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Abstract

There are exactly seven edge-to-edge tilings of the sphere by con-
gruent equilateral pentagons.

1 Introduction

This paper is the second in the series of our attempt at the classification of
edge-to-edge tilings of the sphere by congruent pentagons. The first of the
series is by Cheuk, Cheung and Yan [2], in which we showed how to classify
such tilings when there is enough variety in edge lengths. Specifically, we
proved that, if there is a tile with all vertices having degree 3, then there is
no tiling by more than 12 tiles, such that the edge combination is a3bc, a2b2c,
or a3b2. The method should be sufficient for dealing with all the other cases
of enough variety in edge lengths. When all edges have equal length (i.e.,
the tiles are equilateral pentagons), however, a completely different method
is needed. This is developed in this paper.

For general discussions about spherical tilings, we refer the reader to the
introduction of [2]. Here we only mention that the tile in an edge-to-edge
tiling of the sphere by congruent polygons must be triangle, quadrilateral or
pentagon. The triangular tilings are completely classified [5, 6]. We believe

∗Research was supported by Hong Kong RGC General Research Fund 605610 and
606311.
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the pentagonal tilings are easier to study than the quadrilateral ones because
5 is the “other extreme” in 3, 4, 5. After developing the method for the case
that there is enough variety in the edge lengths in [2], and the case that there
is no variety in the edge length in this paper, the remaining and the most
difficult case is the edge combination a4b, which means that four edges of the
pentagon have equal length and the fifth edge has different length. This will
be the subject of a future paper in the series.

The key idea of the paper is the following. A general pentagon is deter-
mined by the free choice of 4 edge lengths and 3 angles, yielding 7 degrees
of freedom. The requirement that all 5 edges are equal imposes 4 equations,
leaving 7 − 4 = 3 degrees of freedom for equilateral pentagons. Therefore 3
more independent equations are enough to completely determine such pen-
tagons.

On the other hand, the complete list of possible angle combinations at
degree 3 vertices in a tiling is given by [4, Theorem 1]. Moreover, further
restrictions on such combinations are given by [4, Section 3] (and Proposition
5 in particular). With one exception, this provides 3 independent equations
among 5 angles. This means that, with one exception, the equilateral pen-
tagon can be completely determined. Once we know the pentagon, it is then
not difficult to find the tiling.

The minimal case of edge-to-edge tilings of sphere by 12 congruent pen-
tagons is completely classified [1, 3]. In fact, the minimal tiling by congruent
equilateral pentagons is the regular dodecahedron. Hence we will assume the
number of tiles f > 12 in this paper. By [7], we actually know that f is an
even number ≥ 16.

It turns out that we need to calculate more than 400 cases, including
various angle arrangements in the pentagon. We use the MAPLE software
to carry out all these calculations and find out that almost all cases either
do not lead to equilateral pentagons, or lead to pentagons whose area is
not 4π (the area of the unit sphere) divided by an even number ≥ 16 (the
number of tiles). For the remaining limited number of cases, we find total of
seven tilings. Together with the regular dodecahedron from [3], we have the
following complete list.

Theorem. There are eight tilings of the sphere by congruent equilateral pen-
tagons. In the list below, the edge length is a, the angles are arranged as
[α, β, δ, γ, ε] in the pentagon, and we always have α + β + γ = 2π. Specifi-
cally, there are three pentagonal subdivisions:
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1. f = 12, a = 0.2322π, α = β = γ = δ = ε = 3
2
π. Regular dodecahedron,

or subdivision of tetrahedron.

2. f = 24, a = 0.1745π, α = 0.8010π, β = 0.5113π, γ = 0.6875π, δ = 2
3
π,

ε = 1
2
π. Subdivision of (cube, octahedron). See Case 4.2c in Section

3.4.

3. f = 60, a = 0.1186π, α = 0.9059π, β = 0.4093π, γ = 0.6847π, δ = 2
3
π,

ε = 2
5
π, f = 60. Subdivision of (dodecahedron, icosahedron). See Case

4.2d in Section 3.4.

There are four earth map tilings (Figure 11):

4. f = 16, a = 0.2155π, α = 0.4536π, β = 0.8823π, γ = 0.6639π, δ = 1
2
π,

ε = 3
4
π. See Case 1.5b in Section 4.4.

5. f = 20, a = 0.2168π, α = 0.3095π, β = 1.0615π, γ = 0.6288π, δ = 2
5
π,

ε = 4
5
π. See Case 2.6b in Section 4.4.

6. f = 24, a = 0.2501π, α = 0.1440π, β = 4
3
π, γ = 0.5226π, δ = 1

3
π,

ε = 5
6
π. See first solution in Section 4.1.

7. f = 24, a = 0.2614π, α = 0.1192π, β = 1.3807π, γ = 1
2
π, δ = 1

3
π,

ε = 5
6
π. See second solution in Section 4.1.

And there is one special tiling (Figure 16):

8. f = 20, a = 0.2168π, α = 0.3095π, β = 1.0615π, γ = 0.6288π, δ = 2
5
π,

ε = 4
5
π. See Case 1.4b in Section 4.4.

The decimal values are effective digits. For example, a = 0.2322π means
a ∈ [0.2322π, 0.2323π]. The convention will be adopted throughout the pa-
per, and we provide enough digits so that the approximate values are enough
for rigorous conclusions.

The pentagonal subdivisions are are given by [4, Section 8]. The earth
map tilings are given by Figure 11, in which three “timezones” are depicted.
The earth map tilings with f = 16, 20, 24 tiles have respectively 4, 5, 6 time-
zones.

We note that the fifth and eighth tilings have the same pentagon. More-
over, we know the exact values of all data in the first, sixth and seventh
tilings. For example, we have a = arccos

√
5
3

for the regular decahedron and

a = arccos
√
−3 + 2

√
3 for the seventh tiling. More exact values and more

digits for approximate values will be presented in the paper.
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2 Spherical Geometry of Equilateral Pentagon

Consider the spherical equilateral pentagon in Figure 1, with edge length a
and five angles α, β, γ, δ, ε. By [1] and [2, Section 3], we may calculate the
great arc x connecting β and ε vertices, from the triangle above x as well as
the quadrilateral below x

cosx = cos2 a+ sinα sin2 a,

cosx = (1− cos γ)(1− cos δ) cos3 a− sin γ sin δ cos2 a

+ (cos γ + cos δ − cos γ cos δ) cos a+ sin γ sin δ.

Equating the two formulae for cos x and dividing 1−cos a, we get a quadratic
equation for cos a

L cos2 a+M cos a+N = 0,

where the coefficients depend only on α, γ, δ,

L = (1− cos γ)(1− cos δ),

M = cosα + cos(γ + δ)− cos γ − cos δ,

N = cosα− sin γ sin δ.

aa

a

a

a

x

α

β

γ δ

ε

Figure 1: Spherical equilateral pentagon.

Let ci be the arcs connecting respectively (β, ε), (α, γ), (β, δ), (γ, ε), (α, δ).
The quadratic equation above is derived from the attempt to calculate c1.
By calculating each of the five arcs, we get five quadratic equations

Li cos2 a+Mi cos a+Ni = 0, i = 1, 2, 3, 4, 5.

The five quadratic equations should share a common root cos a. The sharing
of a root among two quadratic equations can be detected by (and is equivalent
to) the vanishing of the resultant

Rij = (LiNj − LjNi)
2 − (LiMj − LjMi)(MiNj −MjNi).
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The sharing of a root among five quadratic equations can be detected by
(but may not be equivalent to) the vanishing of four resultants that relate
all five equations together.

As pointed out in the introduction, the equilateral pentagon has three
degrees of freedom. If we have three independent relations among the five
angles, then the pentagon should be completely determined. Specifically, we
may use the three independent relations to express five angles in terms of
two. Then the resultants are functions of two free variables. We find the
pentagon by looking for the common zero of four resultants.

We find the relations among angles by looking at possible angle combina-
tions at vertices. For example, a vertex combination αβγ at a vertex implies
a relation α+ β + γ = 2π. The fact that all five angles must appear at some
vertices imply certain number of such relations. The details are given by
Table 1 extracted from [4]. The angles in the table are all dinstinct.

