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Abstract

We give unexpected examples of monohedral tilings of the 2-dimensional sphere by

quadrangles, three of whose edges have the same length. We show that to classify
monohedral tilings by quadrangles with this property, we must consider a condition

between four angles, in addition to combinatorial consideration, which we developed
in [8] for the case of triangles.

1. Introduction

This paper is a continuation of our previous paper [8]. In the paper [8], we gave a
new classification of tilings of the 2-dimensional sphere consisting of congruent triangles,
and clarified some obscure points in Davies’ classification [1]. As our next problem, we
consider monohedral tilings by quadrangles and pentagons. Especially its classification as
we carried out for the case of triangles is an interesting and important problem. (We can
easily show that if the sphere is tiled by n-gons, then we have n = 3, 4 or 5. See § 3 (3).)
We are just now carrying out it, but actually it seems that this is a quite hard problem.
(See the explanation at the end of § 3 (1).)

In this paper, we give unexpected examples of tilings of the 2-dimensional sphere by
quadrangles with the property that three of whose edges have the same length (Theorem
2). We found these examples during the process of classification. In addition, we prove
an equality and an inequality which four angles of quadrangles of this type must satisfy
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(Proposition 3). We also show that at least two edges of the prototile of monohedral tilings
by quadrangles have the same length (Proposition 1).

In this paper, we do not assume a transitive group action on the set of tiles, and treat
the problem purely from the combinatorial standpoint.

2. Main results

In this section, we first prepare some notations and terminologies. For the usual
terminology concerning tilings, see the book [5].

By a quadrangle on the sphere, we mean a figure surrounded by four lines(= parts of
great circles) with angles α, β, γ, δ. In this paper, we assume that the angles satisfy the
condition 0 < α, β, γ, δ < π, unless otherwise stated. (We assume that the radius of the
sphere is 1.) We denote lengths of edges of this quadrangle by a, b, c, d.
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We can divide quadrangles on the sphere into five classes by the combination of lengths
of four edges as follows:

(i) aaaa, (ii) aaab, (iii) aabb, (iv) aabc, (v) abcd.

Here, different symbols mean differnt lengths. We first show the following proposition.

Proposition 1. There does not exist a monohedral tiling by quadrangles of type (v)
on the 2-dimensional sphere.

Proof. We first show that there exists a 3-valent vertex in the tiling by quadrangles.
We denote by V , E, F the number of vertices, edges and faces, respectively. Then, by
Euler’s formula, we have V − E + F = 2, and also from a combinatorial reason, we have
E = 4F/2 = 2F . Combining these, we have V = F + 2. Now we express the number of
i-valent vertices by Vi. Then we have

V = V3 + V4 + V5 + · · · ,

F =
1

4
(3V3 + 4V4 + 5V5 + · · · ).

From these equalities, we have V3 = V5 + 2V6 + 3V7 + 4V8 + · · · + 8, which implies that
V3 > 0.
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Now assume that there exists a monohedral tiling by quadrangles of type (v). Assume
that the dotted point in the following figure is 3-valent.
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Then, this figure is extended to one of the following way:
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But these figures imply that edges with lengths b and d, or d and d must be situated
adjacently in one quadrangle, which is a contradiction. Therefore, we conclude that there
does not exist a monohedral tiling of the sphere by quadrangles of type (v). q.e.d.

Note that monohedral tilings by quadrangles of type (i) (= rhombus) are already
classified in Sommerville [6] and Ueno-Agaoka [8]. A classification of tilings by quadrangles
of type (iii) can be also obtained by our previous result [8], because by drawing one diagonal
line in each quadrangle, we obtain a monohedral tiling of the sphere by triangles.
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Therefore, remaining cases are of type (ii) and (iv). But it seems to the authors that the
classification for these two cases is quite difficult. As for the type (ii), we give here the
following unexpected example.

Theorem 2. There exists a monohedral tiling on the 2-dimensinal sphere by the

following quadrangle:
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Figure 5

α =
3

4
π, β = cos−1

(

√
2 − 1

2

)

, γ =
1

2
π, δ = π − β,

a = cos−1

(

1
√

1 + 2
√

2

)

, b = cos−1

(

2
√

2 − 1
√

1 + 2
√

2

)

.

This tiling consists of 16 faces. In addition, a monohedral tiling by this quadrangle is

uniquely determined up to isometries of the sphere.

Proof. First, we give the development map of this tiling.
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In this figure, thin (resp. thick) lines indicate the edges with length a (resp. b). Since
2α+γ = 2β+2δ = 4γ = 2π, the above figure shows that (at least combinatorially) a tiling
with the given quadrangle exists. Therefore, what we have to prove is the actual existence
of the above quadrangle on the sphere. For this purpose, we consider the following two
triangles with the indicated angles, where ϕ = 3π/8 and ψ = π/8:

ϕ

β ϕ

ϕ

ψ

δ

x

x

Figure 7

Since β satisfies π/4 < β < π/2, we have

2ϕ + β > π, ϕ+ β < π + ϕ, 2ϕ < π + β,

ϕ+ ψ + δ > π, ϕ+ ψ < π + δ, ϕ+ δ < π + ψ, ψ + δ < π + ϕ.

