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f(a+_xj=fW (7) 

contradicting the fact that/' is strictly increasing on /. Our proof that/" = 0 on / is 
thus complete. 

Remarks, (a) For a proof of Theorem 3, emphasizing the continuity of /", 
assume that [a,x] C / and reason as above to obtain (7). Then, by the Mean Value 
theorem (or Rolle's theorem), f'\xx) = 0 for some xx strictly between {a + x)/2 and 
x. Replace a in the preceding argument by xx, thus obtaining an x2 such that 

a + x +x 
2 xx + x 

-T- < -Z- < X2 < X 

and/"(.x2) = 0. By iteration, we obtain a sequence xx < x2 < x3 < ? ? ? such that all 

f"(xn) = 0 and lim^^jc^ = x. The continuity of /" at jc E / therefore yields 
f"(x) = limn^f"(xn) = 0. 

(b) We state without proof the following companion for Theorem 3. Let a 
real-valued function f be given on an open interval I containing 0 by a convergent 
power series ^anxn. Then f is linear if and only if I contains a positive number r such 

that M(f; 0, jc) = f(j 
\ for all x E (0, r). 

On Rearrangements of the Alternating Harmonic Series 
Fon Brown (student), L. O. Cannon, and Joe Elich, Utah State University, Logan, 
UT, and David G. Wright, Brigham Young University, Provo, UT 

The two series most familiar to beginning calculus students are the Harmonic Series 
(usually a student's first example of a divergent series whose terms approach zero) 
and the Alternating Harmonic Series (the first conditionally convergent series). 
When Taylor series are studied, it is shown that the Alternating Harmonic Series 

(abbreviated AHS) actually converges to In 2. 
Because of its familiarity, the AHS is a reasonable candidate for illustrating how 

conditionally convergent series may be rearranged to change their sums. For 
example, we may replace each odd term x of the AHS by (2x ? x) and get a 
pattern in which one positive term is followed by two negative terms. If we then 

multiply each term of the new series by 1/2, we get a rearrangement of the AHS 
which converges to half of the original sum. Thus, 

in 2=l-i + i-i + i-i+ ... ill ̂  1 2^3 4^5 6 ̂  

= 2-l-!+2_l_?+2_?_?+ ... ^ L 2^3 3 4^5 5 6 ̂  > 

and the rearranged AHS satisfies 

^1Mn2 =l-?-? + ?-?-? + ?--L- ... 
\2)vl1^ l 2 4^3 6 8^5 10 

This is an example of a regular rearrangement, in which there is a regular pattern 
consisting of a fixed number of positive terms taken in order, followed by a fixed 
number of negative terms taken in order. We use A (m, n) to denote such an ordered 
rearrangement consisting of m positive terms followed by n negative terms. Thus, the 
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example above shows that ,4(1,2) converges to (l/2)ln2. A simple argument [see 
Arthur B. Simon's Calculus with Analytic Geometry, Scott, Foresman and Co., 
Illinois (1982), 514] shows that A (2,1) converges to (3/2)ln2. 

Our investigation was initially prompted by a classroom problem posed by 
Edwin E. Moise [Introductory Problem Courses in Analysis and Topology, Springer- 
Verlag, New York (1982), 45]: 

Find a rearrangement of the AHS that converges to zero. 

The standard argument to show the existence of a rearrangement of the AHS 
which converges to a given limit L is to observe that because the Harmonic Series 

diverges, it is possible to add enough consecutive positive terms, 1 + 1/3 + ? ? ? to 

get a partial sum larger than L. Then enough consecutive negative terms are added 
to make the partial sum smaller than L, and the process is continued. For L = 0, a 
little work with a hand calculator showed some unanticipated regularity. To get a 

rearrangement of the AHS to converge to zero, it appeared that we needed one 

positive term and then four negative terms. The next positive term, 1/3, made the 
sum positive, and four more negative terms were needed to get a negative partial 
sum. The same regularity continued as far as we were able to check by hand, so the 
class was led to search for a proof that this rearrangement ,4(1,4) does, in fact, 
converge to zero. (A complicated inductive proof was discovered based on showing 
that the partial sums Sm are positive if 5 does not divide m, and Sm are negative if 5 
divides m.) 

Having discovered that the regular rearrangement ,4(1,4) converges to zero, 
students began to ask questions about the convergence of A (m, n) in general. We 
used a microcomputer to generate data on partial sums for a number of regular 
rearrangements. A few partial sums are given: 

^(1,1)^.6907 ,4(1,2)- .3453 

A(2,2)~.6919 ,4(2,4)- .3459 

A (3,3)~.6923 ,4(3,4)- .5489 

,4(4,4)~.6925 A (2,1)~1.0372. 

Students were encouraged to formulate their own conjectures from the partial 
sums. For example, the data suggest that A (2,2), A (3,3) and A (4,4) all converge to 
In 2. Similarly, it appears that ,4(1,2) and A (2,4) have the same limit. Ultimately we 
were led to the following: 

Theorem. Every regular rearrangement of the AHS converges. In particular, 
A(m,n) converges to In2 + (\/2)\n(m/n). 