For any tiling, we call the collection of all the angle combinations at degree
3 vertices the anglewise vertex combinations at degree 3 vertices. We denote
the collection by AVC3. By [4, Theorem 1], for a tiling (not necessarily by
pentagons) of any surface (not necessarily sphere) with at most 5 distinct
angles appearing at degree 3 vertices, the AVC3 contains the necessary part
of a collection in the table, and is also contained in the necessary plus the
optional part of the collection.

The table has five parts, corresponding to the number of distinct angles
appearing at degree 3 vertices. For example, the first case of the three angle
part is

{αβγ} ⊂ AVC3 ⊂ {αβγ, α3}.

The consideration of pentagonal tilings of the sphere imposes more restric-
tions. For example, if AVC3 = {αβγ}, then αβγ is the only degree 3 vertex.
By [4, Lemma 3], however, this would imply that each α, β, γ appears at
least twice in the pentagon, contradicting to only five angles in a pentagon.
Therefore α3 must also be a vertex, and AVC3 = {αβγ, α3}. By [4, Lemma
3] again, since α appears at all degree 3 vertices, it must appear at least twice
in the pentagon.

There is a simple inequality constraint on angles in a equilateral pentagon,
given by [3, Lemma 21] (or [2, Lemma 3]). The constraint has been success-
fully used in [2] to eliminate quite a number of cases. By the constraint, it
is easy to see that a quadrilateral pentagon can only allow odd number of
distinct angles. Moreover, by [4, Lemma 4], there is at most one vertex not
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Necessary Optional

α3

αβ2

αβγ α3

αβ2 α2γ
γ3

αβγ

αδ2
β2δ
β3

α2δ
βδ2

β3

δ3

αβ2 γδ2 α2δ
α2γ, δ3

αβγ αδε

βδ2, β2ε
βδ2, γε2, α3

βδ2, γ2ε
βδ2, γ3

βδ2, ε3

Necessary Optional

αβγ

αδ2

α2ε
βε2

β2δ
β3

βε2
α2ε
γ2δ
γ3

β2ε
γε2

γ2δ
γ3

δε2
β2ε
β3

ε3 β2δ

α2δ

β2ε
αε2

γδ2

γ3

δ2ε
β2ε
β3

ε3 βδ2

δε2 α3

αβ2, γδ2
α2ε

βγ2

δε2

ε3 α2δ

Table 1: Anglewise vertex combinations at degree 3 vertices, up to 5 angles.

appearing at degree 3 vertices. For the AVC3 above, therefore, α, β, γ must
be the only angles in the tiling. Then up to the symmetry of AVC3 (i.e.,
exchanging β, γ), the angles in the pentagon is either α2β2γ or α3βγ. By [3,
Lemma 21] again, we see that α3βγ is impossible, and for α2β2γ, the angles
can have two possible arrangements in the pentagon

A : [α, α, β, γ, β], [α, β, β, α, γ].

We will denote the first arrangement by A1 and the second arrangement by
A2.

Similar argument can be made for the other cases in the three angle part
of Table 1. We get the following complete list (up to the permutation of
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symbols) of possible AVC3s that also include the information on the angle
combinations in the pentagon. For each AVC3, we need to further consider
two possible angle arrangements A1 and A2. The total number of cases is
10.

3.1 {α2β2γ : αβγ, α3}, 2 arrangements A.

3.2a {α2β2γ : αβ2, α2γ}, 2 arrangements A.

3.2b {α2β2γ : α2β, αγ2}, 2 arrangements A.

3.3a {α2β2γ : αβ2, γ3}, 2 arrangements A.

3.3b {α2β2γ : αγ2, β3}, 2 arrangements A.

In fact, we can also get the list above by using [4, Proposition 5] and [3,
Lemma 21].

For the one angle part of Table 1, the same argument by using [3, Lemma
21] and [4, Lemma 4] shows that the pentagon must be α5. This leads to the
regular dodecahedron tiling.

For the two angle part of Table 1, the same argument leads to no possible
tiling. In fact, by [4, Proposition 5], the pentagon must be α2β3, contradict-
ing to the requirement of odd number of angles.

The four angle part will be discussed in Section 3. The five angle part
will be discussed in Section 4.

This section will use the spherical trigonometry to show that none of the
cases from the three angle part gives pentagon fit for the tiling. We will
discuss the four angle and five angle parts in the later sections.

In the later part of the paper, we may also get some information about
angle combinations at vertices of degree > 3. Sometimes we know certain
angle combinations must appear, and some other times we know all the
possible (but not necessarily appearing) angle combinations at all vertices.
We call such a collection anglewise vertex combination and denote by AVC.
The AVC may also include the angle combination in the pentagon or even
include the specific angle arrangement in the pentagon. Note that the AVC
is only partial because it may not be equal to the actual collection of angle
combinations. We will specify the relation between the partial AVC and the
actual AVC.

In the remaining part of the section, we show that the three angle cases
do not lead to tilings. These are actually reduced cases. By the symmetry of
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the pentagon, we have c1 = c2 and c3 = c5 in Figure 2. The picture depicts
the arrangement A1, and we have similar equalities for the arrangement A2.
Hence we only have three quadratic equations for cos a. Moreover, the two
vertices in AVC3 enable us to express all three angles in terms of one angle.
Therefore we only look for the common zero of two resultants that depend
on single angle variable.

aa

a

a

a

c1

c3 c4

α

α

β γ

β

Figure 2: Three quadratic equations for three angle cases.

For example, in Case 3.1, the equations α+ β + γ = 3α = 2π imply that

α =
2

3
π, γ =

4

3
π − β, 2α + 2β + γ − 3π = β − 1

3
π =

4

f
π.

The condition f ≥ 16 means 1
3
π < β ≤ 7

12
π. For the arrangement A1,

Figure 3 gives the graph of the resultants R13 (in red) and R14 (in blue)
on the interval [0.3π, 0.6π] containing [1

3
π, 7

12
π]. In Figure 3, we find that

the common zero of the two resultants is approximately β = 1
3
π. The exact

value can be further confirmed by symbolic computation. Since this implies
f =∞, the solution is dismissed.

In Figure 3, we omit π in the coordinates values. So 0.6 for β really means
β = 0.6π. We will adopt the same convention in Figures 4 and 8.

We carry out the similar calculation for all the three angle cases and two
arrangements for each case. We find no pentagon suitable for tiling.

3 Four Angles at Degree 3 Vertices

We explained in Section 2 that, by [3, Lemma 21], the number of distinct
angles in an equilateral pentagon must be odd. For the four angle and five
angle parts of Table 1, therefore, the pentagon must have five distinct angles
α, β, γ, δ, ε. In particular, the angle ε appears only at vertices of degree > 3
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β

R

Figure 3: Case 3.1, arrangement A1, R13 and R14.

in the four angle part. Moreover, up to the symmetry of flipping, there are
generally twelve ways of arranging the angles in the pentagon

B : [α, β, γ, δ, ε], [α, β, γ, ε, δ], [α, β, δ, γ, ε], [α, β, δ, ε, γ],

[α, β, ε, γ, δ], [α, β, ε, δ, γ], [α, γ, β, δ, ε], [α, γ, β, ε, δ],

[α, γ, δ, β, ε], [α, γ, ε, β, δ], [α, δ, β, γ, ε], [α, δ, γ, β, ε].

Of course, further symmetries in some cases may reduce the number of ar-
rangements we need to consider.

For the first combination {αβγ, αδ2} of the four angle part of the table
(i.e., αβγ and αδ2 belong to the actual AVC3), if there are no more degree 3
vertices, then α appears at every degree 3 vertex. By [4, lemma 3], this im-
plies that α appears at least twice in the pentagon. The contradiction shows
that one of the optional vertices must appear, and we get two combinations

{αβγ, αδ2, β2δ}, {αβγ, αδ2, β3}.

Similar argument for the second combination {αβγ, α2δ} also gives two com-
binations

{αβγ, α2δ, βδ2}, {αβγ, α2δ, β3}.

Since α ↔ β exchanges {αβγ, αδ2, β2δ} and {αβγ, α2δ, βδ2}, the four com-
binations may be reduced to three. Up to the permutation of symbols, the
actual AVC3 must be one of the three combinations.
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For the combination {αβ2, γδ2}, if there are no more degree 3 vertices,
then by the proof of the case {αβ2} in the proof of [4, Proposition 5], we
know that β and δ appear together at least three times in the pentagon.
This contradicts to the five distinct angles in the pentagon. Therefore the
optional vertex α2δ must appear, and we get AVC3 = {αβ2, γδ2, α2δ}.