Hence, these two triangles actually exist on the sphere (cf [9; p.62]). By using the cosine
rule for these triangles, we easily know that the lengths of edges just coincide with the one
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given after Figure 5. For example, we have

cosϕ+ cosϕ cos β

sinϕ sinβ
=

√
2−

√
2

2
+

√
2−

√
2

2

√
2−1

2√
2+

√
2

2

√
1+2

√
2

2

=
1

√

1 + 2
√

2

= cos a.

Since α = 2ϕ and γ = ϕ + ψ, we obtain the quadrangle in Figure 5 by connecting these
two triangles. Note that the lengh of the “diagonal line” x in the quadrangle is given by

cosx =
cosβ + cos2 ϕ

sin2 ϕ
=

cos δ + cosϕ cosψ

sinϕ sinψ
=

√
2 − 1.

The uniqueness of this tiling can be easily verified by using the fact that possible types of
vertices are restricted to 2α + γ = 2π, 2β + 2γ = 2π and 4γ = 2π. q.e.d.

We give here a figure of this tiling.

Figure 8

3. Miscellaneous results

(1) Formally, we can consider the following development map for general p ≥ 3, by
extending the example in Theorem 2.
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Figure 9

But curiously, this tiling is realizable on the sphere only in the cases p = 3 and 4. To
prove this fact, we prepare the following proposition.

Proposition 3. We consider the following quadrangle of type (ii) satisfying the con-

dition 0 < α, β, γ, δ < π.
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Then:
(1) The angles α, β, γ, δ satisfy the following equality.

(1 − cos β) cos2 α− (1 − cos β)(1 − cos γ) cosα cos δ + (1 − cos γ) cos2 δ

+ cos β cos γ + sinα sinβ sin γ sin δ = 1.

(2) The inequality α+ δ < π + β holds.

Proof. (1) We denote by x (resp. y) the length of the diagonal line AC (resp. BD) on
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the sphere. Then, from the cosine rule, we have

cos x = cos2 a+ sin2 a cos β,

cos y = cos2 a+ sin2 a cos γ.

Next, we put ϕ = ∠BAC = ∠BCA. Then, from the cosine rule, we have

cos a =
cosϕ+ cos β cosϕ

sinβ sinϕ
=

cosϕ cos β

2

sinϕ sin β

2

.

From this equality, we have

sinϕ =
cos β

2
√

1 − sin2 a sin2 β

2

, cosϕ =
cos a sin β

2
√

1 − sin2 a sin2 β

2

because 0 < ϕ < α < π and 0 < β

2
< π

2
. Next, we have

sin2 x = 1 − cos2 x = 2 sin2 a (1 − cosβ) − sin4 a (1 − cos β)2,

which implies

sin x = 2 sin a sin
β

2

√

1 − sin2 a sin2
β

2
.

(We can easily show that 0 < a, x < π because edges of the quadrangle does not intersect.)
By using these formulas, we have

cos b = cos a cosx+ sin a sinx cos(γ − ϕ)

= cos a cosx+ sin a sinx(cos γ cosϕ+ sin γ sinϕ)

= cos a+ sin2 a sinβ sin γ − sin2 a cos a(1 − cos β)(1 − cos γ).

Now, the tangent vector of the sphere which is tangent to the line AB is equal to
→

AB −(
→

AB ·
→

OA)
→

OA =
→

OB −(
→

OA ·
→

OB)
→

OA

=
→

OB − cos a
→

OA,

where O is the center of the sphere. The length of this vector is
√

1 − cos2 a = sin a.
Similarly, the unit tangent vector of the sphere which is tangent to the line AD is

1

sin b
(

→

OD − cos b
→

OA).

Therefore, we have

cosα =
1

sin a sin b
(

→

OB − cos a
→

OA) · (
→

OD − cos b
→

OA)

=
1

sin a sin b
(

→

OB ·
→

OD − cos b
→

OA ·
→

OB − cos a
→

OA ·
→

OD +cos a cos b)

=
1

sin a sin b
(cos y − cos a cos b)

=
sin a

sin b

(

cos γ − cos a sinβ sin γ + cos2 a(1 − cos β)(1 − cos γ)
)

.
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Similarly, we have

cos δ =
sin a

sin b

(

cosβ − cos a sinβ sin γ + cos2 a(1 − cos β)(1− cos γ)
)

.

Next, from the sine rule
sin δ

sinx
=

sin(α− ϕ)

sin a
,

it follows that

sin δ =
sin x sin(α − ϕ)

sin a

=
sin x (sinα cosϕ− cosα sinϕ)

sin a

= 2 sin
β

2
(cos a sinα sin

β

2
− cosα cos

β

2
)

= cos a sinα (1 − cosβ) − cosα sinβ.

