Rearranging Terms in Alternating Series
Author(s): Richard Beigel
Source: Mathematics Magazine, Vol. 54, No. 5 (Nov., 1981), pp. 244-246
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2689984
Accessed: 12/05/2014 23:32

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to Mathematics Magazine.

Rearranging Terms in Alternating Series

Richard Beigel

Stanford University
Stanford, CA 94305
It is well known that if you change the order of the terms in a conditionally convergent series, the result may have a different sum. We will demonstrate a method for calculating the sum of a broad class of such reordered series. The result is not new; it originally appeared in a 19th century German paper [8], and similar work appeared later in [2], [4], and [6]. The purpose of this note is to bring attention to the result, which could appropriately be mentioned in introductory calculus classes right after Riemann's theorem [1]; the main result uses nothing more complicated than the integral test, and the discussion uses nothing more complicated than the concept of $o\left(\frac{1}{x}\right)$, which could be explained (see [5]) or circumnavigated in lecture. The results from [3] on the alternating harmonic series could well be included in the lecture.

Let $S=\sum_{j=1}^{\infty}(-1)^{j+1} a_{j}$, with $a_{j}>0$ and $\left\{a_{j}\right\}$ eventually monotonically decreasing to zero. Define $S^{m n}$ as the rearrangement (no signs changed) obtained from S by taking groups of m positive terms followed by groups of n negative terms (thus $S^{11}=S$ and $S^{21}=a_{1}+a_{3}-a_{2}+a_{5}$ $+a_{7}-a_{4}+\cdots$).

Theorem. Let f be a continuous and eventually monotone function such that $f(2 k-1)=a_{2 k-1}$ for positive integral k, and let $m \geqslant n>0$. Then

$$
S^{m n}=S+\frac{1}{2} \lim _{k \rightarrow \infty} \int_{n k}^{m k} f(x) d x
$$

with the understanding that both sides may be infinite or may diverge by oscillation.
Proof. Since $a_{k} \rightarrow 0, S^{m n}$ is the limit of its $(m+n) k$ th partial sum. Identically,

$$
\begin{equation*}
S_{(m+n) k}^{m n}=S_{2 n k}+\sum_{j=n k+1}^{m k} a_{2 j-1} . \tag{1}
\end{equation*}
$$

Since f is eventually monotone decreasing to zero, the limit

$$
\lim _{t \rightarrow \infty}\left(\sum_{j=1}^{t} f(2 j-1)-\int_{1}^{t} f(2 x-1) d x\right)
$$

exists; this follows from the standard proof of the integral test for convergence. It follows that the tail expression goes to 0 ; therefore,

$$
\lim _{k \rightarrow \infty}\left(\sum_{j=n k+1}^{m k} a_{2 j-1}-\int_{n k}^{m k} f(2 x-1) d x\right)=0 .
$$

Therefore,

$$
\lim _{k \rightarrow \infty} \sum_{j=n k+1}^{m k} a_{2 j-1}=\lim _{k \rightarrow \infty} \int_{n k}^{m k} f(2 x-1) d x
$$

$$
\begin{align*}
& =\lim _{k \rightarrow \infty} \frac{1}{2} \int_{2 n k-1}^{2 m k-1} f(x) d x \\
& =\frac{1}{2} \lim _{k \rightarrow \infty} \int_{n k}^{m k} f(x) d x \tag{2}
\end{align*}
$$

again with the understanding that both limits may be infinite or may diverge by oscillation. Let $k \rightarrow \infty$ in (1) and use (2) to finish the proof.

Remark. If $\left\{a_{j}\right\}$ is absolutely convergent, then we get the expected result that $S^{m n}=S$. If $m=n$ we also find, as expected, that $S^{m n}=S$. (Several less obvious sum-preserving rearrangements of infinite series are discussed in [7].)

Several examples will illustrate the diverse results that can be obtained by applying our Theorem to rearrangements $S^{m n}$ of particular alternating series.

Example 1. If $H^{m n}$ is obtained from the alternating harmonic series $(1-1 / 2+1 / 3-1 / 4$ $+\cdots$) by taking groups of m positive terms and n negative terms, then

$$
H^{m n}=\log 2+\frac{1}{2} \lim _{k \rightarrow \infty} \int_{n k}^{m k} \frac{1}{x} d x=\log 2+\frac{1}{2} \log \frac{m}{n}=\frac{1}{2} \log \frac{4 m}{n} .
$$

Example 2. If $P^{m n}$ is obtained similarly from the alternating series $1-1 / 2^{p}+1 / 3^{p}-1 / 4^{p}$ $+\cdots$, with $0<p<1$ and $m>n$, then $P^{m n}$ diverges to positive infinity.

Example 3. Let L be Leibniz's sum for $\pi / 4: \quad L=1-1 / 3+1 / 5-1 / 7+\cdots$. Then

$$
L^{m n}=\frac{\pi}{4}+\frac{1}{2} \lim _{k \rightarrow \infty} \int_{n k}^{m k}(1 /(2 x-1)) d x=\frac{\pi}{4}+\frac{1}{4} \log \frac{m}{n}
$$

Example 4. Let $S=\sum_{j=1}^{\infty}(-1)^{j+1} / j \log j$. Then

$$
S^{m n}=S+\frac{1}{2} \lim _{k \rightarrow \infty}(\log \log m k-\log \log n k)=S
$$

Example 5. Let $S=\sum_{j=1}^{\infty}(-1)^{j+1} f(j)$, where $f(x)=(\cos (\log x)+2) / x$. It is easy to check that f is monotone.

$$
S^{m n}=S+\frac{1}{2} \lim _{k \rightarrow \infty}(\sin (\log m k)+2 \log m k-\sin (\log n k)-2 \log n k)
$$

which diverges by oscillation unless $m=n$.
The curious reader may be wondering if we can find an example for which $S^{m n}$ converges to a value differing from S by something other than a logarithmic term. Barring "artificial" functions for which $\lim _{x \rightarrow \infty} x f(x)$ diverges by oscillation, there is none.