For the combination {αβγ, δ3}, we actually have AVC3 = {αβγ, δ3}.
Then we make use of the fact that the fifth angle ε only appears at ver-
tices of degree > 3. By [4, lemma 4], one of αε3, βε3, γε3, δε3, ε4, ε5 must
be a vertex. Up to the symmetry of exchanging α, β, γ, we may omit βε3

and γε3. Any of the remaining combinations αε3, δε3, ε4, ε5 can be added to
AVC3 = {αβγ, δ3} to get a subset of the actual AVC.

In summary, for the case of four distinct angles appearing at degree 3
vertices, we get the following complete list of possible triples of angle combi-
nations that must appear at vertices. The 12 arrangements are given by B,
and the reductions of arrangements by further symmetries are also indicated.
The total number of cases is 72.

4.1a {αβγδε : αβγ, αδ2, β2δ}. 12 arrangements B.

4.1b {αβγδε : αβγ, αδ2, β3}. 12 arrangements B.

4.1c {αβγδε : αβγ, α2δ, β3}. 12 arrangements B.

4.2a {αβγδε : αβγ, δ3, αε3}. 6 arrangements (β, γ exchange).

4.2b {αβγδε : αβγ, δ3, δε3}. 2 arrangements (α, β, γ exchange).

4.2c {αβγδε : αβγ, δ3, ε4}. 2 arrangements (α, β, γ exchange).

4.2d {αβγδε : αβγ, δ3, ε5}. 2 arrangements (α, β, γ exchange).

4.3 {αβγδε : αβ2, γδ2, α2δ}. 12 arrangements B.

4.4 {αβγδε : αβ2, α2γ, δ3}. 12 arrangements B.

3.1 Cases 4.1, 4.3, 4.4

We will follow the spherical trigonometry outlined in Section 2. For the
concerned cases, we may express β, γ, δ in terms of α, so that the resultants
become functions of α, ε. Note that among the five quadratic equations for
cos a, two do not involve ε, so that the resultant of these two is a function of
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α only. We can find the value of α as the zero of this resultant. Then we can
substitute the value of α into the other resultants, and find ε as the common
zero of the other resultants.

For example, consider the arrangement B1 of Case 4.1b

{[α, β, γ, δ, ε] : αβγ, αδ2, β3}.

From the equations α + β + γ = α + 2δ = 3β = 2π, we get

β =
2

3
π, γ =

3

4
π − α, δ = π − 1

2
α.

This implies

0 < α <
3

4
π, α 6= 2

3
π.

Moreover, the number of tiles f ≥ 16 imposes a condition on the area of the
pentagon

α + β + γ + δ + ε− 3π = ε− 1

2
α =

4

f
π ≤ 1

4
π.

The resultant R14 does not involve ε. It is the product of three factors

R
(1)
14 =

(
1 + cos

1

2
α

)2

,

R
(2)
14 = 2 cos

1

2
α− 1,

R
(3)
14 =

(
2 cos3

1

2
α− 2 cos2

1

2
α + cos

1

2
α− 1

2

)√
3 sin

1

2
α

+ 6 cos4
1

2
α− 2 cos3

1

2
α− 8 cos2

1

2
α + 5 cos

1

2
α− 1

4
.

The first factor has no zero in the range (0, 3
4
π) for α. The zero of the

second factor within the range is α = 2
3
π, which is also forbidden. To get

the zero of the third factor, we solve R
(3)
14 = 0 for sin 1

2
α and substitute into

cos2 1
2
α + sin2 1

2
α = 1. What we get is the product of two factors

F1 = 24 cos3
1

2
α− 24 cos2

1

2
α + 2 cos

1

2
α + 1,

F2 = 16 cos4
1

2
α + 8 cos3

1

2
α− 24 cos2

1

2
α− 8 cos

1

2
α + 11.
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The zeros of the two factors within the range (0, 3
4
π) are

α = 0.7961π, 0.4742π.

Substituting the two α into the other resultants, we find that there is no ε
satisfying R13 = R23 = R35 = 0 at the same time. We conclude that the
spherical pentagon does not exist.

Similar argument shows that the spherical pentagon does not exist in
Cases 4.1, 4.3, 4.4, for all the arrangements. For Cases 4.1a and 4.1c, the ar-
gument can actually be carried out with cosα, sinα instead of cos 1

2
α, sin 1

2
α.

3.2 Case 4.2a

The problem here is that β, γ, δ cannot be expressed in terms of α only, so
that there is no “ε-free” resultant. We simply need to treat all resultants
equally and consider the common zero of four resultants.

Consider the arrangement B1

{[α, β, γ, δ, ε] : αβγ, δ3, αε3}.

The equations α + β + γ = 3δ = α + 3ε = 2π imply that

γ = 2π − α− β, δ =
2

3
π, ε =

2

3
π − 1

3
α.

The condition f ≥ 16 implies

α + β + γ + δ + ε− 3π =
1

3
(π − α) =

4

f
π ≤ 1

4
π.

Therefore
1

4
π ≤ α < π, α + β = 2π − γ < 2π.

In Figure 4, we plot the four resultant curves R12 = R13 = R14 = R25 = 0.
The green lines correspond to α = 1

4
π, α = π and α + β = 2π. We need

to look for solutions between the two vertical lines and below the scant line.
We find three possible intersections of the four curves within the range. We
may zoom in to get a more accurate values of the solutions

(α, β) = (0.2584π, 1.5603π), (0.5187π, 0.7018π).
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The two solutions have f = 16.18, 24.93, contradicting to the requirement
that f is an even integer.

We observe that there is another solution that appears to be (α, β) =
(π, 1

3
π). We may use the symbolic computation to confirm that the exact

value is indeed a common zero of the four resultants. Therefore this solution
violates the requirement that α < π (α = π corresponds to f =∞).

So we conclude that the arrangement B1 of Case 4.2a does not admit
spherical pentagon suitable for tiling. Similar argument shows that all ar-
rangements of Cases 4.2a do not admit suitable spherical pentagon suitable
for tiling.

The argument for the case is typical. After getting the approximate
(sometimes exact) values of all the angles from the common zero of four
resultants, we calculate the approximate value of f . If the approximate
value implies that f is not an even integer ≥ 16, then the solution can be
dismissed. This is exactly what happens to all the arrangements of Cases
4.2a.

In case we see a “borderline solution”, we always have an exact value of
the solution. Then we can use symbolic computation to confirm the exact
value, so that the solution can be dismissed due to the violation of some
strict inequality.

Finally, we remark that Cases 4.1, 4.3, 4.4 can also be treated by the
method for Cases 4.2a.

3.3 Case 4.2b

Up to the permutation of α, β, γ, we only need to consider the arrangements
B1 and B3. The equations α + β + γ = 3δ = δ + 3ε = 2π imply that

γ = 2π − α− β, δ =
2

3
π, ε =

4

9
π, f = 36.

The range for (α, β) is

α > 0, β > 0, 0 < α + β < 2π,

For the arrangement B1, we look for the common zero of four resultant curves
R12 = R23 = R24 = R25 = 0, and find three solutions within the range

(α, β) = (0.29539π, 1.62453π), (0.47π, 0.71π), (0.8757π, 0.4299π).
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α

β

R12 = 0

R13 = 0

R14 = 0

R25 = 0

range

Figure 4: Case 4.2a, arrangement B1, R12 = R13 = R14 = R25 = 0.
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However, the second solution violates [2, Lemma 3]. For the arrangement
B3, we look for the intersection of four curves R13 = R14 = R23 = R35 = 0
and find two solutions within the range

(α, β) = (0.77π, 0.86π), (0.855π, 0.455π).

However, the first solution violates [2, Lemma 3].
For the solution (α, β) = (0.29539π, 1.62453π), we have γ = 2π−α−β =

0.08008π (accurate up to −0.00002π, i.e., γ ∈ [0.08006π, 0.08008π]). Then
we try to find all the possible angle combinations αiβjγkδlεm at vertices by
solving

αi+ βj + γk + δl + εm = 2π.

Unfortunately, we cannot solve the exact equation because we do not have
the exact values for all the angles. Still, since all five terms on the left are
positive, the approximate values of the five angles imply

i ≤ 6, j ≤ 1, k ≤ 25, l ≤ 3, m ≤ 4.

