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Abstract

There are no edge-to-edge tilings of the sphere by more than 12
congruent pentagons, such that there is a tile with all vertices having
degree 3 and the edge length combinations are a2b2c, a3bc, or a3b2,
with a, b, c distinct.

1 Introduction

Mathematicians have studied tilings for more than 100 years. A lot is known
about tilings of the plane or the Euclidean space. However, results about
tilings of the sphere are relatively rare. A major achievement in this regard
is the complete classification of edge-to-edge tilings of the sphere by congru-
ent triangles [5, 6]. For tilings of the sphere by congruent pentagons, we
completely classified the minimal case of 12 tiles [1, 2]. This paper is the
first of a series that classifies beyond the minimal case.

The spherical tilings should be easier to study than the planar tilings,
simply because the former involves only finitely many tiles. The classifica-
tions in [2, 6] not only give the complete list of tiles, but also the ways the
tiles are fit together. It is not surprising that such kind of classifications
for the planer tilings are only possible under various symmetry conditions,
because the quotients of the plane by the symmetries often become compact.

∗Research was supported by Hong Kong RGC General Research Fund 605610 and
606311.
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Like the earlier works, we restrict ourselves to edge-to-edge tilings of
the sphere by congruent polygons, such that all vertices have degree ≥ 3.
These are mild and natural assumptions that simplify the discussion. The
polygon in such a tiling must be triangle, quadrilateral, or pentagon [7]. We
believe that the pentagonal tilings should be relatively easier to study than
the quadrilateral ones because 5 is an “extreme” among 3, 4, 5.

Our classification program starts with Proposition 1, which says that a
spherical pentagonal tiling must have a tile, such that four vertices have
degree 3, and the fifth vertex has degree 3, 4 or 5. In case all five vertices
have degree 3, [2, Proposition 8] shows that there are five possible ways the
edge lengths of the pentagon can be arranged: a5, a4b, a2b2c, a3bc, a3b2. This
paper shows that the last three cases are impossible beyond the minimal case
of 12 tiles classified by [2].

Theorem. If a spherical tiling by more than 12 geometrically congruent pen-
tagons has edge length combination a2b2c, a3bc, or a3b2, with a, b, c distinct,
then every tile has at least one vertex of degree > 3.

The proof for the edge length combinations a2b2c and a3bc takes only one
page and can be found after Proposition 1. The rest of the paper deals with
the case of a3b2, which turns out to be much more complicated. In Propo-
sition 2, we find that there are four possible tilings of the neighborhood of
the tile with all vertices having degree 3. The proposition also provides some
information about the angles, from which we can extract all the possible an-
gle combinations at vertices (which we call anglewise vertex combination, or
AVC). Then we study the vertices at the boundary of the neighborhood. We
always arrive at contradictions at the end, either due to the wrong configu-
ration of edges at the vertices, or due to the contradiction of the pentagonal
tiles with the spherical geometry. Therefore the case of a3b2 is also impossi-
ble.

Beyond the cases discussed in this paper, the following cases are yet to
be classified:

1. Every tile has at least one vertex of degree ≥ 4, and there is a tile such
that four vertices have degree 3, and the fifth vertex has degree 4 or 5.

2. Most edges have the same length, such as the edge length combinations
a5 or a4b, even in case there is a tile such that all vertices have degree
3.
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We expect that the technique in this paper can be applied as long as there
is enough variation in edge lengths. For the extreme case that all edges have
the same length (i.e., edge length combination a5), however, completely new
idea is needed. It turns out that in this case, the pentagon has 3 degrees of
freedom. On the other hand, our work on the angle relations in pentagonal
tilings [3, 4] shows that in almost all cases, we have three independent linear
relations among angles. Therefore the possible pentagons can be completely
determined, and then finding tilings for the specific pentagons should not be
difficult. For other cases such as a4b, we expect to combine this idea with the
technique of this paper. At the end, we are fairly optimistic that the complete
classification of the pentagonal tilings of the sphere can be achieved.

2 Neighborhood Tiling

We review some known combinatorial results about edge-to-edge pentagonal
tilings of the sphere, such that all vertices have degree ≥ 3.

Let vk be the number of vertices of degree k. Let f be the number of
tiles. It is easy to show the following vertex counting equation (see [2, page
750], for example):

f

2
− 6 =

∑
k≥4

(k − 3)vk = v4 + 2v5 + 3v6 + · · · . (2.1)

This implies that f is an even integer ≥ 12. Since the tilings for the case
f = 12 are completely classified by [2], we will assume f > 12.

Proposition 1. In any pentagonal spherical tiling, there must be a tile with
four vertices of degree 3 and a fifth vertex of degree 3, 4 or 5.

Proof. If a tiling does not have the said property, then any tile either has at
least one vertex of degree ≥ 6, or has at least two vertices of degree 4 or 5.
Since a degree k vertex is shared by at most k tiles, the number of tiles of
first kind is ≤ 6v6 + 7v7 + 8v8 + · · · , and the number of tiles of the second
kind is ≤ 1

2
(4v4 + 5v5). Then we get

f ≤ 1

2
(4v4 + 5v5) + 6v6 + 7v7 + 8v8 + · · · .

This contradicts the vertex counting equation (2.1).
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In this paper, we restrict to the case that there is a tile with all vertices
having degree 3. By [2, Proposition 8], the tile must have the edge lengths
arranged in one of the five ways in Figure 1. We further restrict to the last
three ways a3bc, a2b2c, a3b2 in this paper.

a

b

c
a5 a4b a3bc a2b2c a3b2

Figure 1: Edges in a tile with all vertices having degree 3.

For the angles, we note that, if all tiles are geometrically congruent, then
the area of each tile is 4π

f
, so that the sum of five angles in the pentagon is

3π + 4π
f

. This is the angle sum equation for the pentagon. In fact, by [4,

Lemma 2], the angle sum equation for the pentagon remains true as long as
the tiles are angle congruent.

We also know that the sum of all angles at a vertex is 2π. This is the
angle sum equation for the vertex.

The preliminary knowledge we have so far about the spherical pentagonal
tilings is enough for proving the first two cases of the main theorem.

Proof of the main theorem for the edge length combination a2b2c. If there is
a tile with all vertices having degree 3, then its neighborhood is combina-
torially given by the left of Figure 2. We denote the tile by P1 and its five
neighboring tiles by P2, . . . , P6.

Up to the combinatorial symmetry of the neighborhood, we may assume
that the edges of P1 are given by the left and the middle of Figure 2. The left
describes the case that the edge shared by P2, P3 is a. We may successively
determine all the edges of P2, P6, P5, P4, and then find three a-edges in P3,
a contradiction. Similar argument shows that P2, P3 cannot share a b-edge.
Therefore the edge shared by P2, P3 must be c, as described in the middle of
Figure 2. Then we may determine all the edges of P2, P3. Denote the unique
a2-angle, b2-angle, ab-angle, ac-angle, bc-angle in the tile by α, β, γ, δ, ε. Then
we get all the indicated angles in the middle of Figure 2. The angle sums at
three vertices give

3α = 3β = γ + δ + ε = 2π.
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This implies

α + β + γ + δ + ε =
2π

3
+

2π

3
+ 2π = 3π +

4π

12
.

By the angle sum equation for the pentagon, we conclude f = 12.
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Figure 2: Geometrically congruent neighborhood tilings for a2b2c and a3bc.

