
MATLAB:

a Brief Introduction

by

Robert L. Rankin

Spring 1996

MATLAB: a Brief Introduction

© R. L. Rankin R - 2 2/10/97

MATLAB: a Brief Introduction

R.1 Introduction to MATLAB

MATLAB is an acronym for MATrix LABoratory and is a highly optimized numerical
computation and matrix manipulation package. Within the environment you can execute all MAT-
LAB functions from the command line or you can write MATLAB programs to issue entire
sequences of commands. The built–in programming language is a variant of the C programming
language with many additions and a few deletions.

This review assumes that MATLAB (either the student or professional version) is already
installed in a DOS, Windows or Macintosh operating environment and that you already know how
to run the program. After starting the program a number of messages will appear and you will
eventually see the MATLAB prompt, ». This means that MATLAB is waiting for you to enter a
command. For example you might type demo , or help , or info to see some of the features and
commands in MATLAB.

To leave the MATLAB environment, simply type quit at any prompt or select Quit from
the File Menu.

R.1.1 Desktop Calculations

MATLAB can be used in much the same way as a calculator. The four elementary arith-
metic operators in MATLAB are + for addition, – for subtraction, * for multiplication and / or \
for division. A few examples of these operations are shown below.

»2 + 3
ans =
 5
»2 - 2
ans =
 0
»2 * 2
ans =
 4
»2/3
ans =
 0.6667

Notice that all un–named operations produce an immediate output in the form ans = value . The
symbol ans is actually a variable in MATLAB with can then be used in another calculation. For
example:

»45 * pi / 180
ans =
 0.7854
»sin(ans)
ans =
 0.7071

Another operator is the power operator, ^, as illustrated below:

MATLAB: a Brief Introduction

© R. L. Rankin R - 3 2/10/97

»5^3
ans =
 125
»5^(-3)
ans =
 0.0080

MATLAB has two versions of the division operator, one for right division
»6 / 3
ans =
 2

and one for left division
»3 \ 6
ans =
 2

When used with scalars, both operators yield the same results. However later when we discuss
vectors and matrices we will see that they are not interchangeable.

When dealing with more complicated expressions you may want to use parentheses in the
usual way. For example:

»3 * (sin(4) + sqrt(6)) / 12.5
ans =
 0.4062

If you type in a complex expression and make an error, you can edit the previous expression by
pressing the Up Arrow á to recall the last line. Press the Up Arrow á or Down Arrow â several
times to recall other command lines in the command line stack.

MATLAB deals with complex numbers just as well as with real numbers. For example:
»sqrt(-5)
ans =
 0 + 2.2361i
»(2i + 3) * (3 - 5i)
ans =
 19.0000 - 9.0000i
»2 / (3 - 6i)
ans =
 0.1333 + 0.2667i

Some important points for operations and operators are given below:

• Spaces before and after operators are generally ignored by MATLAB and are often added for
clarity.

• Parentheses can be freely used to indicate operation precedence. The general operator prece-
dence is multiplication first, division second, addition third and subtraction last.

R.1.2 Constants and Variables

Any operation carried out in MATLAB can be given a variable name as shown in the fol-
lowing example:

MATLAB: a Brief Introduction

© R. L. Rankin R - 4 2/10/97

»a = 6; b = 3; c = 4;
»d = a + b^3 - sin(c)
d =

33.7568

Notice that the built–in variable ans has been replaced with the user defined variable d. Some
important points to remember about MATLAB variables are:

• MATLAB variable names are case sensitive, hence . Variable names can be up to 32
characters long.

• In addition to the standard keyboard characters, you can use the underscore, _, in a variable
name. Hence variables names like radius_of_curvature and _time are perfectly valid.

• Semicolons at the ends of statements in MATLAB are optional, whereas in standard C they
are required. In MATLAB, the semicolon serves only to inhibit the display of that particular
operation on the screen.

• As in standard C, multiple statements can appear on a single line. These statements can be
separated either by semicolons or by commas. Commas do not inhibit the output whereas
semicolons do.