Our proof of this theorem is based on the well-known fact [see, for example, 
Thomas and Finney's Calculus and Analytic Geometry, sixth edition, Addison- 

Wesley, Massachusetts (1984), p. 640, problem 45] that the difference HN ? \nN 
between HN (the Mh partial sum of the Harmonic Series) and \nN approaches a 
constant y (Euler's Constant) as N becomes large. 

In working with partial sums for a rearrangement A (m, n), it is most natural to 
consider sums of N terms, where N is divisible by m + n. For convenience of 

notation, 0N and EN will, respectively, denote the sum of the first TV odd terms and 
the sum of the first N even terms of the AHS. Thus, 0N + EN = H2N and 

2EN = HN. 
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Let SN be the Nth partial sum of A (m, n), where N = (m + n)k. Collecting 
positive and negative terms together, we have: 

S(m + n)k 
= Omk ~ ^nk = ^mk "*" ̂mk 

~ 
^mk ~ ^nk 

= Hlmk 
~ 

( 2 Wmk 
~ ( 2 )^** 

= (tf2m, 
- 

ln2mfc) 
- 

( 
I 

)(//m/t 
- 

lnm*) 
- 

( \ )(#?, 
- 

lnnfc) 

+ ln2mk- (j\lnmk- 
( 
^\lnnk 

= (tf2m, 
- In 2mA:) 

- 
( 

I 
)(tfmfc 

- 
lnm/c) 

- 
( 
I 

)(//?, 
- 

In/ifc) 

+ ln2 + 
(I)ln(f). 

Therefore, 

A:-^ ltaS(?.,.-V-(i)v-(i)r 
+ 

ln2+iln(M) 

= l?2 + 
i,?(M). 

For each fixed r E {1,2, . . . , m + n ? 1), we have ?S(m+w)A:+r 
= 

S'(/M+/I)A. + {r terms 
of ^4(m,?)}. Since the terms of A(m,n) approach zero, limk^O0S(m + n)k + r 
= In2 + (\)\n{m/ri) for each r. Therefore, it is an easy matter to verify that 

lim^QQ.S^ = In2 + (\)ln(m/n), even if N is not divisible by m + n. 

There are some additional observations which may be pertinent here. As was 

pointed out earlier, there is a standard argument to show the existence of a 

rearrangement of the AHS which will converge to any given real number L. 
However, given an arbitrary real number L, there is not necessarily a regular 
rearrangement which will converge to L. From our theorem, we can prove the 

following: 

Corollary. There is a regular rearrangement of the AHS which converges to L if and 

only if e2L is a rational number. 

If A(m,n) converges to L, then L = ln2 + (l/2)ln(m/n) and e2L = Am/n is 
rational. Suppose, conversely, that e2L = p/q is rational. Then L = (l/2)ln(p/q). If 
we choose integers m,n satisfying m/n = p/Aq, then A(m,n) converges to In 2 + 

(l/2)\n(p/4q) = L. 

As we had previously observed, there is not a unique rearrangement of the AHS 
that converges to a particular limit. More interestingly, we were led to consider 

regular rearrangements by following the standard argument for rearranging the 
AHS to converge to zero, but the standard rearrangement procedure does not 

necessarily lead to a regular rearrangement. Our Theorem shows that ^4(4,1) 
converges to In 4; but if we had used the standard procedure to get a rearrangement 
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converging to In 4, we would choose only three positive terms before the first 

negative term. 

Editor's Note: For related discussions of this theme, see "Rearranging the Alternating Harmonic 
Series" by C. C. Cowen, K. R. Davidson, and R. P. Kaufman [Amer. Math. Monthly, 87 (December 
1980) 817-819], "Sum-Preserving Rearrangements of Infinite Series" by Paul Schaefer [Amer. Math. 
Monthly, 88 (January 1981) 33-40], and "Rearranging Terms in Alternating Series" by Richard Beigel 
[Math. Mag., 54 (November 1981) 244-246]. 

Tetrahedra, Skew Lines, and Volume 
James Smith and Mason Henderson, Northern Montana College, Havre, MT 

If A and B are distinct points on a line k, and C and D are distinct points on a line 
m that is skew to k, then A, B, C, and D determine a tetrahedron. This situation can 
be visualized by cutting a quadrilateral out of a sheet of paper and creasing it along 
a line between an appropriate pair of vertices. One of the two skew lines is 
associated with the crease and its two vertices, the other with the two remaining 
vertices. 

Suppose, as above, that points, A, B, C, and D determine a tetrahedron for given 
fixed skew lines k and m. We intend to show that the volume of the tetrahedron 
does not change when segments AB and CD of fixed lengths are moved along their 
respective lines k and m. 

To be specific, consider any points A', B' on k and points C, D' on m such that 
the lengths of segments A'B' and CD' equal those of segments AB and CD, 
respectively. We consider the vector u' from A' to B' as being the same as the vector 
u from A to B, and the vector w' from C to D' is considered the same vector as w 
from C to D. 

Since A' lies on line k, the vector AA' from A to A' satisfies 

AA' = su from some scalar s. 
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