Proof of the main theorem for the edge length combination a3bc. Up to sym-
metry, we may assume that the edges of P1 are given by the right of Figure
2. Since each tile has only one b-edge and one c-edge, the edge shared by
P2, P3 must be a. This determines all the edges of P2, P3. Then we may fur-
ther determine all the edges of P4, P6. Denote the unique bc-angle, ab-angle,
ac-angle by α, β, γ. Moreover, denote the a2-angle adjacent to β by φ1, and
denote the a2-angle adjacent to γ by φ2. Then we get all the indicated angles
on the right of Figure 2. The angle sums at three vertices give

α + β + γ = φ1 + φ2 + φi = φ1 + φ2 + φj = 2π.

This implies φi = φj, which actually means φ1 = φ2. Then φ1 +φ2 +φi = 2π
further implies φ1 = φ2 = 2π

3
, so that

α + β + γ + φ1 + φ2 = 2π +
2π

3
+

2π

3
= 3π +

4π

12
.

By the angle sum equation for the pentagon, we conclude f = 12.

Proposition 2. If a spherical tiling by more than 12 geometrically congruent
pentagons has edge length combination a3b2, with a, b distinct, then up to
symmetry, the neighborhood of a tile with all vertices having degree 3 has
four possible geometrically congruent tilings given in Figure 3.
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Figure 3: Geometrically congruent neighborhood tilings for a3b2.

Here is the way to read the tilings in Figure 3. The five angles of the pen-
tagon are indicated on the left. In each tile, the two thick b-edges determine
the location of the five angles up to the horizontal flipping. The tiles labeled
+ (considered as positively oriented) have the angles arranged the same as
the pentagon on the left, and the tiles labeled − (considered as negatively
oriented) have the angles arranged as the horizontal flipping of the pentagon
on the left.

The four tilings in Figure 3 are the middle tiling in Figure 5, two tilings
in Figure 6, and the left tiling in Figure 7 (with θi, φi abbreviated as i). We
also note that the proof of the proposition computes the values of the angles,
give in Table 1.

tiling α θ1 θ2 φ1 φ2

II 2
3
π θ1 + θ2 =

(
2
3

+ 8
f

)
π

(
1
3

+ 4
f

)
π

(
4
3
− 8

f

)
π

III1
2
3
π

(
1
3

+ 4
f

)
π

(
4
3
− 8

f

)
π

(
4
3
− 8

f

)
π

(
−2

3
+ 16

f

)
π

III2
2
3
π

(
5
6
− 2

f

)
π

(
−1

6
+ 10

f

)
π

(
1
3

+ 4
f

)
π

(
4
3
− 8

f

)
π

III3
2
3
π

(
−1

6
+ 10

f

)
π

(
5
6
− 2

f

)
π

(
4
3
− 8

f

)
π

(
1
3

+ 4
f

)
π

Table 1: Angles in geometrically congruent neighborhood tilings for a3b2.

The proof of Proposition 2 makes use of the following constraint from the
spherical geometry. The constraint is a stronger version of [2, Lemma 21]
and will be proved in Section 3. We note that the boundary of a spherical
pentagon is always assumed to be a simple closed curve, as the pentagon in
a geometrically congruent tiling should be.

Lemma 3. If the spherical pentagon in Figure 4 has two pairs of equal edges
a and b, then β > γ is equivalent to δ < ε.
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Figure 4: Geometrical constraint for pentagon.

Proof of Proposition 2. Up to the combinatorial symmetry of the neighbor-
hood, we may assume that the edges of P1 are given by Figure 5. We ignore
the marks for the angles for the moment, and concentrate on the edge lengths.
If the edge shared by P2, P3 is a, then we may successively determine all the
edges of P2, P3, P4, P6, P5 and get the type I tiling on the left of Figure 5. If
the edge shared by P2, P3 is b, then we may determine all the edges of P2, P3.
Then up to the horizontal flipping, there are two ways of arranging the edges
of P5. Each way then further determines all the edges of P4, P6. The two
ways give the type II tiling in the middle and the type III tiling on the right.
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Figure 5: Three types of edge congruent neighborhood tilings for a3b2.

Now we consider the angles. We first prove that θ1 6= θ2 and φ1 6= φ2. By
Lemma 3 (or [2, Lemma 21]), we know that θ1 6= θ2 is equivalent to φ1 6= φ2.
Therefore we only need to prove that θ1 = θ2 and φ1 = φ2 imply f = 12.
The type I neighborhood tiling has a vertex with three a-edges and a vertex
with one a-edge and two b-edges. The angle sums at the vertices give

φ∗ + φ∗ + φ∗ = α + θ∗ + θ∗ = 2π.

If θ1 = θ2 and φ1 = φ2, then φ1 = φ2 = 2π
3

and α+θ1 +θ2 = 2π. By the angle
sum equation for the pentagon, this implies f = 12. Similarly, the angles in
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type II and III neighborhood tilings satisfy

3α = φ∗ + φ∗ + φ∗ = θ∗ + θ∗ + φ∗ = 2π.

If θ1 = θ2 and φ1 = φ2, then all angles are 2π
3

, and the angle sum equation
for the pentagon also implies f = 12.

We denote by Vijk the vertex shared by Pi, Pj, Pk, and denote by Ai,jk the
angle of Pi at Vijk. Up to the symmetry of exchanging the subscripts 1 and
2, we may assume that the angles of P1 are arranged as in Figure 5. This is
the starting point of further argument about angles.

To make the pictures more legible, we will also indicate θ1, φ1 by [1]
and indicate θ2, φ2 by [2]. Since θ1 6= θ2 and φ1 6= φ2, this will not cause
ambiguities.

Type I Neighborhood

The neighborhood is the left of Figure 5, with all the edges of the tiling
and all the angles of P1 given. We have A4,13 = θi and A6,12 = θj. The angle
sums at the vertices V134 and V126 give α+ θ1 + θi = α+ θ2 + θj. By θ1 6= θ2,
we must have i = 2 and j = 1. This determines all the angles of P4, P6.
The angle sums at V145, V156 give φ1 + φ2 + φp = φ1 + φ2 + φq. This implies
φp = φq, which is φ1 = φ2, a contradiction. We conclude that there is no
geometrically congruent tiling of type I.

Type II Neighborhood

The neighborhood is the middle of Figure 5, with all the edges of the
tiling and all the angles of P1 given. We either have A5,14 = φ1, A5,16 = φ2,
or have A5,14 = φ2, A5,16 = φ1.

If A5,14 = φ1, A5,16 = φ2, then the angle sums at V145, V156 give 2φ1 +φ∗ =
2φ2 + φ∗ = 2π. This implies that φ1 = φ2 no matter what the two φ∗ are, a
contradiction.

So we must have A5,14 = φ2, A5,16 = φ1. By comparing the angle sums at
V145, V156, we get A4,15 = A6,15. Up to symmetry (exchanging the subscripts
1 and 2, followed by the horizontal flipping), we may assume that A4,15 =
A6,15 = φ1. This determines all the angles of P4, P5, P6. By θ1 6= θ2 and the
angle sums at V126, V134, we get A2,16 = θ1, A3,14 = θ2 and subsequently all
the angles of P2, P3. At the end, we get the geometrically congruent tiling of
type II in Figure 3.

The angle sums at V123, V134, V145 give

3α = θ1 + θ2 + φ2 = 2φ1 + φ2 = 2π.
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Together with the angle sums equation for the pentagon

α + θ1 + θ2 + φ1 + φ2 = 3π +
4π

f
,

we get the angles in Table 1.

Type III Neighborhood

The neighborhood is the right of Figure 5, with all the edges of the tiling
and all the angles of P1 given. To determine all the other angles in the tiling,
we consider the various orientations of P5 and P6.