Therefore any solution to the exact equation also satisfies∣∣∣∣0.29539i+ 1.62453j + 0.08008k +
2

3
l +

4

9
m− 2

∣∣∣∣ < 0.0006.

The choice of the right side is due to

(6 + 1) · 0.00001 + 25 · 0.00002 < 0.0006.

We substitute all combinations of indices i, j, k, l,m within the bounds to the
inequality above and found exactly three combinations αβγ, δ3, δε3 satisfying
the inequality.

Similar argument shows that for the solutions (α, β) = (0.8757π, 0.4299π)
and (0.855π, 0.455π), there are also exactly three combinations αβγ, δ3, δε3.
We need 5 digit approximation for the first solution because γ is very small,
which means k can be as big as 25. The bounds for the two solutions here
are much smaller, and 4 digit and 3 digit approximations are sufficient.

It remains to find the tiling for AVC = {αβγδε : αβγ, δ3, δε3}. By the
proof of [4, Theorem 6] for the full AVC {36αβγδε : 36αβγ, 8δ3, 12δε3}, there
is no tiling with αβγ, δ3, δε3 as the only vertices.
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3.4 Cases 4.2c and 4.2d

For Case 4.2c, we have

α + β + γ = 2π, δ =
2

3
π, ε =

1

2
π, f = 24.

The common zero of four resultants similar to the case 4.2b gives five solutions

(α, β) = (0.27849π, 1.59984π), (0.52π, 0.70π), (0.820π, 0.484π); (for B1)

(0.73π, 0.81π), (0.801π, 0.511π). (for B3)

For Case 4.2d, we have

α + β + γ = 2π, δ =
2

3
π, ε =

2

5
π, f = 60.

The common zero of four resultants gives five solutions

(α, β) = (0.31031π, 1.64260π), (0.44π, 0.72π), (0.9229π, 0.3890π); (for B1)

(0.81π, 0.90π), (0.9059π, 0.4093π). (for B3)

For both cases, the second and fourth solutions violate [2, Lemma 3].
For each of the remaining six solutions that do not violate [2, Lemma 3],
we may calculate all the angle combinations at vertices similar to Case 4.2b.
We find that αβγ, δ3, ε4 are the only vertices for Case 4.2c, and αβγ, δ3, ε5

are the only vertices for Case 4.2d. Then by the proof of [4, Theorem 6] for
the full AVCs {24αβγδε : 24αβγ, 8δ3, 6ε4} and {60αβγδε : 60αβγ, 20δ3, 12ε5},
and the argument for [4, Theorem 7], only the fifth solutions of the two cases
admit tilings, and the tilings are the pentagonal subdivisions of platonic
solids.

It remains to verify that the fifth solutions of the two cases can be realized
by actual spherical pentagons. By finding the common solution of the five
resultants, which are quadratic equations of cos a, we can find the approx-
imate values of edge length a for the two solutions. For example, we find
a = 0.17π for the fifth solution of Case 4.2c. This mean that we expect the
exact value a ∈ [a−, a+] = [0.17π, 0.18π]. We will see that [a−, a+] ⊂ (0, 1

2
π)

for two solutions here as well as all the later solutions.
Figure 5 shows the possible pentagons in arrangement B3, with A, B,

C, D, E being respectively the vertices where the angles α, β, γ, δ, ε are
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located. We consider the pentagon as obtained by glueing the isosceles tri-
angles 4ACE, 4BCD and the middle triangle 4ABC together. This is
indeed the case for the left and middle situations, where the triangle 4ABC
lies inside the pentagon. Our subsequent discussion will also be based on
this assumption. In the right situation, the triangle 4ABC is not inside
the pentagon, and we will explain why this and the similar situation do not
happen for our solutions.
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Figure 5: Various possible shapes of the pentagon for B3.

The known precise values of δ and ε determine the triangles 4ACE and
4BCD as functions of a. In particular,

x = BC = arccos(cos2 a+ sin2 a cos δ),

y = AC = arccos(cos2 a+ sin2 a cos ε),

φ = ∠CBD = arctan

(
sec a cot

δ

2

)
,

ψ = ∠CAE = arctan
(

sec a cot
ε

2

)
.

For the range [a−, a+] of a, we find the corresponding ranges [x−, x+], [y−, y+],
[φ−, φ+], [ψ−, ψ+] for x, y, φ, ψ. The existence of the middle triangle 4ABC
can be verified by showing that the ranges satisfy

a+ x+ y < 2π, a < x+ y, x < a+ y, y < a+ x.

This shows the existence of the pentagon with the given precise values of
δ, ε and a range [a−, a+] for a. Yet this does not prevent the shape of the
pentagon to be the right of Figure 5. We may verify that the triangle4ABC
indeed lies inside the pentagon, by further showing that the ranges of φ and
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ψ and the initial approximate values of α, β from the two solutions satisfy
the following inequalities

α > ψ, β > φ, γ = 2π − α− β > φ+ ψ.

To verify the original definition of Case 4.2c, it remains to show that the
equality α + β + γ = 2π can be achieved for some a ∈ [a−, a+]. For this
purpose, we have the angles of the triangle 4ABC

∠CAB = arccos

(
cosx− cos a cos y

sin a sin y

)
,

∠CBA = arccos

(
cos y − cos a cosx

sin a sinx

)
,

∠ACB = arccos

(
cos a− cosx cos y

sinx sin y

)
,

and further the angles α, β, γ as functions of a, x, y

α = ψ + ∠CAB, β = φ+ ∠CBA, γ = φ+ ψ + ∠ACB.

Substituting the formulae of x, y, φ, ψ as functions of a, the angles α, β, γ,
∠CAB, ∠CBA, ∠ACB may be expressed as functions of the single variable
a. Then we need to achieve the vanishing of the following function of a

f(a) = α + β + γ − 2π = ∠CAB + ∠CBA+ ∠ACB + 2φ+ 2ψ − 2π.

We get the existence of a by showing that f(a−) and f(a+) have opposite
signs and then applying the mean value theorem.

For the fifth solution of Case 4.2c, we find the approximate edge length
a = 0.17π from the common solution of two resultants. By

f(0.17π) = −0.028, f(0.18π) = 0.035,

and the intermediate value theorem, there is a ∈ [0.17π, 0.18π] satisfying
f(a) = 0. We may further apply the intermediate value theorem to f(a) = 0
to get more and more digits for a. In fact, we get

a = 0.17452731854247459669847381026π

because for this value of a, we have

f(a) = −3.8× 10−29 < 0, f(a+ 10−29π) = 2.6× 10−29 > 0.
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Using this value of a, we get

α = 0.801068329059920462607312422969π,

β = 0.51139177170631338496460382209π,

γ = 0.68753989923376615242808375493π,

and
φ = 0.189π, ψ = 0.275π, x = 0.298π, y = 0.240π.

We verify that the inequalities between a, x, y and between α, β, φ, ψ are
satisfied, so that the pentagon indeed exists and is shaped like the left of
Figure 5. The numerical data for the pentagon is depicted on the left of
Figure 6.

aa

a

a

a

C

DE

A B

aa

a

a

a

C

DE

A B

0.66π0.50π

0.80π 0.51π

0.69π

0.18π0.27π 0.29π0.24π

0.666π0.400π

0.905π 0.409π

0.686π

0.176π0.310π 0.204π0.137π

Figure 6: Pentagon for {[α, β, δ, γ, ε] : αβγ, δ3, ε4 or ε5}.

Similarly, for the fifth solution of Case 4.2d, we have

a = 0.118647334865501893582931118986π,

α = 0.905942593574543832769182439026π,

β = 0.409303454898146180685546402290π,

γ = 0.68475395152730998654527115868π,

and
φ = 0.176π, ψ = 0.310π, x = 0.204π, y = 0.137π.

This also implies the existence of the pentagon, which is also shaped like the
left of Figure 5, with the numerical data depicted on the right of Figure 6.
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4 Five Angles at Degree 3 Vertices

Suppose the pentagon has five distinct angles α, β, γ, δ, ε. By [4, Lemma 3],
no angle can appear at all the degree 3 vertices. For the first combination
{αβγ, αδε} in the five angle part of Table 1, therefore, some optional vertex
not involving α must appear. Up to the symmetry of symbols, we may assume
that either γε2 or γ3 appears. If we further include the optional vertex α3 for
the combination {αβγ, δε2}, then we get the following list of possible triples
of angle combinations that must appear at vertices from the five angle part
of Table 1. The total number of cases is 102.