• There are only three types of variables in MATLAB: real numbers (equivalent to type double
in standard C), arrays of real numbers (similar to standard C’s arrays) and character strings.
The standard C types like int , float , double , unsigned int , char , etc., do not exist in the
MATLAB programming language. Hence even if you write a = 6 , the variable a is a double
precision real number, NOT an integer. In fact there are no true integers in MATLAB.

There are also some built–in constants in MATLAB as shown below:
»pi
ans =

3.1416
»inf
ans =

»eps
eps =

2.2204e-16
»10*PI
ans =

[]

In the last example, since pi is defined but PI is not (remember, variable names are case sensi-
tive), the result is null, indicated by ans = [] . Be careful with these variables, because they can
easily be renamed by mistake and their original value is then lost for the rest of that MATLAB
session or until the clear command is issued.

R.1.3 Operators in MATLAB

All of the standard arithmetic operators are supported in MATLAB. A list of the standard
operators is shown in the table below:

A a≠

∞

MATLAB: a Brief Introduction

© R. L. Rankin R - 5 2/10/97

Char Name HELP topic
 + Plus arith
 - Minus arith
 * Matrix multiplication arith
 .* Array multiplication arith
 ^ Matrix power arith
 .^ Array power arith
 \ Backslash or left division slash
 / Slash or right division slash
 ./ Array division slash
 kron Kronecker tensor product kron
 : Colon colon
 () Parentheses paren
 [] Brackets paren
 . Decimal point punct
 .. Parent directory punct
 ... Continuation punct
 , Comma punct
 ; Semicolon punct
 % Comment punct
 ! Exclamation point punct
 ' Transpose and quote punct
 = Assignment punct
 == Equality relop
 < > Relational operators relop
 & Logical AND relop
 | Logical OR relop
 ~ Logical NOT relop
 xor Logical EXCLUSIVE OR xor

Notice than many of these are either different from the corresponding operator in standard C or
don’t even exist in C. The +, - and * operators all work on matrices (as long as the sizes are cor-
rect) and complex numbers as well as scalars. In addition, the operators .* , .^ and ./ are special
array operators that allow element by element multiplication and division of equal size arrays. The
backslash operator, \, invokes the built–in equation solver to solve systems of equations of the
form A * x = b as in

»A = [1 -2 3 4;2 1 1 3;-1 0 1 3;2 2 1 5]; % 4 x 4 matrix
»b = [1 1;2 3;2 -1;1 3]; % 4 x 2 matrix (two right

% hand side vectors, b1, b2)
»x = A \ b ; % use built-in solver
x =
 -3.0000 0.8000 % first column is for b1,
 9.0000 1.6000 % second column is for b2
 14.0000 2.2000
 -5.0000 -0.8000

R.1.4 Built–in Math Functions in MATLAB

The elementary math functions are shown in the table below. Each of them works on
matrices and complex numbers as well as scalars.

MATLAB: a Brief Introduction

© R. L. Rankin R - 6 2/10/97

Trigonometic
sin - Sine.
sinh - Hyperbolic sine. Exponential.

asin - Inverse sine. exp - Exponential.

asinh - Inverse hyperbolic sine. log - Natural logarithm.

cos - Cosine. log10 - Common logarithm.

cosh - Hyperbolic cosine. sqrt - Square root.
acos - Inverse cosine.
acosh - Inverse hyperbolic cosine. Complex.

tan - Tangent. abs - Absolute value.

tanh - Hyperbolic tangent. angle - Phase angle.

atan - Inverse tangent. conj - Complex conjugate.

atan2 - Four quadrant inverse tangent. imag - Complex imaginary part.
atanh - Inverse hyperbolic tangent. real - Complex real part.
sec - Secant.
sech - Hyperbolic secant. Numeric.

asec - Inverse secant. fix - Round towards zero.

asech - Inverse hyperbolic secant. floor - Round towards minus infinity.

csc - Cosecant. ceil - Round towards plus infinity.

csch - Hyperbolic cosecant. round - Round towards nearest integer.

acsc - Inverse cosecant. rem - Remainder after division.

acsch - Inverse hyperbolic cosecant. sign - Signum function.
cot - Cotangent.
coth - Hyperbolic cotangent.
acot - Inverse cotangent.
acoth - Inverse hyperbolic cotangent.