Case 1 P5 and P6 are negatively oriented.
The case is described by Figure 6, in which we know all the angles of

P1, P5, P6.
Let A2,16 = θi, A3,14 = θj, A4,15 = θk. Then A4,13 = φk, and the angle

sums at V126, V134, V145 give θ2 + θi +φ2 = θ1 + θj +φk = θ1 + θk +φ1 = 2π. If
k = 2, then the first equality says θ2 + θi = θ1 + θj. By θ1 6= θ2, we get i = 1
and j = 2. Then the second equality becomes θ1 + θ2 + φ2 = θ1 + θ2 + φ1,
which implies φ2 = φ1, a contradiction. Therefore we must have k = 1, and
the angle sums at the three vertices imply j = 1. These determine all the
angles of P3, P4. Then the two choices of the orientation of P2 give two tilings
in Figure 6. They are the type III1 and III2 tilings in Figure 3.
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Figure 6: P5, P6 negatively oriented: III1 and III2.

For the left tiling, the angle sums at V123, V134, V126, V156 give

3α = 2θ1 + φ1 = 2θ2 + φ2 = 2φ1 + φ2 = 2π.

For the right tiling, the angle sums at the same vertices give

3α = 2θ1 + φ1 = θ1 + θ2 + φ2 = 2φ1 + φ2 = 2π.
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Together with the angle sum equation for the pentagon, we get the angles in
the type III1 and III2 tilings in Table 1.

Case 2 P5 and P6 have different orientations.
The left and the middle of Figure 7 describe the case that P5 is positively

oriented and P6 is negatively oriented. By φ1 6= φ2 and comparing the angle
sums at V126, V145, we get A2,16 6= A4,15. So we either have A2,16 = θ2, A4,15 =
θ1, or have A2,16 = θ1, A4,15 = θ2. The two cases determine all the angles of
P2, P4 in the left and the middle of Figure 7. Then we compare the angle
sums at V134, V145 in the first case, and compare V126, V134 in the second case.
In both cases, we get A3,14 = θ2 and then determine all the angles of P3.

The right of Figure 7 describes the case that P5 is negatively oriented
and P6 is positively oriented. By θ1 6= θ2 and comparing the angle sums at
V126, V145, we get A2,16 = θ1, A4,15 = θ2. This determines all the angles of
P2, P4. By comparing the angle sums at V126, V134, together with φ1 6= φ2, we
get A3,14 = θ1. This determines all the angles of P3.
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Figure 7: P5, P6 differently oriented: III3 and other impossible tilings.

For each tiling in Figure 7, we have angle sum equations at four vertices.
Solving the equations together with the angle sum equation for the pentagon,
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we get the following angles

left : α =
2

3
π, θ1 =

(
−1

6
+

10

f

)
π, θ2 =

(
5

6
− 2

f

)
π,

φ1 =

(
4

3
− 8

f

)
π, φ2 =

(
1

3
+

4

f

)
π;

middle : α =
2

3
π, θ1 =

(
1

3
+

4

f

)
π, θ2 =

(
5

6
− 2

f

)
π,

φ1 =

(
1

3
+

4

f

)
π, φ2 =

(
5

6
− 2

f

)
π;

right : α =
2

3
π, θ1 =

(
5

6
− 2

f

)
π, θ2 =

(
−1

6
+

10

f

)
π,

φ1 =

(
4

3
− 8

f

)
π, φ2 =

(
1

3
+

4

f

)
π.

The left tiling is the type III3 tiling in Figure 3 and Table 1. By f > 12, we
have θ1 < θ2 and φ1 < φ2 for the middle tiling and θ1 > θ2 and φ1 > φ2 for
the right tiling. Both contradict Lemma 3.

Case 3 P5 and P6 are positively oriented.
The case is described by Figure 8. The angle sums at V123, V156 give

α = φ2 = 2π
3

. By the angle sum equation for the pentagon and f 6= 12, we
get φ1 + θ1 + θ2 6= 2π. By comparing the inequality with the angle sums at
V126, V145, we get A2,16 = A4,15 = θ2. This determines all the angles of P2, P4.
Then the two choices of the orientation of P3 give two tilings in Figure 8.
Similar to the earlier cases, we may calculate the angles in the two tilings and
find that both satisfy θ1 < θ2 and φ1 < φ2, contradicting to Lemma 3.

Given a neighborhood tiling, we ask whether a nearby tile can still have
all its vertices having degree 3. Moreover, if this is the case, we would like
to know what type of neighborhood tiling around this nearby tile must be.
This is the propagation problem.

Take type III3 as an example. We ask whether P2 can be the center of
one of the four tilings in Figure 3. By comparing the angles in Table 1, the
neighborhood tiling around P2 cannot be of type III1. Then we compare
the orientations of tiles in the quadruple P2, P3, P1, P6 in the type III3 tiling
with the orientations of tiles in the quadruple P1, P2, P3, P4 or the quadruple
P1, P3, P2, P6 in the type II, III2 or III3 tilings. Since we cannot find any
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Figure 8: P5, P6 positively oriented: impossible tilings.

matches, the tile P2 of the type III3 tiling must have vertices of degree > 3.
We indicate this by assigning × to P2. By similar method, we get all the
possible propagations in Figure 9.

××

×
×
×

××

×
×

××

×

××

×

II III1III1
III2III2
III3

III3III3 III2

Figure 9: Propagation of geometrically congruent neighborhoods for a3b2.

The propagation can be used to show the following.

Proposition 4. There are no geometrically congruent earth map tilings with
edge length combinations a2b2c, a3bc, or a3b2, with a, b, c distinct.

Proof. According to [8], there are five families of earth map tilings, corre-
sponding to the distances 1, 2, 3, 4, 5 between the only two vertices of equal
degree > 3 (called poles). For each distance, the tilings are obtained by re-
peating a timezone connecting the two poles. The cases of distances 4 and
5 are given on the left and the right of Figure 10. We mark the tiles with
vertices of degree > 3 by ×.

Since earth map tilings always have tiles with all vertices having degree 3,
by the first two cases of the main theorem, the combinations a2b2c and a3bc
can be dismissed. It remains to consider the combination a3b2. The earth
map tilings of distances 1, 2, 3, 4 always have a tile (such as the tiles marked
P ) with all vertices having degree 3, such that three consecutive nearby tiles
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(such as the tile marked Q) also have this property. By the propagations in
Figure 9, this does not happen for geometrically congruent tilings with edge
length combination a3b2.

×

×

×

×

×

×

III3III3 III2

timezone

××

××

× ×

× ×

timezone

P

Q
Q Q

Figure 10: Earth map tiling and core tile.

It remains to consider the earth map tiling of distance 5 on the right of
Figure 10 for the combination a3b2. By looking at the distribution of tiles
with all vertices having degree 3 in this earth map tiling, we find that only
the propagation from type III3 neighborhood fits the tiling. However, this
propagation also leads to the appearance of type III2 neighborhood in the
tiling, which does not fit the earth map tiling of distance 5.

By the classification in [2], we only need to consider f > 12. Proposition 4
and [8, Theorems 1 and 6] further imply that we cannot have v4+v5+v6+· · · =
1 or 2. Then by the vertex counting equation (2.1), we only need to consider
even f ≥ 18 in the rest of the paper. We will also find the following two
simple observations very useful.

Proposition 5. In a spherical tiling by geometrically congruent pentagons
with edge length combination a3b2, a, b distinct, the number of ab-angles at
any vertex is even.

Proof. It is easy to show that the number of b-edges at a vertex is the num-
ber of b2-angles plus half of the number of ab-angles. The proposition then
follows.