Proof. If $f(x)=o(1 / x)$, then

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{n k}^{m k} f(x) d x & \leqslant \lim _{k \rightarrow \infty}(m k-n k) f(n k), \text { since } f \text { is monotone decreasing } \\
& =\lim _{k \rightarrow \infty} \frac{m-n}{n} n k f(n k) \\
& =0
\end{aligned}
$$

Therefore $S^{m n}=S$. If $f(x)=c / x+o(1 / x)$, then

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{n k}^{m k} f(x) d x & =\lim _{k \rightarrow \infty} \int_{n k}^{m k} \frac{c}{x}+o\left(\frac{1}{x}\right) d x \\
& =\lim _{k \rightarrow \infty} \int_{n k}^{m k} \frac{c}{x} d x, \text { by the preceding result } \\
& =c \log \frac{m}{n}
\end{aligned}
$$

so $S^{m n}=S+\frac{1}{2} c \log (m / n)$. The reader may check that $S^{m n}$ diverges to positive infinity if $f(x)>O(1 / x)$.

The remaining possibility, that $x f(x)$ diverges by oscillation, seems to merit attention. Suppose we modify Example 5 slightly by letting $f(x)=(\cos (\alpha \log x)+2) / x$, where $\alpha=2 \pi / \log (m / n)$. Then

$$
\alpha \log m k-\alpha \log n k=\alpha \log \frac{m}{n}=2 \pi, \text { so } \sin (\alpha \log m k)-\sin (\alpha \log n k)=0
$$

Hence

$$
S^{m n}=S+\frac{1}{2} \lim _{k \rightarrow \infty}(\sin (\alpha \log m k)+2 \log m k-\sin (\alpha \log n k)-2 \log n k)=S+\log \frac{m}{n}
$$

Once again the difference is proportional to $\log (m / n)$. Also, notice that $S^{p q}$ converges if and only if $\alpha \log (p / q)$ is an integral multiple of 2π, or equivalently if and only if p / q is an integral power of m / n. It would be interesting to find answers to the following two questions:

Is there a series S for which $S^{m n}-S$ converges for some values of m and n, but is not proportional to $\log (m / n)$?

Is there a series $S=\sum_{j=1}^{\infty}(-1)^{j+1} f(j)$ such that $x f(x)$ diverges by oscillation but $S^{m n}-S$ converges for all values of m and n ?

Example 6. Suppose $S=\sum_{j=1}^{\infty}(-1)^{j+1} \sin (1 / j)$. Naturally we take $f(x)$ to be $\sin (1 / x)$, which is $1 / x+o(1 / x)$. Thus we find that

$$
S^{m n}=S+\frac{1}{2} \log \frac{m}{n} \lim _{x \rightarrow \infty} x \sin \frac{1}{x}=S+\frac{1}{2} \log \frac{m}{n}
$$

Getting back to our theorem, we should note that the assumption that $m \geqslant n$ is unnecessary- to see this, just identify $\sum_{j=n k+1}^{m k} a_{2 j-1}$ with $-\sum_{j=m k+1}^{n k} a_{2 j-1}$. In fact, a slight modification (left to the reader) of our proof yields a similar result for any rearrangement of S that leaves the order of its positive and negative subsequences intact; if S^{\prime} is such a rearrangement of S with $\phi(k)$ negative terms in S_{k}^{\prime}, and f satisfies our old hypothesis, then

$$
S^{\prime}=S+\frac{1}{2} \lim _{k \rightarrow \infty} \int_{\phi(k)}^{k-\phi(k)} f(x) d x .
$$

Applying this result to the series $S=1-2^{-1 / 2}+3^{-1 / 2}-4^{-1 / 2}+\cdots$, and taking $\phi(k)$ to be the integral part of $\left(\left(l-\sqrt{2 k-l^{2}}\right) / 2\right)^{2}$ for $k>\frac{1}{2} l^{2}$ (ϕ can be arbitrary elsewhere), a simple calculation shows that the rearranged series sums to $S+l$.

For another application of this result, choose the reordering, H^{\prime}, of the alternating harmonic series for which $\phi(k)$ equals the integral part of $k /\left(\frac{1}{4} e^{2 \pi}+1\right)$. Then $H^{\prime}=\pi$.

I wish to express my thanks to all those who read over and commented on this manuscript, especially Alan Siegel.

References

[1] T. Apostol, Calculus, vol. I, 2nd ed., Blaisdell, MA, 1967, p. 413.
[2] T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series, 2nd ed.. Macmillan, London, 1947, pp. 74-76.
[3] C. C. Cowen, K. R. Davidson, and R. P. Kaufman, Rearranging the alternating harmonic series, Amer. Math. Monthly, 87 (1980) 817-819.
[4] K. Knopp, Theorie und Anwendung der unendlichen Reihen, 5th ed., Springer-Verlag, Berlin, 1964, p. 335 (problem 148).
[5] J. Olmsted, Advanced Calculus, Appleton-Century-Crofts, NY, 1961, p. 141.
[6] A. Pringsheim, Ueber die Werthveränderungen bedingt convergenter Reihen und Producte, Math. Ann., 22(1883) 455-503.
[7] Paul Schaefer, Sum-preserving rearrangements of infinite series, Amer. Math. Monthly, 88(1981) 33-40.
[8] O. Schlömilch, Ueber bedingt-convergirende Reihen, Z. Math. Phys., 18(1873) 520-522.