Notice that many of the names are either different from their C counterparts or don’t even exist in
C.

R.1.5 Formatted Output

If you have been observant, you have noticed that all results have been displayed as either
integers or real numbers with four decimal places. Displaying results with four decimal places is
the default format in MATLAB, but this display format can be easily changed, as shown below:

»clear
»pi
ans =

3.1416
»format long
»pi
ans =

3.14159265358979
»format long e
»pi
ans =

3.141592653589793e+00
»format rat
»pi
ans =

355/113

In the sequence above, notice that first command issued was clear . This command removes all

MATLAB: a Brief Introduction

© R. L. Rankin R - 7 2/10/97

previously defined user variable names and their values from memory; essentially like restarting
MATLAB. The default format is format short and the first value of pi is displayed in this for-
mat. the default format. The other examples illustrate format long e , the long exponential for-
mat and format rat , which gives a small integer rational approximation (i.e., ratio of integers)
for any MATLAB variable.

R.1.6 The Diary Command

Calculations performed in MATLAB can be recorded in a simple way by using the diary
command. The command diary file_name causes a copy of all subsequent terminal input and
most of the resulting output to be written to the named file. The commands diary off and diary
on turn the diary function on and off so that you can selectively send output to the same file, as
shown in the following example:

»clear % clear variables and recover memory
»clc % clear the command screen
»diary c:\temp\cylinder.txt
»r = 0.1; % radius of the cylinder base
»h = 2; % height of the cylinder
»S = 2 * pi * r * h % lateral surface area of the cylinder
S =
 1.2566
»V = pi * r^2 * h % volume of the cylinder
V =
 0.0628
»diary off

Everything between the command diary cylinder.txt and the command diary off is sent to
the file cylinder.txt on the C: Drive in the subdirectory temp . Some important points associ-
ated with the above code are:

• The MATLAB comment specifier, %, was used in the above example. Anything on a given
line following the symbol % is ignored by MATLAB as a comment. In standard C each com-
ment must have a beginning specifier /* and an ending specifier */ . In MATLAB the ending
specifier is the end of a line.

• You should get in the habit of using comments in MATLAB in order to document your work.

• Some statements have semicolons, some do not. For ones that don’t, the output is immediately
displayed on the screen; for ones that do, the output to the screen is inhibited.

The type command can be used to display any ASCII text file on the screen. Hence you can check
the diary file generated above as follows:

»type cylinder.txt

and you will see the following display:
r = 0.1; % radius of the cylinder base
h = 2; % height of the cylinder
S = 2 * pi * r * h % lateral surface area of the cylinder
S =
 1.2566

MATLAB: a Brief Introduction

© R. L. Rankin R - 8 2/10/97

V = pi * r^2 * h % volume of the cylinder
V =
 0.0628
diary off

R.1.7 One Dimensional Arrays and Plotting

Unlike C, MATLAB has sophisticated plotting capabilities. These built–in plot command
has several forms. The most commonly encountered from is plot(x,y) , which plots vector x ver-
sus vector y, if both have the same length. Various line types, plot symbols and colors may be
obtained with plot(x, y, s) where s is a 1, 2 or 3 character string made up of the following
characters:

symbol colors symbol data point and line styles

y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus
g green - solid
b blue * star
w white : dotted
k black -. dashdot

-- dashed

For example, plot(x,y,'c+') plots a cyan plus at each data point, while plot(x,y,'y-
',x,y,'go') plots the data twice, with a solid yellow line interpolating green circles at the data
points. In the following example:

»x = [-1 0 1 2 3 4 5];
»y = sin(x)
y =
 -0.8415 0 0.8415 0.9093 0.1411 -0.7568 -0.9589
»plot(x,y)

the plot(x,y) command produces the output shown in Figure 1.1, in a separate window:

MATLAB: a Brief Introduction

© R. L. Rankin R - 9 2/10/97

Figure 1.1

Figure 1.2

In the example above, x is an array (a vector) and we see that the built–in function sin can operate
on arrays (standard C math functions can only operate on scalars). The statement y = sin(x); cre-
ates a new array y with the same length as x. The elements of the vector y are the sines of each of
the elements of the x array. A more sophisticated example would be

