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An alternative concept of the basic invariants is introduced. The Lewis-Riesenfeld invariant theory is
extended to obtain a generalized invariant formulation. The formulation is then used to establish four
facts: (i) Any invariant for a quantum system can be constructed in terms of the basic invariants. (ii) It
is possible to introduce a solution-generating technique by making use of the basic invariants. (iii) The
path integral in the generalized invariant formulation reduces to an ordinary integral. (iv) The study of
noncyclic evolution of a quantum system reduces explicitly to the study of the cyclic evolution. Finally,
phase factors and general solution for the driven generalized time-dependent harmonic oscillator are

studied as an illustrative example.

PACS number(s): 03.65.—w

I. INTRODUCTION

The geometric phase in quantum adiabatic evolution
was first discussed by Berry [1]. It was recognized im-
mediately by Simon [2] that this phase can be interpreted
as a holonomy of the Hermitian fiber bundle over the pa-
rameter space. This quantum holonomy phenomenon,
referred to as the Berry phase, has attracted great interest
for its close relation to the study of gauge theory [3,4],
anomaly [5-7], fractional statistics [8,9], and quantum
Hall effect [10], and for its having been verified repeated-
ly experimentally [11-15]. In a fundamental generaliza-
tion of Berry’s idea, Aharonov and Anandan [16] re-
moved the adiabatic condition and studied the geometric
phase for any cyclic evolution. This Aharonov-Anandan
(AA) phase is related to a holonomy associated with the
parallel transport around a circuit in the projective Hil-
bert space and has been verified in optical and NMR in-
terferometry experiments [17,18]. In a recent paper [19],
Anandan pointed out that, in principle, the study of any
noncyclic evolution may reduce to the study of cyclic
evolution. However, no explicit example in this direction
has been seen in the literature, perhaps because of the
difficulty associated with the diagonalization of the time-
evolution operator, which is usually a time-ordered prod-
uct of an infinite number of unitary matrices of infinite
rank.

Recently, making use of the Lewis-Resenfeld invariant
theory (LRIT) [20], we and other authors [21-23] investi-
gated the generalized time-dependent harmonic oscilla-
tor, spin-j and two-level systems. From these works, we
can see the applicability of the LRIT to the study of the
geometric phase problem. In this paper, it is further
shown that the invariant theory will become much more
suitable for the study of the geometric phase and other
problems if the LRIT is improved by introducing the
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concept of the basic invariants. In Sec. II, the basic in-
variants are defined, and the LRIT can therefore be ex-
tended to obtain a generalized invariant formulation.
The formulation is then used to establish four facts: (i)
Any invariant for a quantum system can be constructed
in terms of basic invariants. In this sense, the basic in-
variants can be referred to as invariant generators. (ii) It
is possible to introduce a solution-generating technique
by making use of the basic invariants. This is to say that
with the help of a chosen basic invariant, a complete set
of the solutions of a Schrédinger equation can be generat-
ed from one solution of it. In this sense, the basic invari-
ant may be called a solution generator. (iii) The path in-
tegral in the GI formulation reduces to an ordinary in-
tegral. (iv) The study of the noncyclic evolution of a
quantum system reduces explicitly to the study of the cy-
clic evolution. In Sec. III, the driven generalized time-
dependent harmonic oscillator (DGTHO) is discussed as
an explicit example to illustrate the results obtained in
Sec. II. We then point out the following: (1) There is
some similarity between the Berry phase and the AA
phase in the formulation. (2) Taking the adiabatic limit,
the formulation can be employed not only to obtain the
Berry phase, but also to get the corrections to arbitrary
order in the adiabatic approximation to the Berry phase.
(3) There is a new kind of adiabatic geometric phase
different from the Berry phase. In Sec. IV, there is a brief
discussion of some related topics.

II. THE BASIC INVARIANTS AND THE
GENERALIZED INVARIANT FORMULATION

We consider a system whose Hamiltonian H(¢) is time
dependent. A Hermitian operator I(z) is called an in-
variant for the system if it satisfies
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A i, Hn)=0 . (1)
The eigenvalue equation of I(¢) can be written as

I(N|n,t)Y=A,n,t), n=1,2,.... )
With the help of Eq. (1), it is easy to show

oA,

Y =0. (3)
The Schrodinger equation for the system is

ihg‘igt&=ﬂ(t)l¢(t)>s , 4)

which has particular solutions |n,z), different from

|n,t) in Eq. (2) only by a phase factor e The gen-
eral solution of the Schroinger equation can be shown to
be

(1) s=3 Cpln,t)s= Cre ' ln,t) ,

<P,,<t)=f0'<n,t’

C,=(n,0[y(0))g .

