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Abstract. Using the Gauss-Seidel projection method developed in [4] and
[17], we simulate the three dimensional domain wall structures for thin films at
various thickness. We observe transition from Néel wall to cross-tie wall and
to Bloch wall as the thickness is increased. Periodic structures for cross-tie
wall are also studied. The results are in good agreement with the experimental
observations. Hysteresis loops are calculated for samples of various sizes. In
particular, we study the effect of cross-tie wall in the switching process. These
simulations have demonstrated high efficiency of the Gauss-Seidel projection
method.

1. Introduction. Numerical simulation based on Landau-Lifshitz-Gilbert model
has become an important tool in the study of both static and dynamic issues in
ferromagnetic materials [1, 2, 5, 7, 10, 12, 13, 14, 18]. In the simulation of the
magnetization reversal process, it is important to be able to resolve the different
small length scales involved, in particular, magnetic domain walls, and magnetic
vortices, since they play important roles in the switching process [16, 15]. Such
a simulation demands high accuracy and efficiency of the method being used. It
is well known that the most expensive part of the simulation is the calculation
of demagnetization field (or stray field). The Fast Fourier Transform can be easily
used to speed up the calculation [19] when the sample shape is of rectangular shape.
Another difficulty in the simulation is the severe time step constraint introduced
by the exchange field when standard explicit integrators (like Runge-Kutta scheme)
are used. The time integration can be speeded up by using implicit scheme in time
(with much larger time step). However, direct implicit integrators require solving
complicated, coupled systems. In [4] and [17], we introduce an implicit method
whose complexity is comparable to solving the scalar heat equation implicitly. This
method is based on a combination of a Gauss-Seidel implementation of a fractional-
step implicit solver for the gyromagnetic term, and the projection method for the
heat flow of harmonic maps. The method is shown to significantly speed up the
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simulation and allows us to carry out fully resolved calculations for the switching
of the magnetization in micron-sized elements in a two dimensional setting [17].

The transition from Néel wall to cross-tie walls for ferromagnetic thin films has
been observed experimentally [9]. Because of the complicated three dimensional
wall structure, the problem still form a challenge to theoretical analysis, although
significant progresses are made in [20] [21]. First numerical results [12], as well
as some later calculations [8], confirm the experimentally observed picture. But
the calculations are so far limited to patterns with a small period, and also the
achievable discretization is probably insufficient for the fine structure analysis.

With tremendous improvement in efficiency by the Gauss-Seidel projection method,
we are now able to carried out full three dimensional simulations of ferromagnetic
thin film with large sample size and with increasing thickness as well as bulk ma-
terials. We observe transition from Néel wall to cross-tie wall and to Bloch wall as
the thickness of the film is increased, a phenomenon observed in the experiments.
We also study how the periodic structure of the cross-tie walls depends on the di-
mensions of the sample. Hysteresis loops are also calculated with fine resolution of
external fields.

The paper is organized as follows. In section 1, we described the Landau-Lifshitz-
Gilbert model that we used. The Gauss-Seidel projection method is described in
section 2. We then present the numerical results in Section 3.

2. The Landau-Lifshitz-Gilbert model. The relaxation process of the magne-
tization distribution in a ferromagnetic material is described by the Landau-Lifshitz
Equation [3, 11],

Mt = −γM×H− γα

Ms
M× (M×H) (2.1)

where |M| = Ms is the saturation magnetization, and is usually set to be a constant
far from the Curie temperature. The first term on the right hand side is the gyro-
magnetic term, with γ being the gyromagnetic ratio. The second term in the right
hand side is the damping term, with α being the dimensionless damping coefficient.
H is the local field, computed from the Landau-Lifshitz free energy functional:

H = − δF

δM
(2.2)

F [M] =
1
2

∫

Ω

{
Φ

(
M
Ms

)
+

A

M2
s

|∇M|2 − 2µ0He ·M
}

dx +
µ0

2

∫

R3
|∇U |2 dx (2.3)

In (2.3), A is the exchange constant, A
M2

s
|∇M |2 is the exchange interaction energy

between the spins, Φ( M
Ms

) is the energy due to material anisotropy, µ0 is the perme-
ability of vacuum (µ0 = 4π× 10−7N/A2 in the S.I.), −2µ0He ·M is the energy due
to the external applied field, Ω is the volume occupied by the material, and finally
the last term in (2.3) is the energy due to the field induced by the magnetization
distribution inside the material. This induced field Hs = −∇U can be computed
by solving:

∆U =
{ ∇ ·M in Ω

0 outside Ω (2.4)

together with the jump conditions

[U ]∂Ω = 0[
∂U

∂ν

]

∂Ω

= −M · ν (2.5)
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at the boundary of the domain Ω. In (2.5) we denote by [v]∂Ω the jump of v at
boundary of Ω:

[v]|∂Ω (x) = lim
y→x

y∈Ω̄c

v(y)− lim
y→x

y∈Ω

v(y)

The solution to equation (2.4), with boundary conditions (2.5) is:

∇U(x) = ∇
∫

Ω

∇N(x− y) ·M(y) dy (2.6)

where N(x) = − 1
4π

1
|x| is the Newtonian potential.