»clear

-2 0 2 4 6
-1

-0.5

0

0.5

1

0 2 4 6 8 10
-1

-0.5

0

0.5

1
Sin(x) versus x

x

si
n(

x)

MATLAB: a Brief Introduction

© R. L. Rankin R - 10 2/10/97

»for i = 1 : 100, x(i) = i / 10; y(i) = sin(x(i)); end
»plot(x,y), grid, title('Sin(x) versus x'), xlabel('x'), ylabel('sin(x)')

In this example we see that MATLAB has some programing structures (in this case the for loop)
very much like any other programming language. These commands produce the plot shown in
Figure 1.2. The examples above give only a brief indication of what can be done with MATLAB’s
plotting features. For more examples, take a look at the demo programs.

R.2 Storing Files Created by MATLAB

Normally when you save any file created by the Notepad in conjunction with MATLAB,
the file is stored in a subdirectory associated with the MATLAB program. However, when you are
on the campus Networks, these subdirectories are not accessible and the files are stored in what-
ever drive (possible a Network drive) and directory from which the program was executed.

In order to minimize problems with MATLAB finding the files you create, issue the fol-
lowing command from the MATLAB command window:

»cd c:\temp
and make sure that all files created by MATLAB and by Notepad are saved in this directory. The
network version of MATLAB has been configured so that it can always find m–files in the temp
directory. You can always check to see what files MATLAB can see if you issue the following
command from the MATLAB command window:

»dir
or

»dir *.m

When you have finished your MATLAB session, make sure you copy any files you have
created from c:\temp to your own floppy disk and/or to your disk space on the m: drive . The
temp directory is local to the PC you are using and this directory is regularly erased, so the next
time you log onto the network, your files will probably be gone.

R.3 Printing MATLAB Plots

When you are using a non–network version of MATLAB you can send any plots created
directly to your printer. However, on the network you cannot do this. To get a hard copy of your
plots on the network, do the following:

• From the Program Manager open the Utilities group and double click on MSDOS Prompt.

• In the Dos window type help

• In the Help window select Applications

• In the Applications window select MATLAB

• In the MATLAB window select Plotting

• In the Plotting window, follow the instructions given for plotting

The instructions are network and operating system dependent and may change with future net-
work modifications and operating system upgrades. Hopefully these instructions will be updated
as well.

MATLAB: a Brief Introduction

© R. L. Rankin R - 11 2/10/97

R.4 Writing Programs and Functions in MATLAB

In the examples above, each command was entered directly from the MATLAB command
line environment. Although this is convenient for small sets of commands that are not going to be
repeated, if we wish to regularly use the same sequence of commands with different input and
output, then we need to write a MATLAB program. MATLAB has a built–in editor (in the case of
Windows 3.1 and below it uses the Notepad editor as the built–in editor) which can be used to
write sequences of MATLAB commands to a file. Such files are called script files (or m–files) and
they must have a file name extension of .m .

To create a new empty file, invoke the File Menu and select New and type in the sequence
of commands. Once the file is created and saved with the appropriate extension, it can be run from
within the MATLAB environment by typing its file name (without the .m extension) from the
command line.

An important part of understanding MATLAB programming is the knowledge of where
MATLAB stores the files you create. By default, the files created with the editor are saved in the
directory or folder from which MATLAB was invoked (see Section R.2 for network variations).
For example if we create a file with the name hello.m in one MATLAB session and try to execute
in a later session, we might get the error message

»hello
??? Undefined function or variable hello.

This means that MATLAB cannot find the file hello.m . A likely reason for this error message is
that you started the MATLAB session from a different directory than you did the previous time.