5.1a {αβγδε : αβγ, αδε, γε2}. 12 arrangements B.

5.1b {αβγδε : αβγ, αδε, γ3}. 6 arrangements (δ, ε exchange).

5.2 {αβγδε : αβγ, αδ2, α2ε}. 6 arrangements (β, γ exchange).

5.3 {αβγδε : αβγ, αδ2, βε2}. 6 arrangements ((α, δ), (β, ε) exchange).

5.4 {αβγδε : αβγ, αδ2, β2ε}. 12 arrangements B.

5.5 {αβγδε : αβγ, αδ2, δε2}. 6 arrangements (β, γ exchange).

5.6 {αβγδε : αβγ, αδ2, ε3}. 6 arrangements (β, γ exchange).

5.7 {αβγδε : αβγ, α2δ, β2ε}. 6 arrangements ((α, δ), (β, ε) exchange).

5.8 {αβγδε : αβγ, α2δ, δ2ε}. 12 arrangements B.

5.9 {αβγδε : αβγ, α2δ, ε3}. 6 arrangements (β, γ exchange).

5.10 {αβγδε : αβγ, δε2, α3}. 6 arrangements (β, γ exchange).

5.11 {αβγδε : αβ2, γδ2, α2ε}. 12 arrangements B.

5.12 {αβγδε : αβ2, γδ2, ε3}. 6 arrangements ((α, β), (γ, δ) exchange).

It remains to consider the combination {αβγ, δε2} in Table 1, with the
additional assumption that there are no other degree 3 vertices. If there are
degree 4 vertices, then we consider all the possible combinations at a degree
4 vertex and get the following complete list. Here the angle combinations at
the degree 4 vertex are ordered by the types ∗ ∗ ∗∗, ∗ ∗ ∗2, ∗2∗2, ∗∗3, ∗4. We
also note that the combination {αβγ, δε2, ε4} is dismissed because it implies
f = 8. The total number of cases is 124.

20



1.1 {αβγδε : αβγ, δε2, αβδε}. 6 arrangements.

1.2a {αβγδε : αβγ, δε2, αβ2δ}. 12 arrangements B.

1.2b {αβγδε : αβγ, δε2, αβ2ε}. 12 arrangements B.

1.2c {αβγδε : αβγ, δε2, αβδ2}. 6 arrangements.

1.2d {αβγδε : αβγ, δε2, αβε2}. 6 arrangements.

1.2e {αβγδε : αβγ, δε2, αδ2ε}. 6 arrangements.

1.3a {αβγδε : αβγ, δε2, α2β2}. 6 arrangements.

1.3b {αβγδε : αβγ, δε2, α2δ2}. 12 arrangements B.

1.3c {αβγδε : αβγ, δε2, α2ε2}. 12 arrangements B.

1.4a {αβγδε : αβγ, δε2, αβ3}. 12 arrangements B.

1.4b {αβγδε : αβγ, δε2, αδ3}. 6 arrangements.

1.4c {αβγδε : αβγ, δε2, αε3}. 6 arrangements.

1.4d {αβγδε : αβγ, δε2, α3δ}. 6 arrangements.

1.4e {αβγδε : αβγ, δε2, α3ε}. 6 arrangements.

1.4f {αβγδε : αβγ, δε2, δ3ε}. 2 arrangements.

1.5a {αβγδε : αβγ, δε2, α4}. 6 arrangements.

1.5b {αβγδε : αβγ, δε2, δ4}. 2 arrangements.

If there are degree 5 vertices, then we consider all the possible combina-
tions at a degree 5 vertex and get the following complete list. Here the angle
combinations at the degree 5 vertex are ordered by the types ∗ ∗ ∗∗2, ∗ ∗2 ∗2,
∗ ∗ ∗3, ∗∗4, ∗5. We also note that the combination {αβγ, δε2, ε5} is dismissed
because it implies f = 20

3
. The total number of cases is 190.

2.1a {αβγδε : αβγ, δε2, αβ2δε}. 12 arrangements B.

2.1b {αβγδε : αβγ, δε2, αβδ2ε}. 6 arrangements.
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2.2a {αβγδε : αβγ, δε2, α2β2δ}. 6 arrangements.

2.2b {αβγδε : αβγ, δε2, α2β2ε}. 6 arrangements.

2.2c {αβγδε : αβγ, δε2, α2δ2ε}. 6 arrangements.

2.2d {αβγδε : αβγ, δε2, αβ2δ2}. 12 arrangements B.

2.2e {αβγδε : αβγ, δε2, αβ2ε2}. 12 arrangements B.

2.3a {αβγδε : αβγ, δε2, α3δε}. 6 arrangements.

2.3b {αβγδε : αβγ, δε2, αβ3δ}. 12 arrangements B.

2.3c {αβγδε : αβγ, δε2, αβ3ε}. 12 arrangements B.

2.3d {αβγδε : αβγ, δε2, αδ3ε}. 6 arrangements.

2.4a {αβγδε : αβγ, δε2, α2β3}. 12 arrangements B.

2.4b {αβγδε : αβγ, δε2, α2δ3}. 12 arrangements B.

2.4c {αβγδε : αβγ, δε2, α2ε3}. 12 arrangements B.

2.4d {αβγδε : αβγ, δε2, α3δ2}. 6 arrangements.

2.4e {αβγδε : αβγ, δε2, α3ε2}. 6 arrangements.

2.5a {αβγδε : αβγ, δε2, αβ4}. 12 arrangements B.

2.5b {αβγδε : αβγ, δε2, αδ4}. 6 arrangements.

2.5c {αβγδε : αβγ, δε2, αε4}. 6 arrangements.

2.5d {αβγδε : αβγ, δε2, α4δ}. 6 arrangements.

2.5e {αβγδε : αβγ, δε2, α4ε}. 6 arrangements.

2.5f {αβγδε : αβγ, δε2, δ4ε}. 2 arrangements.

2.6a {αβγδε : αβγ, δε2, α5}. 6 arrangements.

2.6b {αβγδε : αβγ, δε2, δ5}. 2 arrangements.
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Finally, we need to consider the case that αβγ and δε2 are the only degree
3 vertices, and there are no vertices of degree 4 or 5. In Section 4.1, we will
show that the only possibility is that δ6 is a vertex, and δ, ε are not adjacent
in the pentagon.

For each case, we carry out the calculation similar to what is outlined
for Case 4.2a in Section 3.2. In most cases, we find no common zero for
the resultants within the natural range for the angles. If there are solutions
within the natural range, then we further calculate the approximate value of
the number f of tiles. In many cases, we find that the approximate value
implies that f cannot be an even integer ≥ 16, so the cases can also be
dismissed. After eliminating all these “trivial” cases, the remaining cases are
1.2e, 1.4f, 1.5a, 1.5b, 2.4b, 2.5f, 2.6b, 5.5, and the exceptional case that αβγ
and δε2 are the only degree 3 vertices, and there are no vertices of degree 4
or 5. We will study these cases in the subsequent sections.

4.1 {αβγδε : αβγ, δε2}, v4 = v5 = 0

We first study the exceptional case that αβγ and δε2 are the only degree 3
vertices, and there are no vertices of degree 4 or 5.

By [2, Proposition 1], any pentagonal spherical tiling must have a tile
with four vertices having degree 3, and the fifth vertex having degree 3, 4, or
5. Since v4 = v5 = 0 in our exceptional case, there is a tile with all vertices
having degree 3. We call such a tile 35-tile.

The neighborhood of the 35-tile is given in Figure 7. We denote the tiles
by Pi, denote the vertex shared by Pi, Pj, Pk by Vijk, and denote the angle of
Pi at Vijk by Ai,jk.
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Figure 7: Neighborhood tiling for AVC3 = {αβγ, δε2}.

Up to the symmetry of AVC3 = {αβγ, δε2}, we only need to consider
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the arrangements B1 and B3. The center tile of the left of Figure 7 has
arrangement B1. By AVC3, we get V156 = δε2, so that V5,16 = V6,15 = ε.
Since αε · · · is not in AVC3, the angle α of P6 adjacent to ε must be located
as indicated. Then the angles α and ε of P6 determine the locations of all
the angles of P6. By AVC3, we further get A2,16 = ε. Then the angle of P2

labeled ? is adjacent to ε and therefore must be α or δ. This means either
α2 · · · or αδ · · · belongs to AVC3, a contradiction.