The gyromagnetic term in the Landau-Lifshitz equation (2.1) is a conservative
term, whereas the damping term is dissipative.

3. The Gauss-Seidel projection method. The full Landau-Lifshitz equation
(3.7) can be rewritten in dimensionless form. Let H = Msh, Hs = Mshs, He =
Mshe, M = Msm, t → (µ0γ Ms)−1t and x → Lx, we can write (3.7) as,

mt = −m× h− αm× (m× h) (3.7)

where
h = −Q(m2e2 + m3e3) + ε∆m + hs + he

Here we have defined the dimensionless parameters Q = Kµ

µ0M2
s
, and ε = A

µ0M2
s L2 .

For our splitting procedure, we define the vector field:

f = −Q(m2e2 + m3e3) + hs + he

We solve equation

mt = −m× (ε∆m + f)− αm×m× (ε∆m + f)

in three steps (see [4] [17] for details):
Step 1: Implicit Gauss-Seidel

gn
i = (1− ε∆t∆h)−1(mn

i + ∆tfn
i ),

g∗i = (1− ε∆t∆h)−1(m∗
i + ∆tfn

i ), , i = 1, 2, 3;



m∗
1

m∗
2

m∗
3


 =




mn
1 + (gn

2 mn
3 − gn

3 mn
2 )

mn
2 + (gn

3 m∗
1 − g∗1mn

3 )
mn

3 + (g∗1m∗
2 − g∗2m∗

1)


 (3.8)

Step 2: Heat flow without constraints.

f∗ = −Q(m∗
2e2 + m∗

3e3) + hn
s + he




m∗∗
1

m∗∗
2

m∗∗
3


 =




m∗
1 − α∆t(ε∆m∗∗

1 + f∗1 )
m∗

2 − α∆t(ε∆m∗∗
2 + f∗2 )

m∗
3 − α∆t(ε∆m∗∗

3 + f∗3 )


 (3.9)

Step 3: Projection onto S2.



mn+1
1

mn+1
2

mn+1
3


 =

1
|m∗∗|




m∗∗
1

m∗∗
2

m∗∗
3


 (3.10)
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Figure 1. Magnetization field for xy bottom surface (left column)
and yz cross sections (right column) along the center line for film
of size 240nm×480nm with increasing thickness 7.5nm, 30nm and
60nm. Here and in the following figures, the in plane magnetization
field components is represented by arrows and the out of plane
component is represented by grey scales
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4. Computation of magnetostatic field. In this section, we describe how to
evaluate efficiently the magnetostatic field −∇u. This field is nonlocal and is for-
mulated as a Helmholtz decomposition in the entire space. There have been two
different approaches to evaluating this field. The first is to truncate the entire space
to a finite size domain. The difficulty with this approach is the lack of an effective
boundary condition for U . The second class of method is based on using (2.6) to
compute the stray field [18][2][19].

From (2.6), we have

Hs =
1
4π
∇

{∫

V

∇ ·m(r′)
|r− r′| dr′ −

∫

∂V

m(r′) · n
|r− r′| dS(r′)

}
. (4.11)

where n is the outward normal direction of the material surface.
Now we consider ferromagnatic cuboid. By dividing the material V into cells

Vijk such that

Vijk = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [zk−1/2, zk+1/2]

with xi = idx and xi±1/2 = (i± 1/2)dx, etc, one has

V =
∑

i,j,k

Vijk.

In each cell Vijk, the computation point is located at the cell center (xi, yj , zk) and
m is regarded as a constant. Therefore the integral of divergence vanishes. For one
observing point rijk = r(xi, yj , zk), the stray field can be approximated by

Hs(rijk) =
1
4π

∑
p,q,r

∫

∂Vpqr

rijk − r′

|rijk − r′|3 m(r′) · n dS(r′). (4.12)

Or in componentwise, one has


Hx(xi, yj , zk)
Hy(xi, yj , zk)
Hz(xi, yj , zk)


 =

∑
p,q,r




Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz




xi−p,yj−q,zk−r




mx(xp, yq, zr)
my(xp, yq, zr)
mz(xp, yq, zr)


 ,

(4.13)
Note that each element in the demagnetization tensor can be calculated analytically
and only depends on (xi−p, yj−q, zk−r), which enables us to implement FFT to
compute the stray field.