The MATLAB path command can be used to tell MATLAB the location of the file
hello.m . The following examples of the path command change the MATLAB path to whatever is
in the quotes:

path('C:\MATLAB\MYCODE\') % DOS or Windows
path('Big Mo:MATLAB:My Stuff') % Mac

In order to append new path to the default path, you would issue the sequence of commands:
p = path % returns a string containing the path

% in p.
path(p, 'C:\MATLAB\MYCODE\') % adds the new path to the old path

% in DOS or Windows
path(p, 'Big Mo:MATLAB:My Stuff') % adds the new path to the old path

% on a Mac

R.4.1 Input and Output in MATLAB

MATLAB’s input and output (I/O) commands are generally much easier to use than those
in standard C. The built–in function input can be used to enter data directly from the screen and
the disp function can be used to output text and data to the screen. To illustrate, we create a small
m–file called hello.m with the following statements in it:

% The program in the file HELLO.M greets you and asks for your name. Then
% it greets you by name and tells you the date.

disp('Hello! What is your first name?')
name = input('Please enter your name','s');

MATLAB: a Brief Introduction

© R. L. Rankin R - 12 2/10/97

d = date;
response = ['Hello ', name, '. Today is ', d, '.'];
disp(response)

and this is what is displayed when you run the program:
»hello % this runs the program
Hello! What is your first name? % the first line displayed
Please enter your name Bob % Bob was typed in
Hello Bob. Today is 20-Jan-96. % the greeting

Here is what you get when you ask for help for this program:
»help hello

The program in the file HELLO.M greets you and asks for your name. Then
it greets you by name and tells you the date.

The help function in MATLAB simply displays the first set of contiguous comment lines in the
file (and no others). Hence you should always make the first few lines of a file be comment lines
that describe its workings.

The disp function can be used to display any string. The input function displays a
prompt string (in this case, 'Please enter your name') and saves whatever is entered into the
variable to the left of the equal sign. The optional second argument of input is 's' , which tells
the function to expect a string input (as opposed to a numerical input). The next statement stores
the date in d. The next to last statement shows how strings are concatenated in MATLAB. A string
is simply an array of characters (a vector) and the variable response is a new string put together
using the variables name and d. Finally the last statement actually displays the string response .
These last two statements could have been written as one using

disp(['Hello ' name '. Today is ' d '.']);

Notice that the commas in the original variable response were all optional.
Another output function in MATLAB is fprintf , which has exactly the same syntax as

printf does in standard C (standard C’s printf does not exist in MATLAB, only fprintf). This
function will be discussed in Section R.5.4.

R.4.2 Functions in MATLAB

Another kind of script file is the function m–file. Function m–files can be used to extend
the capabilities of MATLAB to include user defined functions. Hence MATLAB is infinitely
extendable simply by adding additional scripts. In fact, many of the functions already in MAT-
LAB are nothing more than script files. If you know where to look, you can examine these files
using the built–in editor. By the way, this is an excellent method of learning how to write more
sophisticated MATLAB functions.

A function m–file differs from other m–files in that the very first non–comment word in the
file must be the keyword function . The general syntax for a function statement is

function [out1, out2, ...] = name(in1, in2, ...)

The word function is the required keyword mentioned above. The variables out1 , out2 , etc. are
the names of any output variables that are computed and name is the name of the function. The
name of the function must be the same as the name of the m–file it is stored in (without the .m) .
Finally the variables in1 , in2 , etc. are the names of any input variables, i.e., variables that the

MATLAB: a Brief Introduction

© R. L. Rankin R - 13 2/10/97

function needs to compute its results. The input list of variables can be empty, in which case the
parentheses are not needed. The output list can be a single variable, in which case the brackets are
not needed.

All of the built–in trigonometric functions in MATLAB require the argument be a number
in radians. Since we often need to input the argument in degrees, we can write our own function to
do this. In the example below, we create a new function called sind , hence the m–file name must
be sind.m :

function s = sind(a)

% SIND: This function computes the sine of the angle, a, when the
% angle is expressed in degrees rather than radians.
% INPUT: a, the angle in degrees
% OUTPUT: s, the sine of that angle

a = a * pi / 180; % convert a to radians
s = sin(a); % compute the sine of a

The first line is the required function definition, indicating the function name (sind), its input
variables (just a in this case) and it output variables (just s in this case). The first four comment
lines are displayed by help and the last two lines are self–explanatory. The following sequence
shows how the function is called:

»sind(15)
ans =
 0.2588

or
»x = 45;
»y = sind(x)
y =

0.7071

With this approach, you can now create similar m–files for all the other trig functions to enhance
MATLAB’s capabilities to match you needs.