So we only need to consider the arrangement B3, as indicated by the
center tile of the right of Figure 7. Using the similar argument, we get the
unique locations of all the angles in the neighborhood.

Next we will argue that the number of tiles f ≤ 24. Since f is even, it is
sufficient to show that f < 26. We note that AVC3 implies

α + β + γ + δ + ε− 3π =
1

2
δ =

4

f
π, δ =

8

f
π.

Since f ≥ 16, we have δ ≤ 1
2
π. We will have two inequality restrictions on f .

We consider pentagon in Figure 5. We have a < π because otherwise any
two adjacent edges would intersect at two points. We may determine arcs x
and y by the cosine laws

cosx = cos2 a+ sin2 a cos δ,

cos y = cos2 a+ sin2 a cos ε = cos2 a− sin2 a cos
δ

2
.

The inequality y − x ≤ a then defines a region on the rectangle (a, δ) ∈
(0, π)× (0, 1

2
π].

For 1
2
π < a < π, another inequality may be obtained by estimating the

area of the pentagon. Since δ ≤ 1
2
π, the triangle BCD lies outside the

quadrilateral ABCE. Therefore

4

f
π = Area(pentagon ABDCE) ≥ Area(quadrilateral ABCE).

The area of the quadrilateral can be further estimated

Area(quadrilateral ABCE) ≥ Area(triangle ACE)− Area(triangle ABC).

By the assumption 1
2
π < a < π, we have

Area(triangle ACE) ≥ ε = π − δ

2
= π − 4

f
π.
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Moreover, Area(triangle ABC) + π is the sum
∑

of the three angles of the
triangle ABC. Combining all the inequalities together, we get∑

≥ 2

(
π − 4

f
π

)
.

The triangle ABC has sides x, y, a, and its three angles can be calculated by
the cosine law. Then

∑
may be explicitly expressed as a function of (a, δ).

To show that f ≥ 26 leads to contradiction, we note that f ≥ 26 implies∑
≥ 22

13
π by the estimation above. In Figure 8, the solid curve separates the

regions y− x < a and y− x > a, and the dashed curve separates the regions∑
> 22

13
π and

∑
< 22

13
π. Moreover, the horizontal dotted line corresponds

to f = 26, and the vertical dotted line corresponds to a = 1
2
π. We see that,

for f ≥ 26, the condition y − x < a is not satisfied for a ∈ (0, 1
2
π], and the

condition
∑
≥ 22

13
π is not satisfied for a ∈ [1

2
π, π). Thus we conclude that

f ≤ 24.

σ > 22
13π

σ < 22
13π

y − x < a

y − x > a

δ

a

f ≥ 26

f ≤ 24

Figure 8: f ≤ 24 for AVC3 = {αβγ, δε2}.

By the vertex counting equation (see [3, page 750], for example)

f

2
− 6 =

∑
k≥4

(k − 3)vk = v4 + 2v5 + 3v6 + · · · , (1)
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and [7, Theorem 6], f ≤ 24 implies that either the tiling has vertices of
degree 4 or 5, or f = 24 and the tiling is the earth map tiling with exactly
two vertices of degree 6. The former case is covered by the calculation of the
cases 1.∗ and 2.∗ and will be discussed in Sections 4.3 and 4.4. So we will
only study the earth map tiling.

There are five families of earth map tilings, corresponding to distances
5, 4, 3, 2, 1 between the two vertices of degree > 3, called “poles”. They are
obtained by glueing copies of the “timezones” in Figure 9 (three timezones
are shown for distance 5) along the “meridians”. The vertical edges at the
top meet at the north pole, and the vertical edges at the bottom meet at the
south pole. For f = 24, the tiling consists of two time zones for distances
4, 3, 2, 1 and six timezones for distance 5.

∗

distance 5

∗

distance 4

∗

distance 3

∗

distance 2

∗

distance 1

Figure 9: Timezones for earth map tilings.

Next we carry out the propagation argument in [2, Section 2] leading
to the proof of Proposition 4 of that paper. The neighborhood of a 35-tile
is given by the right of Figure 7. If a nearby tile is still a 35-tile, then its
neighborhood is again given by the right of Figure 7. To see whether this is
possible, we simplify the presentation of the neighborhood tiling on the right
of Figure 7 by keeping only γ and the orientations of the angle arrangement.
This gives the left picture in Figure 10. The middle picture is the mirror
flipping of the left picture.
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Figure 10: Propagation of the neighborhood tiling.

Now each nearby tile is adjacent to three tiles in the neighborhood tiling.
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We may compare the location of γ and the orientations of the three tiles
with the left or the middle picture (depending on whether the nearby tile is
positively or negatively oriented). If everything matches, then the tile can
be (but is not necessarily) a 35-tile, and we indicate the tile by 35 on the
right of Figure 10. If there is a mismatch, then the tile must have a vertex
of degree > 3 (i.e., high degree), and we indicate the tile by “high”.

We apply the propagation to the ∗-labeled 35-tiles in Figure 9. For dis-
tances 4, 3, 2, 1, all ∗-labeled tiles have at least three nearby 35-tiles. Since
the right of Figure 10 has only two nearby 35-tiles, it cannot be the neighbor-
hoods of the ∗-labeled tiles. For distance 5, we note that only the two tiles
on the left and right of the ∗-labeled tile are 35-tiles. These two must be the
two nearby 35-tiles on the right of Figure 10. Guided by this observation, it
is easy to derive the unique earth map tiling of distance 5 in Figure 11 (only
three of the six timezones are shown). In particular, we find that δ6 must be
a vertex.
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Figure 11: Tiling for AVC3 = {αβγ, δε2}, v4 = v5 = 0.

So we calculate the equilateral pentagon with the angle arrangement B3
and three known vertices αβγ, δε2, δ6. The common zero of four resultants
gives three solutions

(α, β) = (0.1440π, 1.3333π), (0.1192π, 1.3807π), (0.88π, 0.61π),

(δ, ε) = (1
3
π, 5

6
π).

The third solution violates [2, Lemma 3]. Using the exact values of δ and ε,
we may further get the following data for the first and second solutions

a = 0.2501π, x = 0.2301π, y = 0.4788π, φ = 0.3766π, ψ = 0.1153π;

a = 0.2614π, x = 0.2385π, y = 0.5000π, φ = 0.3807π, ψ = 0.1192π.

Similar to Section 3.4, we can verify that the inequalities between a, x, y and
between α, β, φ, ψ are satisfied for the first solution. The data for the second
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solution suggests y − x = a, α = ψ and β = π + φ. Since the existence of
the pentagon depends on these exact equalities, the approximate numerical
computation is not enough to verify the existence. We will use symbolic
computations to exactly verify the equalities. The details will be given in
Section 4.3. In fact, the data also suggests β = 4

3
π for the first solution. We

will also verify this by symbolic computation. The details will be given in
Section 4.2.

4.2 Case 5.5

Only the arrangement B5 gives non-trivial solution. To make the arrange-
ment consistent with the 4.∗ cases and the exceptional case, we exchange
α and β to translate the arrangement B5 to the arrangement B3. So we
consider

AVC3 = {[α, β, δ, γ, ε] : αβγ, βδ2, δε2}.

The common zero of four resultants gives

α = 0.1440π, β =
4

3
π, γ = 0.5226π, δ =

1

3
π, ε =

5

6
π, f = 24.

Note that at the moment, all the values are only approximate, and the exact
value of β, δ, γ will be justified by symbolic computation.

By the method in Section 3.3, we get all the possible angle combinations
at vertices

AVC = {[α, β, δ, γ, ε] : αβγ, βδ2, δε2, α3γ3, α2γ2δ2, αγδ4, δ6}.

Of course “possible” does not mean necessarily appearing. So the actual
AVC is contained in the right side.

The AVC implies that the degrees of the vertices are either 3 or 6. By
f = 24, the vertex counting equation (1) and [7, Theorem 6], the tiling is the
earth map tiling with exactly two vertices of degree 6.

In Section 4.1, we explained that every earth map tiling has 35-tiles. So
we study the possible ways of assigning the angles in the neighborhood of the
35-tile subject to our AVC. We will keep using the notations Pi, Vijk, Ai,jk
as before.