The statement outlined above is the basic content of the
LRIT [20].

Now we proceed to introduce the basic invariants. It is
easy to see that the formal solution of Eq. (1) is

I()=U)I10)U'), 6)

0 gy,
()

n,t')dt’ , (5)

where the time-evolution operator U(?) for the system is
of the form

U)=P |exp [~it [[H(ar || ™

Although the formal solution is not very useful in actual
calculations, it helps us to introduce a new concept of the
basic invariants. For a one-dimensional system, two
linearly independent basic invariants can be defined ei-
ther to be q(1)=U(t)qU'(2), p(t)=U(1)pU (1), or to be
any two linearly independent combinations (not neces-
sarily Hermitian) of g(¢) and p(¢).

U(2,0)2,0) = [ [dAollAg,t Y{Agt|U(£,0)|2,0) ,
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If I, and I, are both invariants, it is easy to show that
I,1, is also an invariant. We are then led to the con-
clusion that any invariant I(t)=U()I(0)U'(¢) can be
expressed by a power series in g(z) and p(t) as long as
I(0) can be expressed by a power series in g and p. In
this sense, the basic invariants can be called invariant
generators. It is worth pointing out that the concept of
the basic invariants is not present in the literature to our
knowledge. For example, the “general form” of the in-
variants for the displaced harmonic oscillator was dis-
cussed by Xin Ma [24]. However, his form is not really
general, since it fails to contain our basic invariants.

If [14(¢)), is a solution of the Schrédinger equation and
I(t) is an invariant, it is readily seen that I(z)|¢(¢)); is
also a solution of the equation. With this in mind, we
will show later in Sec. III that a complete set of the solu-
tions of the Schrodinger equation can be obtained from
one solution of the equation by means of a chosen basic
invariant. Here we want to emphasize that the complete
set of the solutions cannot be obtained in this way
without the basic invariant (in general, not Hermitian).
In this sense, the basic invariant may be called a solution
generator.

It is easy to see that the concept of the basic invariants
can readily be generalized to more than one-dimensional
cases. This concept combined with the original picture
and representation theory in quantum mechanics leads to
a different formulation. It is apparent that, for a basic in-
variant I,(t), the spectrum of the eigenvalues correspond-
ing to a complete set of the eigenfunctions (if it exists) of
I,(t) is, in general, continuous. The eigenvalue equation
of I,(t) can be written as

L()|A,t)=AlA,t) (8)

with A varied in a continuous range, where A is time in-
dependent, since I,(¢) is an invariant. In this case, it is
useful to calculate |¢(¢)), with the path-integral tech-
nique

[(2)),=U(£,0)|4(0)),
= [[dA]C,U(1,0)[4,0) , )

where [dA] is the corresponding measure that, in general,
is not ordinary dA. It is easy to get

(lo,tlU(t,O)Ik,0)=fN [dA] - [dAy— 1{ Aot | U (2,6 —AL)| Ay, 2 — At )

(10a)
XA, t —At|U(t—At,t —2A1)| Ayt —2At)
X Ahy,t —mAt| Ut —mAt,t —(m +1)At]|A,, 4t —(m +1)At)
X AAy_pt—(N=1)At|U[t —(N—1)At,t —NAt]|Ay,t —NAt) , (10b)

where NAt =t and A, =A. With the help of the fact that A,, is time independent, we get
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(At —mAt|U[t—mAt,t—(m+1)At]|A,, . ,t —(m+1)At)

= —_ ; t—mAt K ) 1 ’ ’ ’
8(A,, —A,, +,)exp ;meH)At<Am,t ig A H() km,t>dt } .an
Substitution of Eq. (11) into Egs. (9) and (10) gives
— . t ’ i_ —1 ’ ’ ’
9(6)),= [ [dAIC,exp 1f0<k,t () w)m Mt (12)

where
exp[ —ifi ! [ LAt |[H(t") At )dt' 1=exp[ig\®(1)]

is the dynamical phase factor and exp(i [({A,'[id/
at'|A,t')dt')=exp[i@{®(¢)] is the geometric phase fac-
tor. It is worthwhile to note the following: (a) It is the
time-independent property of A,, that makes the path in-
tegral reduce to an ordinary integral. (b) In this formula-
tion, the study of the time evolution is closely related to
the study of the phase factors. (c) In the discrete spec-
trum case, it is easy to see that Eq. (12) becomes Eq. (5).
However, the method that Lewis and Riesenfeld used to
obtain Eq. (5) is entirely different from that adopted here.