R.5 MATLAB Control Structures

MATLAB has most of the repetitive and logical control structures associated with stan-
dard C, albeit with some modifications. Although all of these control structures can be used
directly in the command line environment, they are most effectively used within MATLAB pro-
grams and functions.

R.5.1 The for Loop

A for loop is a control structure used to repeat a statement or a block of statements a fixed
number of times. The general syntax is:

for variable = v_start: increment : v_end
statements
...

end

MATLAB: a Brief Introduction

© R. L. Rankin R - 14 2/10/97

where variable is any valid variable name, v_start in the initial value of variable , increment
is the amount by which variable is to be increment each time through the loop, v_end indicates
the value of variable at which the loop should end, and the keyword end indicates the end of the
loop. An abbreviated form of the syntax is:

for variable = v_start : v_end
statements
...

end

When no increment is specified, the default value of 1 is used. If v_start is larger then v_end ,
then increment can be negative. For example, if we want to compute the square root of the first
100 integers, we can write:

for i = 1 : 100 % default increment is 1
y(i) = sqrt(i); % store the result in the array y

end % required end statement

If we wanted to find the natural log of all the numbers from 0.1 to 1 in steps of 0.2, we can write:
i = 0; % initialize index counter
for k = 0.1 : 0.2 : 1 % increment is 0.2 for k

i = i + 1; % increment the index i
z(i) = log(k); % store the result in the array z

end % required end statement

Notice that log(1) is never computed in this case, since the values of k are 0.1, 0.3, 0.5, 0.7 ,
and 0.9 . The next value of k is 1.1 which is beyond v_end = 1 , hence the loop stops when k =
0.9 . The use of the additional counter variable i is important here, since the index of an array
must be an integer starting at 1 (not 0, like standard C).

It turns out, however, that there is a much easier way to perform many of these kinds of
loops in MATLAB. The last example can be written in the compact form:

»v = 0.1 : 0.2 :1; % create a vector going from 0.1 to 1 in steps of 0.2
»w = log(v); % create a vector whose elements are the logs of v

and this results in
v = 0.1000 0.3000 0.5000 0.7000 0.9000
w = -2.3026 -1.2040 -0.6931 -0.3567 -0.1054

R.5.2 The if Statement

The if statement is a conditional structure whose general syntax is:
if condition

statements
...

elseif condition % notice that elseif is one word
statements
...

else
statements
...

end

MATLAB: a Brief Introduction

© R. L. Rankin R - 15 2/10/97

Both elseif and else are optional, but the end statement is required. The condition is a state-
ment using one or more of the following logical operators in MATLAB:

> - greater than
< - less than
>= - greater than or equal to
<= - less than or equal to
== - logical equal to
~= - not equal to (different than standard C)
& - the and operator (different than standard C)
~ - the not operator (different than standard C)
| - the or operator (different than standard C)
xor - the xor operator (different than standard C)

The if loop is executed only if condition is true. Just like standard C, any condition that eval-
uates to zero in MATLAB is false and if condition evaluates to anything other than zero, it is
considered to be true . Some of these will be illustrated in the example in Section R.5.3.

R.5.3 The while Loop

The while loop is another repetitive structure which repeats a statement or set of state-
ments until a specified logical condition is met. The general syntax is:

while condition
statements
...

end

Just like the if statement, the statements in the while loop are executed only if condition is true.
As an example of both the if and while statements, let’s say we wanted to write a MATLAB
function to perform the equivalent of integer division. Since all MATLAB numbers are real and
not integers, this is non–trivial in MATLAB. In this problem we are given a dividend, x, and a
divisor, y, and we are looking for an integer quotient q, and a remainder r such that x = qy + r. This
will be accomplished by writing a simple (translation, not very elegant) function called divide ,
which will be stored in the m–file divide.m . If might be done in the following way:

function [q, r] = divide(x, y)