By AVC, we have V134 = δε2. This implies either A3,14 = δ, A4,13 = ε,
or A3,14 = ε, A4,13 = δ. The left of Figure 12 describes the former case. By
AVC, we know A3,12 6= γ, therefore the angle γ of P3 adjacent to A3,14 = δ
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Figure 12: Neighborhood tiling for
{[α, β, δ, γ, ε] : αβγ, βδ2, δε2, α3γ3, α2γ2δ2, αγδ4, δ6}.

must be located as indicated. This determines all the angles of P3. By the
same reason, we may determine all the angles of P4. By AVC, we further
get A2,13 = α and A5,14 = β. Since αε · · · is not a vertex, the angle ε of P2

adjacent to A2,13 = α must be located as indicated. This determines all the
angles of P2. Then by AVC, we get A6,12 = ε. If the angle α of P6 adjacent
to A6,12 = ε is A6,15, then we get A5,16 = γ by AVC, so that β and γ are
adjacent in P5. The contradiction implies that the angle α of P6 must be
located as indicated. This determines all the angles of P6. Then we get all
the angles of P5. The tiling is the same as the right of Figure 7.

The middle and right of Figure 12 describe the case A3,14 = ε, A4,13 = δ.
We can successively determine all the angles of P3, P2 as before, and get
A4,13 = δ, A6,12 = β. Then the middle and the right describe two ways the
angles of P6 may be arranged. In the middle, we find that the two ?-labeled
angles are α and ε. On the right, the ?-labeled angle is δ or ε. Since αε · · ·
is not a vertex, and αδ · · · , αε · · · are not degree 3 vertices, we always get
contradictions.

So we conclude that the right of Figure 7 (which is the same as the
left of Figure 12) is the only neighborhood tiling fitting the AVC. Then the
propagation argument in Section 4.1 (which no longer uses the AVC) shows
that the tiling is the earth map tiling in Figure 11. We find that the actual
AVC at the end is {αβγ, δε2, δ6}. Since the AVC does not include βδ2, the
pentagon and the tiling is for the exceptional case in Section 4.1, and is not
for Case 5.5. Furthermore, the approximate value of α shows that the tiling
is for the first solution of the exceptional case.

In Section 4.1, we already verified the existence of the pentagon, and
get the approximate value a = 0.2501π. It is given by Figure 13, with the
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left being the scheme and the right being the actual shape. However, the
numerical computation cannot show that f(a) = 0 exactly matches β = 4

3
π.
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Figure 13: Pentagon for {[α, β, δ, γ, ε] : αβγ, βδ2, δε2}.

To prove the exact value of β, δ, γ, we reconstruct the pentagon by starting
with these exact values. This is possible because an equilateral pentagon
allows three free variables. The goal is to verify that α + β + γ = 2π is
exactly satisfied for the pentagon, so that the original assumption on the
appearance of the vertices αβγ, βδ2, δε2 is satisfied.

The two ways of calculating cos x by using the triangle ACE and the
quadrilateral ABDC gives the quadratic equation for the cosine of the edge
length

0 =

(
1− cos

4

3
π

)(
1− cos

1

3
π

)
cos2 a

+

[
cos

5

6
π + cos

(
4

3
+

1

3

)
π − cos

4

3
π − cos

1

3
π

]
cos a

+

[
cos

5

6
π − sin

4

3
π sin

1

3
π

]
.

By a = 0.2501π ∈ (0, 1
2
π), the exact value of cos a is

cos a =
1

3

(
−1 +

√
3 +

√
−5 + 4

√
3

)
.

We may construct the triangle ACE using this a and ε = 5
6
π, and construct

the quadrilateral ABDC using this a and β = 4
3
π and δ = 1

3
π. The validity of

the quadratic equation above means that the triangle and the quadrilateral
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have matching AC = x edge. Therefore they can be glued together to form
a pentagon.

We can use a, δ, ε to calculate the triangles AEC,BCD and then further
use β to calculate the triangle ABC. Then we can confirm the approximate
values α = 0.1440π and γ = 0.5226π. In the subsequent calculation of the
exact values of α and γ, we will only choose the exact values consistent with
the approximate values.

The two ways of calculating cos y by using the triangle BCD and the
quadrilateral ABCE gives another quadratic equation for cos a

0 =

(
1− cos

5

6
π

)
(1− cosα) cos2 a

+

[
cos

1

3
π + cos

(
5

6
π + α

)
− cos

5

6
π − cosα

]
cos a

+

[
cos

1

3
π − sin

5

6
π sinα

]
.

Substituting the value of cos a into the equation, we get a linear equation
relating cosα and sinα(

7 + 6
√

3 + 8

√
−5 + 4

√
3 + 5

√
3

√
−5 + 4

√
3

)
cosα

+ 3

(
2 +
√

3 +

√
−5 + 4

√
3

)
sinα

= 19 + 3
√

3 + 5

√
−5 + 4

√
3 + 5

√
3

√
−5 + 4

√
3.

Then we get two possible α. The one consistent with the approximate value
α = 0.1440π is

α = arctan
1

33

(
4 + 3

√
3− 2

√
−5 + 4

√
3 + 4

√
3

√
−5 + 4

√
3

)
= 0.14400988468593670938539230388π.

Similarly, the two ways of calculating cos z by using the triangle ABD
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and the quadrilateral ADCE gives a linear equation relating cos γ and sin γ(
7 + 6

√
3 + 8

√
−5 + 4

√
3 + 5

√
3

√
−5 + 4

√
3

)
cos γ

+ 3

(
2 +
√

3 +

√
−5 + 4

√
3

)
sin γ

= 7− 3
√

3−
√
−5 + 4

√
3 + 5

√
3

√
−5 + 4

√
3.

The solution consistent with the approximate value γ = 0.5226π is

γ = π − arctan
1

3

(
12 + 7

√
3 + 6

√
−5 + 4

√
3 + 4

√
3

√
−5 + 4

√
3

)
= 0.52265678198072995728127436277π.

Then we may symbolically verify

tan(π − α− γ) =
tan(π − γ)− tanα

1 + tan(π − γ) tanα
=
√

3.

The only exact value of π − α − γ consistent with the approximate value is
π − α− γ = 1

3
π = β − π.

4.3 Cases 1.2e, 1.5a and 2.4b

For the three cases, only the arrangement B11 = [α, δ, β, γ, ε] admits mean-
ingful solutions. So the cases can be summarized as

{[α, δ, β, γ, ε] : αβγ, δε2, αδ2ε or α4 or α2δ3}.

Again we translate into the arrangement B3 by exchanging α and γ

{[α, β, δ, γ, ε] : αβγ, δε2, γδ2ε or γ4 or γ2δ3}.

In all three cases, the common zero of four resultants gives

γ =
1

2
π, δ =

1

3
π, ε =

5

6
π, f = 24,

and two combinations of α, β

α + β =
3

2
π, α = ψ or π − ψ, ψ = 0.1192π.
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The exact values of γ, δ, ε will be justified by symbolic computation.
The second solution α = π − ψ violates [2, Lemma 3]. From the solution

α = ψ, we get all the possible angle combinations at vertices by the method
in Section 3.3,

AVC = {[α, β, δ, γ, ε] : αβγ, δε2, γδ2ε, γ4, γ2δ3, δ6}.

The actual AVC should be contained in the right side.
Since β appears only at αβγ, and the total number of times β appears

in the tiling is f = 24, we find that αβγ appears 24 times. This implies
that γ already appears 24 times at αβγ, and therefore cannot appear at any
other vertex. This implies that γδ2ε, γ4, γ2δ3 actually cannot appear, and
the actual AVC is contained in

{[α, β, δ, γ, ε] : αβγ, δε2, δ6}.

Since this is contained in the maximal possible AVC studied in Section
4.2, the tiling is given by Figure 11. In particular, the actual AVC is
{αβγ, δε2, δ6}, which includes none of γδ2ε, γ4, γ2δ3. Therefore the pentagon
and the tiling is for the exceptional case in Section 4.1, and is not for Cases
1.2e, 1.5a and 2.4b. Furthermore, the approximate value of α shows that the
tiling is for the second solution of the exceptional case.

It remains to verify the existence of the pentagon. The approximate
values in Section 4.1 suggests α = ψ, which means that the pentagon is
obtained by glueing two triangles ACE and BCD together, and the third
triangle ABC is reduced to an arc. The situation is described in Figure 14.