Proposition 6. Suppose in a spherical tiling by pentagons geometrically con-
gruent to the left of Figure 3, the angles θ1, θ2, φ1, φ2 are distinct. If φ2

appears at most once in a vertex, then the angles cannot be configured as
· · · θ2φk1θ2 · · · at a vertex. In case k = 0, this means that two θ2 cannot share
an a-edge at a vertex.
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Proof. An angle configuration · · · θ2φk1θ2 · · · at a vertex is given by Figure
11. Since θ2 is an ab-angle and φ1 is an a2-angle, the lengths of the edges at
the vertex must be as indicated. Note that for k = 0, the picture shows the
case that two θ2 share an a-edge. Then we get the full information about
the tiles P1, P5. Since φ2

2 · · · is not a vertex, the angle φ2 adjacent to φ1 in
P2 must be located as indicated. This determines the full information about
P2. Then by the similar argument, we get the full information about P3.
Keep going, we can determine the full information about P4. Then we find
a vertex φ2

2 · · · shared by P4, P5, a contradiction.

15
θ2

θ1

φ1
φ2θ2

θ1

φ1
φ2

2

3

4

φ1

θ2φ2

θ1
φ1

θ2
φ2 θ1

φ1
θ2
φ2

θ1

Figure 11: Impossible configuration in case φ2
2 · · · is not a vertex.

3 Geometry of Spherical Pentagon

This section is devoted to the geometric constraints on spherical pentagons.
First we prove Lemma 3. Then we establish a constraint for pentagons of
edge length combination a3b2.

It is easy to see that Lemma 3 can also be reformulated in terms of the
outside pentagon, and the two formulations are equivalent. We will always
use strict inequalities in our argument, because the special case of equalities
can be easily analyzed. We will also use the sine law and the following well
known result in the spherical trigonometry: If a spherical triangle has the
angles α, β, γ < π and has the edges a, b, c opposite to the angles, then α > β
if and only if a > b.

Let A,B,C,D,E be the vertices of the pentagon at the angles α, β, γ, δ, ε.
Among the two great arcs connecting B and C, take the one with length < π
and form the edge BC. Since AB and AC intersect only at one point A and
have the same length b, we get b < π. Since all three edges AB,AC,BC are
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< π, by the sine law, among the two triangles bounded by the three edges,
one has all three angles < π and the other has all three angles > π. We
denote the first triangle by 4ABC. The angle ∠BAC of 4ABC is either α
of the pentagon, or its complement 2π−α. In the second case, we may replace
the pentagon by its outside. Then we may always assume α = ∠BAC < π.

The pentagon is obtained by choosing D,E, and then connecting B to
D, C to E, and D to E by great arcs. Since BC < π, we find that BC does
not intersect BD and CE, and BC and DE intersect at at most one point.

If BC and DE intersect at one point F , then one of D,E is outside
4ABC and one is inside (we omit the “equality case” of D or E is on BC).
The left of Figure 12 shows the case D is outside and E is inside. Since
BC < π, the interiors of BD and CE do not intersect BC. This implies that

β > ∠ABC = ∠ACB > γ.

On the other hand, since AC = b < π and BC < π, the prolongation of
CE intersects the boundary of 4ABC at a point G on AB. Using AB < π,
α < π, γ < ∠ACB < π and applying the sine law to4ACG, we get CG < π,
so that a = CE < CG < π. Using a < π, BF < BC < π, CF < BC < π,
∠BFD = ∠CFE < π and applying the sine law to 4BDF and 4CEF , we
find ∠BDF < π and ∠CEF < π. Therefore

δ = ∠BDF < π < 2π − ∠CEF = ε.

So in case D is outside and E is inside, we have β > γ and δ < ε. Similarly,
in case D is inside and E is outside, we have β < γ and δ > ε.

A
α

B
a

D

ε

C

b

β
γ

δ

b
aE

F

G

A
α

b

B

a

D
δ

E
ε

a

C

b

θ θ
β′ γ′

A

α

b

B

δ ε

C

b

D Eβ γ

β′ γ′

a a

Figure 12: Geometrical constraint for pentagon.

If BC and DE are disjoint, then we have a quadrilateral �BDEC with
δ, ε as two interior angles. Moreover, let θ = ∠ABC = ∠ACB. Then the
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angles β′, γ′ of the quadrilateral at B and C are related to β, γ either by
β′ = β − θ, γ′ = γ − θ (in case both D and E are outside 4ABC, see the
middle of Figure 12), or by β′ = β − θ + 2π, γ′ = γ − θ + 2π (in case both
D and E are inside 4ABC, see the right of Figure 12). Therefore β > γ is
equivalent to β′ > γ′. Then the proof of Lemma 3 is reduced to the proof of
the following similar lemma for quadrilaterals.

Lemma 7. If the spherical quadrilateral on the left of Figure 13 has a pair
of equal edges a, then β > γ is equivalent to δ < ε.

B

a

D E

a

C
β γ

δ ε

Γ

A

A∗

Figure 13: Geometrical constraint for quadrilateral, and great circles.

We note that the boundary of a spherical quadrilateral is assumed to be
a simple closed curve, similar to the pentagon in Lemma 3. The argument
before Lemma 7 reduced the problem to such quadrilaterals.

To prove Lemma 7, we use the conformally accurate way of drawing great
circles on the sphere, described on the right of Figure 13. Let the circle Γ
be the stereographic projection (from the north pole to the tangent space
of the south pole) of the equator. The antipodal points on the equator are
then projected to the antipodal points on Γ. We denote the antipodal point
of A by A∗. Since the intersection of any great arc with the equator is a
pair of antipodal points on the equator, the great circles of the sphere are in
one-to-one correspondence with the circles (and straight lines) on the plane
that intersect Γ at a pair of antipodal points.

We note that the lemma can also be reformulated in terms of the outside
quadrilateral, and the two formulations are equivalent.

Proof. Suppose a > π. In Figure 14, we draw the great circles containing
the two a-edges. They intersect at a pair of antipodal points and divide the
sphere into four 2-gons. Since a > π and the boundary of the quadrilateral is
simple, each antipodal point lies in one b-edge. Up to symmetry, therefore,
there are two ways the four vertices B,C,D,E of the two a-edges can be
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located, described in the two pictures in Figure 14. Moreover, since a > π,
the antipodal point B∗ of B lies on BD.

a

a

a

a

B∗

B C

D

E

β γ

δ

ε

B

C

D

Eβ

γ
δ

ε

Figure 14: The case a > π.

On the left of Figure 14, we have one great arc BC completely contained
in the indicated 2-gon. The other great arc connecting B and C intersects
BD at B∗ and therefore cannot be an edge of the quadrilateral. By the same
reason, the great arc DE is also completely contained in the indicated 2-gon.
This implies

β < π < γ, δ > π > ε.

Similar argument gives the quadrilateral on the right, and we get the same
inequalities above.

So in all the subsequent argument, we may always assume a < π. We
argue that, if δ, ε < π, then we may further assume DE < π. If DE > π,
then we draw the great circle ©DE containing DE on the left of Figure
15, such that the disk bounded by ©DE is the hemisphere containing the
angles δ, ε < π. The assumption DE > π implies that the antipodal D∗

of D lies in the interior of the DE edge. Moreover, the edge BD must
lie inside the hemisphere because the other great arc connecting B and D
intersects DE at D∗. By the same reason, the edge CE also lies inside the
hemisphere. Moreover, the edge BC also lies inside the hemisphere because
by DE > π, the other great arc connecting B and C must intersect DE.
Now we may consider a new quadrilateral �′BCED obtained by replacing
DE by the other great arc (of length < π) connecting D and E. This
new quadrilateral (i.e., the hemisphere subtracting the original quadrilateral)
satisfies δ′ = π − δ, ε′ = π − ε < π and DE < π. Moreover, it is easy to see
that the lemma for the new quadrilateral is equivalent to the lemma for the
original quadrilateral.
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Bβ

Cγ

D
δ

D∗
Eε

a

a
B
β C
γ

D

D∗

δ

E
ε

T
a

a

B β

C
γ

D

δ

E
ε

T

T ∗

Figure 15: The case a < π and three angles < π.