% DIVIDE(x,y): This function performs integer division of x by y.
% The operation is carried out by subtracting y from x until
% x < y. The function returns the quotient q and the remainder r.
% See also REM(x,y)

q = 0; c = 1; k = 1;

if y == 0
error('...division by zero in DIVIDE...')

end
if (x == 0) | (x < y) % | is the or operator

q = 0; r = x;
end

MATLAB: a Brief Introduction

© R. L. Rankin R - 16 2/10/97

if x < 0
x = -x; c = -c; k = -k;

end
if y < 0

y = -y; c = -c;
end
while x >= y

x = x - y; q = q + 1;
end

q = c * q; r = k * x; % final values of q and r

Several ways of using this function are shown below:
»divide(7,3)
ans =
 2 % quotient only
»v = divide(7,3)
v =
 2 % quotient only
»[x,y] = divide(7,3)
x =
 2 % quotient in x
y =
 1 % remainder in y
»help divide

% DIVIDE(x,y): This function performs integer division of x by y.
% The operation is carried out by subtracting y from x until
% x < y. The function returns the quotient q and the remainder r.
% See also REM(x,y)

»divide(7,0)
??? Error using ==> divide % built-in error message
...division by zero... % function error message

A couple of important things should be pointed out about this function. First, the function
returns two quantities, q and r. Standard C functions can only return one quantity. Second, a new
built–in function called error is used in the first if statement. This function prints a system error
message, a function error message (whatever’s between the quotes) and immediately returns to
the command line environment.

R.5.4 Reading and Writing Data

There are several ways to input data into MATLAB. For example the data could be
assigned to a vector or matrix array by typing the data in at the command line, or as a part of a
program or function. However if the data set is large, this can be very tedious. We can also read
data into MATLAB from an external text file. For example, let’s say that a laboratory instrument
has been used to measure a sequence of 1000 voltages representing the temperature of a process

MATLAB: a Brief Introduction

© R. L. Rankin R - 17 2/10/97

and the results have been saved in a text file called voltdata.txt . We want to take these voltages
and convert them to temperatures in MATLAB using the instruments calibration data. This is
accomplished in MATLAB very easily by issuing the command:

load voltdata.txt -ascii

The data will be stored in the new array variable voltdata , created by the load command. The
argument –ascii indicates that the file voltdata.txt is a standard ASCII text file (i.e., not a
binary file). The calibration data can then be used to convert the voltages to temperatures.

We can also write data to an external file by means of the fprintf function. The general
syntax of this function takes the two forms. In the first form

fprintf('format string', var1, var2, ...)

the output goes to the screen. The 'format_string' uses standard C formatting conventions and will
not be discussed here. Of course each format specifier in 'format_ string' must have a corre-
sponding variable to print and these are the variables var1, var2, ... in the expression above.
In the second form

fprintf('file_name_string', 'format_string', var1, var2, ...)

the output goes to the file named in the string 'file_name_string' . If that file does not exist, it
is created and if it does exist, the data is appended to it. For example if we wanted to store the tem-
peratures from the temperature array temp, computed from the above voltages, into a file called
tempdata.txt , then we might use the following sequence of commands:

file_name = 'tempdata.txt';
fprintf(file_name, ' Voltage Temperature\n')
fprintf(file_name, '============ ============\n')
for i = 1 : 1000

fprintf(file_name, '%12.4f %12.2f\n', voltdata(i), temp(i))
end

We can examine the data in this newly created file by issuing the command
»type tempdata.txt

from the command line. This results in
 Voltage Temperature
============ ============
 -3.2146 256.36
 -2.4715 310.12

 3.1792 656.37

One major difference between the MATLAB version of fprintf and the standard C version is
that in the MATLAB version, single quotes are used around strings and in the standard C version,
double quotes are used.