We now turn to the problem of noncyclic evolution.
For any given time interval [0,T], if an invariant I(¢)
can be found to possess the following properties: (1) the
set of the eigenstates |n,t) of I(¢) is complete; (2) A, is
not degenerate; (3) I(0)=I(T), which leads to
|n,TY=|n,0), then it is not difficult to find that the
study of the noncyclic evolution of |(¢)) reduces to the
study of the cyclic evolution of |n,t )

[9(1)), =3 Cpe' ™ |n,t)

(13)
ln,T)=|n,0), C,={n,0¥(0)), .

We will later show in Sec. III how the invariant I(¢) with
the properties mentioned above can always be found for
some systems.

III. APPLICATION OF THE GENERALIZED
INVARIANT FORMULATION TO THE STUDY
OF THE DRIVEN GENERALIZED
TIME-DEPENDENT HARMONIC OSCILLATOR

Recently, the problem of the solution for the DGTHO
was studied by Engineer [25]. In his paper, he used a ten-
tative ansatz to discuss only the evolution of the ground
state and did not find the general solution for the system.
In this section, the GI formulation is employed to find
the general solution for the DGTHO without introducing
any ansatz.

The Hamiltonian for the DGTHO is

H(t)=L1[X(t)g’>+Y(t)Xgp+pq)+Z(t)p*]+Fq , (14
with R(#)=(X(¢),Y(¢),Z(t)) being time-dependent pa-

rameters that satisfy XZ —¥2>0 and F being constant.
Since H, q,p, and 1 constitute a quasialgebra, it is not
difficult to see that a general basic invariant is of the form

cos[O(2)+6,]

_ 1
L= [x(t)

x(t)—Y(t)x(t)
+ Z (1)

—x(t)sin[O(2)+6,]

sin[©(2)+6,] |[g—y(¢)]

X |p

() =Y(@)y(e)
Z(1) ’

o= [drz()/x") (15)

where x(¢) and y(t¢) are c-number solutions of the auxili-
ary equations

_d_ _"i XvZ—_Yz__‘_i__ X x=_.Z_ (16a)
dt | Z Z dt | Z x3’

d |y XZ—-Y* d|Y

£ 11X £ 2 C = =—F, (16b
dt |z Z da |z | [P (16b)

and 6, is an initial phase angle.

It is apparent that the initial conditions imposed on
x,%,y,y can be arbitrarily chosen. With appropriate
choices, two linearly independent basic invariants can be
obtained as follows:

e® |g—y Y
I(1)=-— ; Y _y
»(1) \/Zh[ . +i|x p+Zq 7
— X = | t=e®pr),  (17a)
Z —_— ’
_ie .
o= £ 9=y . Y v
I,(¢) Vh ’ X ilx p+Zq Z
—iz.(q—y) ]ze'ie("b*(t), (17b)
(), If(1)]=1. (18)

From the basic invariants, we can get another invariant
I.(t):
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L()=#[IJ(t)I,(t)+1]
=144 y) Y _J
2[ x? = p+Zq Z
. 2
X
Z(q y) ] (19)

These invariants can be used to study the DGHTO. It is
easy to establish

H=tw(a'a+1)—FZ/Qw?), w=(XZ—-Y")'?,

(20a)
172
= —2% q+€;—22~]+i% lp+%q ,
2 FZ| .z Y
at= ?;)7 ‘ q+F —i— p+Eq , (20b)
[a,a']=1, aTaln,t)a=n|n,t)a (n=0,1,...),
aln,t),=Vn|ln—1,t),, (20c)
alln,t),=vVan+iln+1,t),
I,=#0b"b+1), (21a)
b=‘/—7k3;—y+z x p+§ % ~Zq=y) }
(21b)
= (2 e Foe e ]
(6,6T1=1, b'B|n,t)y=nln,t), (n=0,1,...),
bln,t)y=Vnln—1,t),, 21c)
biln,t)y=Vn+iln+1,t),,
and
I, 45 = %m s
=ei"9(')%—|0 t)s » (22)

where |n,t),s differs from |n,t), by a phase factor
exp(ig,(t)) and is the solution of the Schrodinger equa-
tion.

