∗ = trPLL∗ − tr(LP )L∗ = trPLL∗ − trL(PL∗)

= trPLL∗ − trPL∗L = trP (LL∗ − L∗L) = trPO = trO = 0.

3. It is known that (by the positivity of Hermitian inner product)

trXX∗ = 0 ⇐⇒ X = O.

By Proposition 4.3.7, we know that P ′ = I−P is the orthogonal projection to H⊥. Then from 1. we have

X = PL(I − P ) = (I − P ′)LP ′ = O ⇐⇒ H⊥ is an invariant subspace of L.

Ex. 7.60
Exercise 7.59 gives us that L is Hermitian if and only if

〈L(~v), ~v〉 = 〈~v, L(~v)〉 = 〈L(~v), ~v〉, ∀~v ⇐⇒ 〈L(~v), ~v〉 ∈ R

and we derive the result.

Ex. 7.61
A Hermitian operator L is of course orthogonally diagonalisable. Suppose L = λ1I ⊥ λ2I ⊥ · · ·λkI

with respect to V = H1 ⊥ H2 ⊥ · · · ⊥ Hk. Then Exercise 7.17 gives that

detL = λdimH1
1 λdimH2

2 · · ·λdimHk
k .

Since we have
L∗ = λ̄1I ⊥ λ̄2I ⊥ · · · λ̄kI,

we clearly derive that
L = L∗ =⇒ λi = λ̄i ∀i. =⇒ λi ∈ R ∀i.

Therefore, we conclude that
detL = λdimH1

1 λdimH2
2 · · ·λdimHk

k ∈ R.

Ex. 7.63
By proposition 7.2.7, we have the matrix A has orthogonal diagonalisation

A = UDU−1 = UDUT

where

D =

1 0 0
0 2 0
0 0 3

 , U =


√
2
2

√
2
2

x
√
2
2
−
√
2
2

y
0 0 z

 .

By UUT = I we have
√
2
2

√
2
2

x
√
2
2
−
√
2
2

y
0 0 z



√
2
2

√
2
2

0
√
2
2
−
√
2
2

0
x y z

 =

1 + x2 xy xz
xy 1 + y2 yz
xz yz z2

 =

1 0 0
0 1 0
0 0 1

 .
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We derive that
x = y = 0, z = ±1.

Choose z = 1 and we conclude that

A = UDUT =


√
2
2

√
2
2

0
√
2
2
−
√
2
2

0
0 0 1


1 0 0

0 2 0
0 0 3



√
2
2

√
2
2

0
√
2
2
−
√
2
2

0
0 0 1

 =

 3
2
−1

2
0

−1
2

3
2

0
0 0 3

 .

Ex. 7.65
By proposition 7.2.7, we have the matrix A has orthogonal diagonalisation

A = UDU−1 =⇒ A3 = UD3U−1, A2 = UD2U−1.

If A3 = O, then D3 = O and we easily derive that D = O, which means A = O.

If A2 = I, we have

A2 = UD2U−1 = I =⇒ UD2U−1U = U =⇒ UD2 = U =⇒ D2 = I =⇒ D = diag [±1] .

Ex. 7.67
We have

L =
1

2
(L+ L∗) +

1

2
(L− L∗) = L1 + L2.

Since

L∗1 =
1

2
(L+ L∗)∗ =

1

2

(
L∗ + (L∗)∗

)
=

1

2
(L∗ + L) = L1,

L∗2 =
1

2
(L− L∗)∗ =

1

2

(
L∗ − (L∗)∗

)
=

1

2
(L∗ − L) = −L2,

we indeed have L1 is Hermitian and L2 is skew Hermitian. This prove that any linear operator L can be
expressed as that. Now we prove that the expression is unique. Suppose L = L1 + L2 = L′1 + L′2 where
L1, L

′
1 are Hermitian and L2, L

′
2 are skew Hermitian. We have

L = L1 + L2 = L′1 + L′2
L∗ = L1 − L2 = L′1 − L′2

}
=⇒

{
2L1 = 2L′1 =⇒ L1 = L′1
2L2 = 2L′2 =⇒ L2 = L′2

.

Hence the expression is unique. The latter result is the same as the four statement in Exercise 7.53.

Ex. 7.68
Note that L is skew-Hermitian if and only if iL is Hermitian. Suppose iL = λ1I ⊥ λ2I ⊥ · · ·λkI, then

we have L = −iλ1I ⊥ −iλ2I ⊥ · · · − iλkI with respect to V = H1 ⊥ H2 ⊥ · · · ⊥ Hk, where λi are real
numbers. Then Exercise 7.17 gives that

detL = (−iλ1)dimH1(−iλ2)dimH2 · · · (−iλk)dimHk = (−i)nλdimH1
1 λdimH2

2 · · ·λdimHk
k .

Here n = dimH1 + dimH2 + · · · + dimHk = dimV . Therefore, we conclude that if n is even, then detL
is real; if n is odd, then detL is purely imaginary (here we consider 0 as a purely imaginary number).

For skew-symmetric real operator, it of course is skew-Hermitian. Also, its determinant is always real.
Then if n is odd, its determinant can only be 0.

Ex. 7.71
By Proposition 7.2.9, an orthogonal operator on R2 is either identity, rotation or reflection. In terms

of matrix, we have

[L]αα =

(
cos θ − sin θ
sin θ cos θ

)
or [L]αα =

(
cos θ sin θ
sin θ − cos θ

)
.

Note that identity is contained in the first case.
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