To prove the configuration in Figure 14, we reconstruct the pentagon by
starting with the exact values of γ, δ, ε, and the assumption AE = AC =
BD = CD = a. The goal is to verify that AC = BC+ a, so that glueing the
two isosceles triangles ACE and BCD gives a pentagon with equal sides.

We have

tanφ = sec a cot
δ

2
, tanψ = sec a cot

ε

2
.

Then φ+ ψ = γ = 1
2
π implies that

sec a cot
δ

2
· sec a cot

ε

2
= 1.

Therefore

cos a =

√
−3 + 2

√
3, sin a =

√
1− (−3 + 2

√
3) = −1 +

√
3.
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Figure 14: Pentagon for {[α, β, δ, γ, ε] : αβγ, δε2, γδ2ε or γ4 or γ2δ3}.

Here we choose cos a to be positive because the approximate value ψ = α =
0.1192π implies tanψ > 0. Combined with cot ε

2
> 0, we get sec a > 0. The

approximate value of a is

a = arccos

√
−3 + 2

√
3 = 0.2614366507506671650166836630π.

Now we have

cosAC = cos2 a+ sin2 a cos
5

6
π

= (−3 + 2
√

3)− (4− 2
√

3)

√
3

2
= 0,

cosBC = cos2 a+ sin2 a cos
1

3
π

= (−3 + 2
√

3) + (4− 2
√

3)
1

2
= −1 +

√
3 = sin a.

The first equality implies AC = 1
2
π. The second equality implies cosBC > 0,

so that 0 < BC < 1
2
π. Since we also have 0 < a < 1

2
π, the second equality

above implies BC + a = 1
2
π = AC.

The shape of the pentagon and the exact value of a imply the exact values
of α and β

α = ψ =
1

2
π − φ =

1

2
π − arctan

√
3 + 2

√
3,

β = π + φ = π + arctan

√
3 + 2

√
3.
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Finally, we remark that the second solution with α = π − ψ (from the
common zero of our resultants) actually gives the complementary pentagon
ABDCE ′ in the ε-part of the sphere (the 2-gon of angle ε = 5

6
π).

4.4 Cases 1.4f, 1.5b, 2.5f and 2.6b

For Cases 1.4f and 2.6b, we have the following solutions from the common
zeros of four resultants

(α, β) = (0.93π, 0.72π), (0.6055π, 0.5024π), (for B1)

(0.84π, 0.62π), (0.3095π, 1.0615π), (for B3)

(δ, ε) =
(
2
5
π, 4

5
π
)
, f = 20.

For Case 1.5b, we have

(α, β) = (0.84π, 0.69π), (0.6338π, 0.5642π), (0.10133π, 1.56723π), (for B1)

(0.78π, 0.64π), (0.4536π, 0.8823π), (for B3)

(δ, ε) =
(
1
2
π, 3

4
π
)
, f = 16.

For Case 2.5f, we have

(α, β) = (0.99π, 0.78π), (0.5588π, 0.4371π), (for B1)

(0.90π, 0.61π), (for B3)

(δ, ε) =
(
2
7
π, 6

7
π
)
, f = 28.

In all cases, the first and third solutions violate [2, Lemma 3]. For the
remaining solutions, we use the method of Section 3.3 to find all the possible
angle combinations at all the vertices

AVC = {αβγ, δε2, δ3ε, δ5}, (for Cases 1.4f and 2.6b)

AVC = {αβγ, δε2, δ4}, (for Case 1.5b)

AVC = {αβγ, δε2, δ4ε, δ7}. (for Case 2.5f)

We first prove that the AVCs above do not admit tilings with arrangement
B1. The left of Figure 15 shows what happens at a vertex of degree >
3, which means δ3ε, δ4ε, δ4, δ5 or δ7 in our AVCs. We always have three
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consecutive δ at the vertex, and we may assume that the angles of P1 are
arranged as indicated. By AVC, γε · · · is not a vertex, so that the angle γ
of P2 adjacent to δ must be located as indicated. This determines all the
angles of P2. Then by AVC, the vertex ε2 · · · shared by P1, P2 is δε2. So we
get a tile P3 outside P1, P2, together with the location of the angle δ of P3.
Since the angle ε in P3 is adjacent to δ, it is located at one of the ? marks.
This gives a vertex αε · · · , contradicting to the AVC. This proves that the
arrangement B1 does not admit a tiling.
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Figure 15: Tiling for {[α, β, δ, γ, ε] : αβγ, δε2, δ3ε, δ5}, actually Case 2.6b.

Next we consider the arrangement B3, which means the fourth solutions
of Cases 1.4f, 2.6b and 1.5b. First assume δ5 is a vertex, for the Cases 1.4f
and 2.6b. On the right of Figure 15, we start from such a vertex at the
center. We may assume that the angles in P1 are arranged as indicated. By
AVC, we may determine all the angles in the other tiles at the vertex δ5.
Then we use the AVC to further determine the five tiles similar to P2 and
all their angles. Next we determine the five tiles similar to P3 and all their
angles. Finally we determine the five tiles similar to P4 and all their angles.
The result is the earth map tiling of distance 5. Since δ3ε is not a vertex, the
tiling is really for Case 2.6b.

The same argument shows that the tiling for the fourth solution of Case
1.5b is also the earth map tiling of distance 5.

It remains to consider the arrangementB3 with the additional assumption
that δ5 is not a vertex, and δ3ε is a vertex. This means Case 1.4f. We will
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show that the tiling is given by Figure 16. The tiling has two tiles with
two degree 4 vertices, which are drawn as the north and south “regions”
(as opposed to the two poles in the earth map tiling) P1, P10. The tiling is
obtained by glueing the left and right together.
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Figure 16: Tiling for {[α, β, δ, γ, ε] : αβγ, δε2, δ3ε}, actually Case 1.4f.

To argue for the tiling in Figure 16, we start with a vertex δ3ε at the
ε-angle of a tile P1. At this moment, we do not yet know the configurations
at the other four vertices of P1. By AVC, we may determine all the angles in
the other three tiles P2, P3, P4 at the vertex. Then we may further determine
the tiles P5, P6, P7, P8 and all their angles. By AVC, the vertex ε2 · · · shared
by P3, P7 is δε2. Then we may determine tiles P9, P10 and all their angles.

The vertex δε · · · shared by P4, P8 can be either δε2 or δ3ε. Suppose the
vertex is δε2, then we may successively determine P15, P14, P20, P13, P11 and
find that the δ-vertex of P1 is δ2ε · · · , which by AVC is δ3ε. Note that we
used δ2ε · · · = δ3ε in determining P20 and used ε2 · · · = δε2 in determining
P13.

What we have proved can be interpreted as follows. If P4 has only one
degree 4 vertex (which implies that the vertex δε · · · shared by P4, P8 is δε2),
then P1 has two degree 4 vertices (which must be the δ-vertex and the ε-
vertex). Therefore we have proved that there must be at least one tile with
two degree 4 vertices.

So without loss of generality, we may assume that the tile P1 we started
with has two degree 4 vertices. Then we repeat the argument and determine
the tiles P1, . . . , P10 and all their angles. With the knowledge that the vertex
δε · · · shared by P1, P5 is δ3ε, we may further determine the tiles P11, . . . , P20
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and all their angles as indicated by Figure 16.
Finally, we need to verify the existence of the pentagon. We may compute

the edge lengths and angles as in Section 3.4 and verify the inequalities needed
for the existence. For the fourth solution of Cases 1.4f and 2.6b, we have

a = 0.216837061350910003351365661654π,

α = 0.309592118267723925415732247869π,

β = 1.06152432808957675934745630289π,

γ = 0.628883553642699315236811449235π,

and
φ = 0.336π, ψ = 0.126π, x = 0.241π, y = 0.408π.

The inequalities for the existence can be verified and we get the pentagon on
the left of Figure 17. For the fifth solution of Case 1.5b, we have

a = 0.215505695078307752117923461726π,

α = 0.453684818976711862944791105935π,

β = 0.88238808379725439682846672428π,

γ = 0.66392709722603374022674216977π,

and
φ = 0.289π, ψ = 0.155π, x = 0.292π, y = 0.392π.

Again the pentagon exists and is depicted on the right of Figure 17.
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Figure 17: Pentagon for {[α, β, δ, γ, ε] : αβγ, δε2, δ3ε or δ5 or δ4}.
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