We now show that b and b’ can always be found to
satisfy the cyclic condition

b(T)=b(0), bT(T)=b%0). 23)

It is only necessary to study the condition b(T)=5b(0),
since it implies b Y(T)=b7(0). The equation b(T)=5b(0)
leads to four equations for x(0), x(0), x(T), x(T), y(0),
»(0), y(T), and y(T) by equating the coefficients of g, p,
and 1 on both sides of Eq. (23). With the help of the aux-
iliary equations, x(7T), x(T), y(T), and y(T) are deter-
mined by x (0), x(0), y(0), and y(0). It is therefore ap-
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parent that x(0), x(0) y(0), and y(0) are completely
determined by the condition b(T)=5b(0). This means
that an appropriate choice of x(0), x(0), y(0), and y(0)
leads to b(T)=b(0) and hence b'(T)=b%0),
I1,(T)=1,(0). From this and the relevant result obtained
in Sec. I, it follows that

()= C,explig,(t)|n,t), ,

(24a)
@, ()= () +o (1),
(g) = t | 22 ’ ’
@) fob<"” 5 t>bdt,
P (y=—#"" [\, [H@) n, 1 Yydr', (24D)
|n,0),=|n,T), . (25)

This means that, for the DGTHO, the study of the non-
cyclic evolution of a general state |4(¢)); reduces to the
study of the cyclic evolution of the eigenstates |n,? ), of
I.(¢) in Eq. (21) and the corresponding phase

(g)(t)—i—(p(”' (¢). It is worthwhile to point out two facts:
(i) The geometric phase @\ (T) is nothing but the AA
phase for which the expression J&n,e'lias
ot'|n,t'),dt’. (ii) If the system is initially in the eigen-
state |n,0), of I.(0), it will remain in the eigenstate
|n,t)b of I.(t) all the time. From these two facts, we
clearly see that there is some similarity between the evo-
lution of the |n,t), and the adiabatic evolution of
In,t),.

In the following, we study the evolution of the ground
state [0,¢), of I.(t) to get |0,t),s and then to get
ln,t),s=[I]) /(n')”z]IO t),s by means of the
solution-generating technique.

The solution of the Schrodinger equation |0,z ) ps can
be written as

[0,¢),s=U(¢,0)]0,0), =exp[igyt)
got)= [, <0,r'lid /3" —#~

)110,¢), ,
YH(t")|0,¢"),dt",

(26a)
(26b)

where —#"! [{,€0,t'|H(¢)|0,¢'),dt'=@{(t) is the
dynamical phase and [,{0,#'[i3/3t'(0,¢"),dt' =@ (t)
is the geometric phase [@F(T) is the AA phase]. From
Egs. (20) and (21), we get

(d) 1y — i1 |wx? | %2, Z
t_— —— — — —
o (1) fo 4|z Tz
wi?  Fy  y? ,
. 27
|t T | | 7

In order to calculate the ground state |0,z ), of I,(t), we
study the connection between the I .(¢) and the operator

=1[(Xo/Z)?q*+(Z /X)) *p?] with X, =1, Z,=1
in the same units as used for X,Z in Eq. (3.1). It is easy
to find

L(=Dn)S(I,ST()DY(1) , (28a)

D(t)=exp{—ilpy—q(y—Yy)/Z]/#} , (28b)
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S(t)=exp{i# 'r[(sind)(g*—p?) . 1] 1 % —Yx 2 % —Yx
eSsinhr=— | — —x24 | Z—2 +ix—r—.
+(cosd)(gp +pg)] /4 (280) 2 1+ “
cos , 28¢c
ap +pq)]/4} (29b)
in which r and § are determined by It is easy to get
R l0,2),=D()S(2)|0) , (30)
coshrZ% —15 +x2+ EHZ—YX (29a)  where 1,|0)=1#|0). The geometric phase ¢{#(¢) is then
X obtained to be
]
%g)(t)_—_f()’b(o,t’ ST(t')DT(t')é—?,D(t')S(t') O,t’>bdt'
a |’ * : sind+ 6
=1 d x_+ P — — | — ¥ sin _8 tl
4 fo Z *dr . coshr —sinhr cosd d
1 d d Y
t Y 2 ’
+_ ) — J— —_— J—
2 fo z Var R dt 31)
Z Z
The total phase @(?) is found to be
Y y
t Z : wiy?  Fy , y° 1 ,d 1 |y? d
t:_l —dt'+ — | =L =2 A L N, S (N Ly | —
ol 1) 2f0x2d J, Z | #  2kz | 247 ar 2 |z Yar
Z Z
L[t 7 sind+8 $ |ar
1 — t 32
4 f o | coshr —sinhr cosd ’ 32