Now we consider the case that the quadrilateral has at least three angles
< π. Up to symmetry, we may assume β, δ, ε < π. By the discussion above,
we may further assume that a < π and DE < π. We draw the great circles
©BD and ©DE containing BD and DE as in the middle and the right of
Figure 15. The two great circles divide the sphere into four 2-gons, and by
δ < π, we may assume that δ is an angle of the middle 2-gon, and BD and
DE are contained in the edges of the middle 2-gon. By β, ε < π, we find that
BC and EC are inside the middle 2-gon. The middle of Figure 15 describes
the case γ > π, and the right describes the case γ < π. In the middle, the
prolongation of EC intersects BD at T . Then DT < a < ET . Since all
angles of 4DET are < π, this implies that ∠DET < ∠EDT . We conclude
that

β < π < γ, δ > ε.

On the right of Figure 15, the great circles ©BD and ©CE containing the
two a-edges intersect at antipodal points T and T ∗. The topology of the
picture shows that T and T ∗ do not lie in the two a-edges, so that we have
BT + a+DT ∗ = π = CT + a+ ET ∗. This implies

BT > CT ⇐⇒ DT ∗ < ET ∗.

Since the angles in 4BCT and 4DET ∗ are < π, we also have

BT > CT ⇐⇒ π − β = ∠CBT < ∠BCT = π − γ,

and
DT ∗ < ET ∗ ⇐⇒ π − δ = ∠EDT ∗ > ∠DET ∗ = π − ε.

Combining all the equivalences together, we get

β > γ ⇐⇒ δ < ε.
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So the lemma is proved for the case of at least three angles < π. By
considering the outside quadrilateral, we also know the lemma holds for the
case of at least three angles > π. It remains to consider the case that two
angles < π and the other two angles > π. Up to symmetry, this means the
following three cases

1. β, ε > π and γ, δ < π.

2. β, γ > π and δ, ε < π.

3. γ, ε > π and β, δ < π.

Again we may always additionally assume a < π.
The first case is consistent with the conclusion of the lemma.
As we argued before, in the second case, we may additionally assume

DE < π. Let λ be the other great arc connecting B and C, as on the left of
Figure 16. Since a < π, λ does not intersect BD and CE. By the topology
of the picture, if λ intersects DE, then they intersect at two points. By
DE < π, this cannot happen. Therefore by replacing the original edge BC
by λ, we get a new quadrilateral, in which all four angles β−π, γ−π, δ, ε < π.
We have proved the lemma for the new quadrilateral, which gives β − π >
γ − π ⇐⇒ δ < ε. This is the same as β > γ ⇐⇒ δ < ε.

a

aB

β

C
γ

D
δ

E
ε

λ

a

B

B∗

β D

D∗

δ

Eε

T

Figure 16: The case a < π and two angles < π, two angles > π.

It remains to show that the third case is actually impossible. We draw
the great circle©BD containing BD on the right of Figure 16, such that the
disk bounded by©BD is the hemisphere containing the angles β, δ < π. The
great circles©BC and©DE containing BC and DE intersect©BD at the
antipodal points B∗, D∗. Since BD = a < π, the antipodal points lie outside
the BD edge, and we get the configuration as in Figure 16. In particular, the
great circles ©BC and ©DE intersect at a point T inside the hemisphere.
Since BC and DE do not intersect, either C lies in BT , or E lies in DT .
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Without loss of generality, we may assume E lying in DT , as described by
the picture. Then we find that the edges BD,DE are contained in the same
hemisphere bounded by ©BC. Moreover, since EC = a < π, EC cannot
intersect ©BD at two points. This implies that EC is also contained in the
same hemisphere bounded by ©BC, and further implies that γ < π.

Now we turn to another geometrical constraint, which we will use at the
very end of this paper. A general spherical pentagon allows 7 free parameters.
The spherical pentagon of edge length combination a3b2 on the left of Figure
17 satisfies 3 independent edge length equalities. Therefore the pentagon
allows 7− 3 = 4 free parameters. This means that four angles (β, γ, δ, ε, for
example) completely determine the pentagon.

α
b

β

a
δ a ε

a

γ
b α

b

c

b

θ θ

c

a

a

a

δ ε

β γ

Figure 17: One equality for the angles.

We start with the simpler case of the isosceles triangle in the middle of
Figure 17. A general triangle allows 3 free parameters. The isosceles triangle
introduces 1 equality and allows 3− 1 = 2 free parameters. Therefore α and
θ completely determine the isosceles triangle. The edge length c is given by

cos c =
cosα + cos2 θ

sin2 θ
= cosα + (1 + cosα) cot2 θ. (3.1)

The edge length b is further given by

sin c cos θ = sin b cos b(1− cosα), sin c sin θ = sin b sinα. (3.2)

Next consider the quadrilateral of edge length combination a3c on the
right of Figure 17. A general quadrilateral allows 5 free parameters. The
edge length combination a3c introduces 2 equalities and leaves 5 − 2 = 3
free parameters. Therefore its four angles satisfy one equality, and the edge
lengths a and c can be expressed in terms of the four angles.

We add an arc y = DC to the quadrilateral as in Figure 18. By the sine
law, we have

sin a sin β = sin y sin(γ − φ).
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Then by using the equality (3.2) for the isosceles triangle 4CDE, we have

sin a sin β = sin y sin γ cosφ− sin y cos γ sinφ

= sin a cos a(1− cos ε) sin γ − sin a sin ε cos γ.

Canceling sin a, we get

sin β + cos γ sin ε = cos a sin γ(1− cos ε). (3.3)

By the symmetry of exchanging β and γ, and exchanging δ and ε, we get

sin γ + cos β sin δ = cos a sin β(1− cos δ). (3.4)

If we cancel cos a from (3.3) and (3.4), then we get an equality for the four
angles of the quadrilateral

(sin β+cos γ sin ε) sin β(1−cos δ) = (sin γ+cos β sin δ) sin γ(1−cos ε). (3.5)

B

a

D
a

E

a

Cc

y

β γ − φφ

δ
−
φ

φ ε

Figure 18: Geometrical constraint for quadrilateral.

The equalities (3.3) and (3.4) give expressions of a in terms of the four
angles. The following further gives an expression for c

cos c = cos a cos y + sin a sin y cos(δ − φ)

= cos a cos y + sin a cos δ sin y cosφ+ sin a sin δ sin y sinφ

= cos a(cos2 a+ sin2 a cos ε)

+ sin a cos δ sin a cos a(1− cos ε) + sin a sin δ sin a sin ε

= cos a− sin2 a cos a(1− cos δ)(1− cos ε) + sin2 a sin δ sin ε

= cos3 a(1− cos δ)(1− cos ε)− cos2 a sin δ sin ε

+ cos a(cos δ + cos ε− cos δ cos ε) + sin δ sin ε. (3.6)
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The general formula without assuming the two edges are equal to a can be
found in [1].

Now consider the pentagon of edge length combination a3b2 on the left of
Figure 17. We try to find out how the angles β, γ, δ, ε determine the pentagon.