In the same way, we have

sinα = cos a sin δ (1 − cos γ) − cos δ sin γ.

Combining these two equalities, we have

sinα =
sin a

sin b

(

cos a sinβ (1 − cos γ) − cos β sin γ
)

,

sin δ =
sin a

sin b

(

cos a sin γ (1 − cosβ)− sinβ cos γ
)

.

We substitute these values cosα, cos δ, sinα, sin δ into the left hand side of the equality
in Proposition 3 (1), and in addition, substitute the value of cos b. Then, after a little
calculations, we know that this value is just equal to 1.

(2) We consider the triangle ABD. Then, we have α+ ∠ADB < π+ ∠ABD. Adding
the angle ∠CDB = ∠CBD to this inequality, we obtain the desired result. q.e.d.

Now, if the tiling in Figure 9 actually exists, the angles must satisfy the equalities

pγ = 2π, 2α + γ = 2π, 2β + 2δ = 2π.

Hence, we have

α = π − π

p
, γ =

2π

p
, β + δ = π.

By substituting δ = π−β and γ = 2π−2α into the equality in (1), we have sin2 α(2 cosα+
2 cos β+1)(cos β−1) = 0, and hence, cosβ = cos π

p
− 1

2
. From the inequality α+δ < π+β

in (2), we have β > p−1

2p
π. Hence, by putting θ = π

2p
, it follows that

cos 2θ − 1

2
= cos β < cos

p − 1

2p
π = sin

π

2p
= sin θ,
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which implies 4 sin2 θ + 2 sin θ − 1 = 4(sin θ −
√

5−1

4
)(sin θ +

√
5+1

4
) > 0. Hence we have

sin θ >
√

5−1

4
= sin π

10
. Therefore θ > π

10
, which implies p < 5.

Thus, to complete the classification of monohedral tilings by quadrangles of type (ii),
we must consider the conditions stated in Proposition 3, in addition to combinatorial
considertation. This indicates the essential difficulty in the classification, when compared
with the case of triangles which we carried out in [8].

We note that the tiling in Figure 9 for the case p = 3 is in a sense well known because
it is obtained by projecting the rhombic dodecahedron to its circumsphere.

(2) There are many other examples of tilings by quadrangles of type (ii). We give here
some of these examples, allowing the case of “angle ≥ π”.

a
a

a
b

a
a

a
b
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(3) As stated in Introduction, the following fact holds.

Proposition 4. Assume that there exists a tiling by n-gons on the 2-dimensional

sphere. Then we have n = 3, 4, or 5. (We do not assume that the tiling is monohedral.)

Proof. From a combinatorial reason, we have E = nF/2. Hence, by Euler’s formula,
we have V = E − F + 2 = ( n

2
− 1)F + 2. Then, by substituting the values

V = V3 + V4 + V5 + · · · , F =
1

n
(3V3 + 4V4 + 5V5 + · · · )

into this equality, we have

(n− 6)V3 + (2n− 8)V4 + (3n− 10)V5 + (4n− 12)V6 + · · · + 4n = 0.

From this equality, the inequality n ≤ 5 follows immediately. q.e.d.
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Geometric Vein (ed. C. Davis, B. Grünbaum, F. A. Sherk), 65–98, Springer-Verlag,
New York, 1981.

[3] , Patterns on the 2-sphere, Mathematika 28 (1981), 1–35.

[4] , The 2-homeotoxal tilings of the plane and the 2-sphere, J. Comb. Theory
B 34 (1983), 113–150.

[5] , Tilings and Patterns, Freeman, New York, 1987.

[6] D. M. Y. Sommerville, Division of space by congruent triangles and tetrahedra, Proc.
Royal Soc. Edinburgh 43 (1922–3), 85–116.

[7] Y. Ueno and Y. Agaoka, Tilings of the 2-dimensional sphere by congruent right tri-

angles, Mem. Fac. Integrated Arts and Sci., Hiroshima Univ. Ser.IV, 22 (1996),
1–23.

[8] , Classification of tilings of the 2-dimensional sphere by congruent trian-

gles, Technical Report No.85, pp.1–78, The Division of Math. Inform. Sci., Fac.
Integrated Arts and Sci., Hiroshima Univ., September 2001.



12 Y. Ueno and Y. Agaoka

[9] E. B. Vinberg (ed.), Geometry II (Spaces of Constant Curvature), Encyclopaedia of
Math. Sci. 29, Springer-Verlag, Berlin, Heidelberg, 1993.

[10] M. J. Wenninger, Spherical Models, Cambridge Univ. Press, Cambridge, 1979.

[11] R. Williams, The Geometrical Foundation of Natural Structure: A Source Book of
Design, Dover Publ. INC., New York, 1979.