R.6 Vectors and Matrices

Vectors in MATLAB can be either row vectors or column vectors, with row vectors being
the default. The transpose operator, ', converts a row vector into a column vector and vice–versa.
A collection of vectors and vector operations are shown below:

»a = [1, 2, 3, 4, 5] % columns can be separated by commas

MATLAB: a Brief Introduction

© R. L. Rankin R - 18 2/10/97

a =
 1 2 3 4 5
»b = [2 3 4 5 6] % or columns can be separated by spaces
b =
 2 3 4 5 6
»c = [1;2;3;4;5] % rows separated by semicolons
c =
 1
 2
 3
 4
 5
»d = [2
 3
 4
 5
 6] % rows separated by carriage returns
d =
 2
 3
 4
 5
 6
»a * 3 % multiply a vector by a scalar
ans =
 3 6 9 12 15
»c / 2 % divide a vector by a scalar
ans =
 0.5000
 1.0000
 1.5000
 2.0000
 2.5000
»v = dot(a, b) % dot product between a and b
v =
 70
»d(3) % display the third element of vector d
ans =
 4
»[m,n] = size(c) % compute the size of a vector (or matrix)
m =
 5 % c has 5 rows
n =
 1 % c has 1 column
»b == d' % logical comparison of b and d transpose
ans =

MATLAB: a Brief Introduction

© R. L. Rankin R - 19 2/10/97

 1 1 1 1 1

The ones in the last example indicate a logical true condition, i.e., each element in b equals the
corresponding element in d transpose.

Matrices can be thought of as columns of column vectors or rows of row vectors. Some
examples of matrices and matrix operations are shown below:

»A = [1 2 3 4; 2 3 4 5; 3 4 5 6] % spaces separate columns, semicolon rows
A =
 1 2 3 4
 2 3 4 5
 3 4 5 6
»A' % compute the transpose of A
ans =
 1 2 3
 2 3 4
 3 4 5
 4 5 6
»A^(-1) % compute the inverse of A
??? Error using ==> ^
Matrix must be square.

»mean(A) % compute the mean (of each column) of A
ans =
 2 3 4 5
»trace(A) % compute the trace of A
ans =
 9
»norm(A) % compute the norm of A
ans =
 13.0112

Consider the problem of finding the solution to the system of equations

.

This system can be written in the matrix/vector form

,

and we can easily solve for the unknown vector x in MATLAB as follows:

3x 2y– z+ 0=

2x– 3z u v–+ + 2=

2y z 4u 5+–+ 0=

x y z u 6–+ + + v–=

u 6v+ 3=

3 2– 1 0 0

2– 0 3 1 1–

0 2 1 4– 0

1 1 1 1 1

0 0 0 1 6

x

y

z

u

v

0

2

5–

6

3

= Ax⇔ b=

MATLAB: a Brief Introduction

© R. L. Rankin R - 20 2/10/97

»A = [3 -2 1 0 0 % separate columns by spaces and
 -2 0 3 1 -1 % rows by carriage returns
 0 2 1 -4 0
 1 1 1 1 1
 0 0 0 1 6]
A =
 3 -2 1 0 0
 -2 0 3 1 -1
 0 2 1 -4 0
 1 1 1 1 1
 0 0 0 1 6
»b = [0; 2; -5; 6; 3]
b =
 0
 2
 -5
 6
 3
»x = A \ b % the left division operator is used to solve systems
x = % the solution vector
 1.0468
 1.8799
 0.6193
 2.3448
 0.1092
»A * x % check to see if A * x is equal to b
ans =
 0
 2
 -5
 6
 3

These examples illustrate some of the basic operations that can be used on vectors and matrices in
MATLAB. Examine the help files and demos to see others.

	R.1 - Introduction to MATLAB
	R.1.1 - Desktop Calculations
	R.1.2 - Constants and Variables
	R.1.3 - Operators in MATLAB
	R.1.4 - Built-in Math Functions in MATLAB
	R.1.5 - Formatted Output
	R.1.6 - The Diary Command

	R.2 - Storing Files Created by MATLAB
	R.3 - Printing MATLAB Plots
	R.4 - Writing Programs and Functions in MATLAB
	R.4.1 - Input and Output in MATLAB
	R.4.2 - Functions in MATLAB

	R.5 - MATLAB Control Structures
	R.5.1 - The for Loop
	R.5.2 - The if Statement
	R.5.3 - The While Loop
	R.5.4 - Reading and Writing Data

	R.6 - Vectors and Matrices