We divide the pentagon into an isosceles triangle of edge length combi-
nation b2c and a quadrilateral of edge length combination a3c as in Figure
12. Suppose we are in the middle situation, then the quadrilateral has angles
β − θ, γ − θ, δ, ε. Substituting these angles in place of β, γ, δ, ε in (3.3) and
(3.4) and dividing sin θ, we get

(sin β + cos γ sin ε) cot θ − cos β + sin γ sin ε

= cos a(sin γ cot θ − cos γ)(1− cos ε), (3.7)

(sin γ + cos β sin δ) cot θ − cos γ + sin β sin δ

= cos a(sin β cot θ − cos β)(1− cos δ). (3.8)

Eliminating cot θ from (3.7) and (3.8) gives a quadratic equation for cos a

L cos2 a+M cos a+N = 0, (3.9)

where

L = sin(β − γ)(1− cos δ)(1− cos ε),

M = cos(β − γ)(sin ε− sin δ + sin(δ − ε)),
N = sin δ − sin ε− sin(β − γ)(1− sin δ sin ε).

Alternatively, eliminating cos a from (3.7) and (3.8) gives a quadratic equa-
tion for cot θ

P cot2 θ +Q cot θ +R = 0, (3.10)

where

P = sin β(sin β + cos γ sin ε)(1− cos δ)

− sin γ(sin γ + cos β sin δ)(1− cos ε),

Q = −(sin 2β + cos(β + γ) sin ε)(1− cos δ)

+ (sin 2γ + cos(β + γ) sin δ)(1− cos ε),

R = cos β(cos β − sin γ sin ε)(1− cos δ)

− cos γ(cos γ − sin β sin δ)(1− cos ε).
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After finding a and θ in terms of β, γ, δ, ε, we may substitute cot θ and
cos a into the following combination of (3.1) and (3.6) to determine cosα

cosα + (1 + cosα) cot2 θ

= cos a− sin2 a cos a(1− cos δ)(1− cos ε) + sin2 a sin δ sin ε.

Then α, θ, c further determine b by (3.2).
We may also consider the other two situations in Figure 12. It is not

difficult to see that we still get the same equalities showing how the angles
β, γ, δ, ε determine the pentagon.

4 Geometrically Congruent Tilings

4.1 Type III1

For all the angles to be positive, we must have −2
3

+ 16
f
> 0, or f < 24. So

we only need to consider f = 18, 20, 22.
For f = 18, the angles are

α =
2

3
π, θ1 =

5

9
π, θ2 =

8

9
π, φ1 =

8

9
π, φ2 =

2

9
π.

At the vertex θ1θ2 · · · shared by P2, P3 on the left of Figure 6, the remaining
angle 2π − θ1 − θ2 = θ1 is a combination of five angles above. Since the
only such combination is the single θ1, the vertex must be θ21θ2, and we get
a tile P outside P2, P3 with angle θ1 at the vertex. On the other hand, the
angle of P at the vertex is an a2-angle, which must be either φ1 or φ2. Since
neither φ1 nor φ2 is equal to θ1, we get a contradiction. For f = 22, the same
argument leads to the same contradiction.

For f = 20, the vertex θ1θ2 · · · can be θ21θ2 or θ1θ2φ
4
2. The first case leads

to the same contradiction as above. The second case implies that there is a
vertex of degree 6. By the vertex counting equation (2.1), however, we find
v4 = v6 = 1 and v5 = v7 = v8 = · · · = 0. This is combinatorially impossible
by [8, Theorems 6].

We conclude that there are no type III1 geometrically congruent tilings.
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4.2 Types III2 and III3

For type III2, the angle sum at a vertex αaθb11 θ
b2
2 φ

c1
1 φ

c2
2 is

2

3
a+

(
5

6
− 2

f

)
b1 +

(
−1

6
+

10

f

)
b2 +

(
1

3
+

4

f

)
c1 +

(
4

3
− 8

f

)
c2 = 2.

Since f ≥ 18 and all angles are positive, we get

2

3
a+

13

18
b1 +

1

3
c1 +

8

9
c2 ≤ 2.

There are finitely many possible choices of (a, b1, c1, c2) satisfying the inequal-
ity above. We rewrite the angle sum equation as an expression for b2

b2 = −(5a+ 6b1 + 3c1 + 9c2−15)F + (4a+ 5b1 + 2c1 + 8c2−12), F =
48

60− f
,

and then substitute the finitely many choices of (a, b1, c1, c2). Those that
yield non-negative integer b2 and have degree ≥ 3 are listed in Table 2.

a b1 b2 c1 c2

3 0 0 0 0
0 1 1 0 1
0 2 0 1 0
0 0 0 2 1
1 0 F 0 1
1 1 F − 1 1 0
1 0 F − 2 3 0
2 0 2F − 2 1 0
0 2 3F − 2 0 0
0 0 3F − 2 1 1
0 1 3F − 3 2 0
0 0 3F − 4 4 0

a b1 b2 c1 c2

1 1 4F − 3 0 0
1 0 4F − 4 2 0
2 0 5F − 4 0 0
0 0 6F − 4 0 1
0 1 6F − 5 1 0
0 0 6F − 6 3 0
1 0 7F − 6 1 0
0 1 9F − 7 0 0
0 0 9F − 8 2 0
1 0 10F − 8 0 0
0 0 12F − 10 1 0
0 0 15F − 12 0 0

Table 2: All the vertices αaθb11 θ
b2
2 φ

c1
1 φ

c2
2 for type III2.

It is easy to verify that the five angles are distinct. Moreover, since Table
2 shows that φ2

2 · · · is not a vertex, Proposition 6 can be applied. By the
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proposition and considering the possible configurations of edges and angles
at vertices, the following are not vertices (a or c are allowed to be 0)

α≥1φ≥11 , αaθ1θ
≥2
2 φc1, α

aθ≥12 φc1, α
aθ≥32 φ2, θ

2
1θ
≥3
2 , θ≥32 φ1φ2.

This eliminates many vertices from Table 2. Combined with Proposition 5,
the only remaining possible angle combinations at vertices are

AVC for f = 24: α3, θ1θ2φ2, θ
2
1φ1, φ

2
1φ2, θ

2
1θ

2
2, θ1θ2φ

2
1, θ

2
2φ1φ2, φ

4
1;

AVC for f = 36: α3, θ1θ2φ2, θ
2
1φ1, φ

2
1φ2, αθ1θ2φ1, αθ

2
2φ2.

For f = 36, the AVC implies that the vertex θ22 · · · shared by P2, P3 on
the right of Figure 6 is αθ22φ2. Since α is a b2-angle, θ2 is an ab-angle, and φ2

is an a2-angle, the vertex αθ22φ2 can be configured in unique way, and two θ2
are not adjacent in such configuration. Since two θ2 are adjacent on the right
of Figure 6, we conclude that there are no type III2 geometrically congruent
tilings for f = 36.

For f = 24, we have

α =
2

3
π, θ1 =

3

4
π, θ2 =

1

4
π, φ1 =

1

2
π, φ2 = π.

Substituting the angles into (3.9), we get L = 2,M = 0, N = 0, so that
cos a = 0. Since 0 < a < π (because BD and DE intersect only at D), we
get a = 1

2
π.

π
2 A

α

π
2

π
2

π
2B

π
2

D
π
2 E

π
2

C

θ2

θ1

φ1 φ2

Figure 19: Impossible spherical pentagon.

In Figure 19, by BD = DE = a = 1
2
π and ∠BDE = 1

2
π, we know

4BDE is an equilateral triangle with side length 1
2
π and inner angle 1

2
π.

Then by BE = CE = 1
2
π and ∠BEC = ∠CED − ∠BED = π − 1

2
π = 1

2
π,

we know 4BCE is also an equilateral triangle with side length 1
2
π and inner
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angle 1
2
π. Furthermore, by ∠ABE = ∠ABD−∠DBE = 3

4
π− 1

2
π = 1

4
π and

∠ACE = 1
4
π, the edges AB and AC evenly divide the angles ∠CBE and

∠BCE. Therefore A is the center of the equilateral triangle 4BCE, so that
α = 4

3
π, contradicting to α = 2

3
π. Another way to see the contradiction is

that the areaa of 4BCE and 4BDE are both 1
8

of the area of the sphere,
so that the area of the pentagon is

(
1 + 2

3

)
1
8

= 5
24

of the area of the sphere.
In other words, the area of the sphere is not an integer multiple of the area
of the pentagon.