where (7 sin8+8)/(coshr —sinhrcosd)—3$ is a total time
derivative. From the above derivation, we can see clearly
the origin of the nontrivial topological property of the
ground state [0,7 ) .

From Eq. (21), we get

172
g=|5 | x(b+bH+y, (33a)
_ | A 12 1b—b"  x—Yx t y—Yy
p= |7 P + (b+d") +T
(33b)
This leads to
(q)=p5€0,t1ql0,2) 5=y ,
(p)=45€0,t|p|0,2) ys=(p —Y¥)/Z , (34a)

bs<07t|q2_<q)2!0:t)bS:ﬁx2/2 s

#
»s€0,2[p2—<(p )0,z )bSZE

1
—
x2

x—Yx
Z

(34b)

From these expressions, the physical meaning of x, x, y,
and y is clearly seen.
With the help of I () and Eqgs. (20) and (21), we obtain

(1)1
|n’t>bS=W|0’t>bs
e [b7())”
=expli[py(t)+nO(1)]} (A1 [0,¢),
:exp[i¢n(t)]|nvt>b ’ (35)
and
@ ()=@(t)+nO(1) ,
(] %2 d Y
(8)( 1) = (&) n X 2.4 | __
PLN=g (1) fo - Hxi—s
Z
d X
—xgt—, dt', (36)
Z
2.2 .2
Dy Dy B WX X Z |,
@ () =@y (t) 2f0‘ > +Z+x2 dt’,
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where |n,T),=1n,0), is implied by b(T)=b(0). Ap-
parently, the set of the states |n,t), (n=0,1,...) is
complete in the sense that the general solution of the
Schrodinger equation can be expressed in terms of them:

W())s=3 C,ln,t) 5= C,explig,(t)]ln,t), ,

(37a)

C,={n,0|9(0))y . (37b)
The invariant I;(¢) is what we call the solution generator.
Equation (35) provides an illustrative example of the
solution-generating technique.

We want to indicate that the phase factor exp(ig,) as-
sociated with the ground state |0,z ), appears also in the
phase factor exp(ig,) for any n. The phase factor
exp(i@y) is therefore an overall phase factor of the time-
evolution operator U(z). Thus, it will not affect any in-
variant I(t)=U(:)I(0)U'(¢). Or, we may say that I(¢)
does not contain the information of the phase factor
exp(ig,) for the ground state.

From the foregoing discussion, we see that, in some
sense, the evolution of the ground state [0,7 ), and the
basic invariant bT (¢) determine the evolution of the excit-
ed state |n,t),s and hence the general evolution.

Finally, we discuss the adiabatic limit. In this limit,
the choices x(0)=0, y(0)=0, x(0)=[Z(0)/W(0)]'7?,
and y(0)=—FZ(0)/w*0) lead to w(0)I(0)=H(0)
+F?Z /(2w?), and we find the Berry phase associated
with a closed circuit in the parameter space as follows:

Y
(g) = 1 T.i_d_ -
e (D=(n+3) 0 2w dt d
Z
1 rTF?Z%* d
— — | — . 38
2 Y0 wt dt d (38)

Since the system is precisely in the eigenstate |n,t),, it is
easy to calculate the correction to arbitrary order in the
adiabatic approximation to the Berry phase.

If the initial condition X (0)#0 is chosen, wg will have
|n,0),7|n,0),. This makes @&(T)= f pn,t]id/
dt|n,t)dt corresponding to a cyclic evoluti%n appreci-
ably different from the Berry phase (38).

IV. DISCUSSION

(1) The classical basic invariants may be obtained by
taking the classical limit of the quantum basic invariants:
that is, any classical invariant can be generated by the
basic invariants.

(2) The basic invariants can be applied to the study of
the coherent states and squeezed states. Work in this
direction will be presented elsewhere.

(3) It is interesting to investigate the possibility of ex-
tending the concept of the basic invariants to field theory.
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