We conclude that there are no type III2 geometrically congruent tilings.
Moreover, the tile in type III3 tilings is the same as the one for type III2
tilings, except θ1 and θ2 are exchanged, and φ1 and φ2 are exchanged. The
pentagonal tile leads to the same contradiction, so that there are no type III3
geometrically congruent tilings.

4.3 Type II, θ1 = α

For type II tilings, we need to first determine the specific values of θ1 and θ2.
By f ≥ 18, we know φ1 < α, φ2 > α and θ1 + θ2 < 2α. By Lemma 3, this
further implies θ1 > θ2, so that

θ1 >
1

2
(θ1 + θ2) =

(
1

3
+

4

f

)
π, θ2 <

(
1

3
+

4

f

)
π < α.

By θ1+θ2 = 2φ1 and θ1 6= θ2, we get θ1 6= φ1 and θ2 6= φ1. By θ1+θ2 < φ2, we
get θ1 6= φ2 and θ2 6= φ2. Therefore θ1, θ2, φ1, φ2 are distinct. The discussion
also shows that if α, θ1, θ2, φ1, φ2 are not distinct, then θ1 = α.

If θ1 = α, then we know all the angles

θ1 = α =
2

3
π, θ2 =

8

f
π, φ1 =

(
1

3
+

4

f

)
π, φ2 =

(
4

3
− 8

f

)
π.

As far as the values of the angles are concerned, we use α to denote both α

and θ1. By f > 12, we see that 2π − 2φ2 =
(
−2

3
+ 16

f

)
π is strictly smaller

than all the angles. Therefore φ2
2 · · · is not a vertex, so that Proposition 6

holds.
The angle sum at a vertex αaθb2φ

c
1φ

d
2 (a is the total number of α and θ1

at the vertex) is

2

3
a+

8

f
b+

(
1

3
+

4

f

)
c+

(
4

3
− 8

f

)
d = 2.
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By f ≥ 18, we get
2

3
a+

1

3
c+

8

9
d < 2.

Substituting those (a, c, d) satisfying the inequality into the solution of the
angle sum equation

b = (6− 2a− c− 4d)
f

24
+ d− 1

2
c,

we get all the possible vertices. Those with a ≥ 1 are listed in Table 3. Using
Proposition 6, we may carry out the argument similar to type III2 tilings and
find that f = 24, 36, 60, with the corresponding vertices with a ≥ 1 listed
in the table. We also find all the configurations of the vertices in the table,
given in Figure 20, where we note that the ab-angle α is really θ1.

a b c d f = 24 f = 36 f = 60

3 0 0 0 α3 α3 α3

1 1 0 1 αθ2φ2 αθ2φ2 αθ2φ2

2 f−12
24

1 0 α2θ2φ1 α2θ22φ1

1 f−36
24

3 0 αθ2φ
3
1

2 f
12

0 0 α2θ22
1 f

12
− 1 2 0 αθ2φ

2
1

1 f−4
8

1 0

1 f
6

0 0

Table 3: All the vertices αaθb2φ
c
1φ

d
2 with a ≥ 1 for type II, θ1 = α.

α
α θ2

φ1 φ2

αα
α

αα
α

θ2α
φ2

α α

θ2 θ2

α θ2
θ2 α

α θ2
φ1 φ1

α α

θ2 φ1

θ2α
α θ2
φ1

θ2α
θ2 α
φ1

θ2α
φ1 φ1
φ1

Figure 20: Vertex configurations for type II, θ1 = α.

By Figure 20, the vertex θ21 · · · = α2 · · · shared by P5, P6 in the middle of
Figure 5 is α3 with one a-edge and two b-edges. So we get a tile P7 outside
P5, P6. Then P7 share a vertex αθ2 · · · with either P5 or P6, such that α is
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a b2-angle. By Figure 20, the vertex must be α2θ2φ1, which implies f = 36.
Now for f = 36, the vertex αθ2 · · · shared by P4, P5 in the middle of Figure
5 is either αθ2φ2 or α2θ2φ1. However, the edge length arrangement at the
vertex in the middle of Figure 5 does not match the configuration for αθ2φ2

or α2θ2φ1 in Figure 20. This concludes the proof that there are no type II
geometrically congruent tilings with θ1 = α.

4.4 Type II, θ1 6= α.

The final case is type II tilings with all five angles α, θ1, θ2, φ1, φ2 distinct.
We already have the vertices α3, θ1θ2φ2, φ

2
1φ2 from the middle of Figure 5.

We saw the importance of Proposition 6 in the discussion for the tilings of
types III2 and III3 and for the case θ1 = α. For the proposition to still hold,
we need φ2

2 · · · not to be a vertex.
Suppose φ2

2 · · · is a vertex. Then the angle sum at the vertex gives

2π > 2φ2 = 2

(
4

3
− 8

f

)
π.

This means f < 24. Then by the vertex counting equation (2.1), [8, Theorems
1 and 6] and Proposition 4, all vertices must have degree ≤ 6. Moreover, for
f = 18, the vertex counting equation is 3 = v4 + 2v5 + 3v6. By [8, Theorems
1], we must have v6 = 0. Furthermore, by the remark after Proposition 4, we
also cannot have v4 = v5 = 1. Therefore the only possibility is v4 = 3 and
v≥5 = 0.

For f ≥ 18, it is easy to see from the angle sum that the vertex φ2
2 · · ·

must be θk2φ
2
2. By Proposition 5, k must be even. Since all vertices have

degree ≤ 6, we conclude that either θ42φ
2
2 or θ22φ

2
2 is a vertex. If θ42φ

2
2 is a

vertex, then v6 ≥ 1. By f < 24 and the remark after Proposition 4, we get
f = 22, v4 = 2, v6 = 1. Then by f = 22 and the angle sum at θ42φ

2
2, we may

calculate all the angles

α =
2

3
π, θ1 =

67

66
π, θ2 =

1

66
π, φ1 =

17

33
π, φ2 =

32

33
π.

Since no four angles from above (repetition allowed) can add up to 2π, we
get a contradiction to v4 = 2.

So θ22φ
2
2 must be a vertex. The angle sum at the vertex gives

θ1 = π, θ2 =

(
8

f
− 1

3

)
π.
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For each 18 ≤ f < 24, we know the values of all five angles and can further
find all possible angle combinations at vertices (satisfying Proposition 5 and
all the constraints above, especially v≥5 = 0 for f = 18)

AVC for f = 18, 22: α3, θ1θ2φ2, φ
2
1φ2, θ

2
2φ

2
2;

AVC for f = 20: α3, θ1θ2φ2, φ
2
1φ2, θ

2
2φ

2
2, α

2θ22φ1.

By the AVC, the vertex θ2φ1 · · · shared by P2, P6 on the right of Figure
5 is α2θ22φ1, and we must have f = 20. It is easy to see that α2θ22φ1 must be
configured as in Figure 21. We know the full information about P1 and P4.
Since αθ1 · · · is not a vertex by the AVC, we may use the information about
P1 to determine the full information about P2, and use the information about
P4 to determine the full information about P3. Then we find a vertex θ21 · · ·
shared by P1, P2, contradicting to the AVC.

1

23

4

α

θ1
θ2

θ2
α

φ2

α

θ1
θ2

θ2
α

φ2
φ1

Figure 21: Impossible vertex configuration for type II, θ1 6= α.

So we conclude that φ2
2 · · · is not a vertex. In particular, Proposition 6

remains valid. Next we find vertices αaθb11 θ
b2
2 φ

c
1φ2 containing one copy of φ2.

Let b = min{b1, b2}. Then the angle sum at such a vertex gives

2 ≥ 2

3
a+

(
2

3
+

8

f

)
b+

(
1

3
+

4

f

)
c+

(
4

3
− 8

f

)
=

1

3
(2a+ 2b+ c+ 4) +

4

f
(2b+ c− 2).

If 2b + c − 2 > 0, then 2a + 2b + c < 2, so that a = b = 0 and c = 0 or 1,
which implies 2b + c − 2 ≤ 0, contradicting to the assumption. So we must
have 2b+ c− 2 ≤ 0, which implies (b, c) = (1, 0), (0, 2), (0, 1), (0, 0).

If (b, c) = (1, 0) or (0, 2), then the inequality above implies a = 0. This
gives θk1θ2φ2, θ1θ

k
2φ2, with k ≥ 1, and θk1φ

2
1φ2, θ

k
2φ

2
1φ2, with k ≥ 0. Since

29



θ1θ2φ2 and φ2
1φ2 are already vertices, the angle sum implies that the four

cases must be θ1θ2φ2 and φ2
1φ2. The two vertices will be listed in (4.1).

If (b, c) = (0, 1), then the inequality above and f ≥ 18 imply a = 0, and
we get [i]kφ1φ2, i = 1, 2. Since the angle sum of θ1φ1φ2 is > 2π, we only have
θk2φ1φ2. By Propositions 5 and 6, the only possibility is θ22φ1φ2, which will
be listed in (4.1).

If (b, c) = (0, 0), then the inequality above and f ≥ 18 imply a = 0 or
1, and we get αθki φ2 and θki φ2, i = 1, 2. Since the angle sums of αθ1φ2 and
θ21φ2 are > 2π, we only have αθk2φ2 and θk2φ2. By Propositions 5 and 6, the
only possibilities are αθ22φ2 and θ22φ2. The angle sum at θ22φ2 implies θ1 = θ2,
a contradiction. For the remaining possibility αθ22φ2, the angle sum at the
vertex gives

θ1 =

(
2

3
+

4

f

)
π, θ2 =

4

f
π.

On the other hand, the vertex θ21 · · · shared by P5, P6 in the middle of Figure

5 has the remaining angle 2π − 2θ1 =
(

2
3
− 8

f

)
π, which is strictly less than

α, θ1, φ2. Therefore the vertex is θ21θ
b
2φ

c
1. Since two θ1 share an a-edge at the

vertex, the vertex θ21θ
b
2φ

c
1 contradicts Proposition 6.

It remains to consider a vertex αaθb11 θ
b2
2 φ

c
1 without φ2. To avoid con-

tradicting Proposition 6, each θ2 needs to be combined with one θ1 into a
chain θ1φ1 · · ·φ1θ2 bordered by two b-edges. Therefore we must have b1 ≥ b2.
Combined with all the possible vertices we found so far, we get the following
complete list of possible angle combinations at vertices

AVC: α3, θ1θ2φ2, φ
2
1φ2, θ

2
2φ1φ2, α

aθb11 θ
b2
2 φ

c
1, b1 ≥ b2. (4.1)

Suppose θ22φ1φ2 is not a vertex. Since the total number of θ1 and θ2 in the
whole tiling should both be equal to f , to balance the equal total number,
we must have b1 = b2 in every vertex αaθb11 θ

b2
2 φ

c
1. The angle sum at αaθb1θ

b
2φ

c
1

is

2 =
2

3
a+

(
2

3
+

8

f

)
b+

(
1

3
+

4

f

)
c =

2

3
a+

(
1

3
+

4

f

)
(2b+ c).

This implies 2a + 2b + c ≤ 5. By trying all (a, b, c) satisfying the inequality
and using f ≥ 18, we get all the solutions

a = 0, 2b+ c = 4, f = 24: θ1θ2φ
2
1, θ

2
1θ

2
2, φ

4
1;

a = 1, 2b+ c = 3, f = 36: αθ1θ2φ1, αφ
3
1;

a = 0, 2b+ c = 5, f = 60: θ21θ
2
2φ1, θ1θ2φ

3
1, φ

5
1.
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The vertex θ21 · · · shared by P5, P6 in the middle of Figure 5 does not appear
in the AVC for f = 36, is θ21θ

2
2 for f = 24, and is θ21θ

2
2φ1 for 60. Since two

θ1 share an a-edge at the vertex, we find that the configuration of the vertex
contradicts Proposition 6.

So we conclude that θ22φ1φ2 must be a vertex. The angle sum at the
vertex implies

θ1 =

(
1

2
+

6

f

)
π, θ2 =

(
1

6
+

2

f

)
π, φ1 =

(
1

3
+

4

f

)
π, φ2 =

(
4

3
− 8

f

)
π.

The angle sum at αaθb11 θ
b2
2 φ

c
1 is

2

3
a+

(
1

6
+

2

f

)
b = 2, b = 3b1 + b2 + 2c.

If b = 0, then the vertex is α3. If b > 0, then this implies 4a + b < 12.
By Proposition 5, we also know that b is even. Substituting those (a, b)
satisfying the two conditions into the angle sum equation, we keep those
yielding integers f ≥ 18 and get all the solutions

f = 24: a = 0, b = 8;

f = 36: a = 1, b = 6;

f = 60: a = 0, b = 10.

By the AVC (4.1), the vertex θ21 · · · shared by P5, P6 in the middle of
Figure 5 is αaθb11 θ

b2
2 φ

c
1, b1 ≥ 2. Therefore one of the above three cases must

happen. For f = 24, solving b1 ≥ 2 and 3b1 + b2 + 2c = 8 shows that the
vertex is either θ21θ

2
2 or θ21φ1. Since two θ1 share an a-edge at the vertex, the

vertex θ21θ
2
2 contradicts Proposition 6 and the vertex θ21φ1 is impossible.

For f = 36, we consider the vertex θ1θ2 · · · shared by P4, P5 in the middle
of Figure 5. By the AVC (4.1), the vertex is θ1θ2φ2 or αaθb11 θ

b2
2 φ

c
1, b1, b2 ≥ 1.

Solving 3b1 + b2 + 2c = 6 for b1, b2 ≥ 1 shows that the later vertex is αθ1θ2φ1.
Since θ1 and θ2 share an a-edge at the vertex, neither θ1θ2φ2 nor αθ1θ2φ1 are
possible.

For f = 60, we have

α =
2

3
π, θ1 =

3

5
π, θ2 =

1

5
π, φ1 =

2

5
π, φ2 =

6

5
π.
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Substituting the angles into (3.10), we get

P = 0, Q = 2

(√
10− 2

√
5

4

)3

, R =
5− 2

√
5

4
.

Therefore

cot θ = −R
Q

= −
√

5− 1√
10 + 2

√
5
.

By θ < π, we get θ = 3
5
π = θ1. This means that the pentagon is given by

Figure 22, in which D lies in the great arc connecting B and C.

A

α

B
D

E

φ2

C
θ1

θ2
φ1 ρ ρ

Figure 22: Impossible spherical pentagon.

Since 4CDE and 4ABC are isosceles triangles, we have ρ = ∠EDC =
∠ECD = θ1 − θ2 = 2

5
π. Then φ1 + ρ = 4

5
π 6= π, contradicting to the fact

that D lies on the great arc connecting B and C. We conclude that there
are no type II geometrically congruent tilings with θ1 6= α.
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