5. Numerical results. The transition from Néel wall to cross-tie wall for fer-
romagnetic thin films was observed experimentally [9]. Because of complicated
three dimensional wall structure, the problem still forms a challenge to theoreti-
cal analysis, although theoretical results concerning the structure and the internal
length scale of the cross-tie wall have appeared recently [20][21]. For the same
reason, numerical simulations are limited by resolutions in the three dimensional
simulations. With tremendous improvement in efficiency by our Gauss-Siedel pro-
jection method, we are able to simulate this transition with increasing thickness of
the film. The simulation parameters used include exchange constant A = 2.1−11

J/m, saturation magnetization Ms = 1.71 × 106 ampere/m, anisotropy constant
Ku = 4.6 × 104 J/m3, gyromagnetic ratio γ = 1.76 × 1011 T−1s−1 and Gilbert
damping constant α = 0.1. In all our runs, the space resolution is chosen to be
∆x = ∆y = ∆z = 3.75nm and time step δt = 2picosecond. A typical run costs a
few hours of CPU time. For example, runs in first column in Table 1 cost 1.82 cpu
hours on a 2.5 GHz Linux PC.
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Transition from Néel wall to cross-tie wall and asymmetric Bloch wall
We simulate the rectangular thin film of size Lx × Ly × Lz = 240 × 480 × d

nm3 with increasing thickness. Fig. 1 shows the remanent magnetization fields
for bottom surface and yz cross section along the center line for three different
thickness d = 7.5, 30 and 60nm. The initial state is an uniform Néel structure,
i.e. m = (0, 1, 0) for 0 < x < Lx/2 and m = (0,−1, 0) for Lx/2 < x < Lx. For
d = 7.5nm, we observe an equilibrium state with flux closure structure defined by
four 90o Néel walls connecting a vortex. The yz cross section indicated that the
magnetization field is uniform in the thickness direction.
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Figure 2. Bloch walls aross the vortices and Néel walls away from
the vortices for the 30nm case.
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When the thickness is increased to d = 30nm and 60nm, we observe a cross-tie
state composed of four 90o Néel walls and one 180o wall with cross-tie structures con-
sisting of two circular swirls separated by one cross swirl. Notice that for d = 30nm
the magnetization field is still uniform in the thickness direction and we observe
symmetric Néel walls away from the vortices and the Bloch walls across the center
of the vortices (see Fig. 2). In the case of thicker film of 60nm, the magnetization
field is no longer uniform in the thickness direction. Internal structure appears as
shown in Fig. 1. In this case, the asymmetric Bloch wall appears in the form of
vortex with ’Néel’ caps on the surfaces, as shown in Fig. 3. As one moves along the
wall, the vortex moves from one side to the other side with a symmetric Bloch wall
in between.
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Figure 3. Bloch walls aross the vortices and vortex walls away
from the vortices for the 60nm case.

When d = 60nm and d = 120nm (grid 64 × 128 × 16. In Fig. 1, 4), we still
observe the cross-tie wall structure at the bottom surface. But we see non-trivial
structure in yz cross sections and cross-tie structure disappears as one moves up
to the top surface. Internal vortices are also shown in the yz cross sections. If the
thickness is further increased to d = 240nm, Bloch wall is clearly seen in xz cross
section (Fig. 4).

Hysteresis

To study how the cross-tie wall affects the switching process, we calculate the
hysteresis loop for a thin film of thickness d = 7.5nm and d = 30nm. To simulate
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Figure 4. This figure shows magnetization field in bulk material.
The top row is for sample of size 240nm × 480nm × 120nm. Left:
bottom surface; Right: yz cross section. The lower row is for sam-
ple of size 240nm× 480nm× 240nm. Left: bottom surface; Right:
xz cross section which displays an asymmetric Bloch wall.

the hysteresis loop, we calculate the equilibrium magnetization for each value of
a varying applied field. The external field is in the x (short axis) direction. The
maximum field applied are ±2.5× 104Oe. The field increment is 103Oe. Therefore
a total of 100 fields are used for the whole loop.

1. Hysteresis for a 7.5nm thick film sample
Figure 5 shows the hysteresis loop and intermediate vortex states corresponding

to the field with red ? in the loop. There seems to be a switching asymmetry. The
switching field is about −1000Oe at the left end of the loop when the vortices are
expelled. However, it take much large field, about 1500Oe, to drive out the vortices
on the right end of the loop.
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2. Hysteresis for a 30nm thick film sample
Fig.6 shows the hysteresis loop and intermediate vortex and cross-tie states dur-

ing the first switching from right to the left and corresponding to the field with
circle in the loop. The sample displays near zero remanence and coercivity when
the external field is small. Hysteresis happens only for large field. It clearly shows
that cross-tie wall is responsible for this type of behavior. As the positive field is
decreased, a vortex is first nucleated. When the field is close to zero, cross-tie wall
is formed. When the negative field is increased, the top vertex is pushed down and
collide with the cross swirl and then they both disappear. The lower vortex is then
pushed out of the sample as the reversal is completed.

3. Hysteresis for a cylindric sample
Figure 7, 8 show the hysteresis loop and intermediate states for a cylindric sample

of size 30× 30× 120 nm3. A vortex is nucleated as an applied field is applied, the
vortex propagates along the cylinder as the applied field is increased. Eventually
the vortex is driven out of the cylinder for a strong enough field and switching is
completed.

Periodic structure for the cross-tie walls
To see how the cross-tie structure depends on the size of the sample, we carried

out a series of runs for samples of different sizes and with increasing thickness. The
simulations show periodic structure for the cross-tie walls when the sample is large
enough and the thickness is in certain range. We summarize the results in Table
1 and the magnetization fields are displayed in Fig. 9, 10 and 11. We consider
samples of three different sizes starting with 120nm× 480nm and then double the
size in each direction. In each case, we look at how the structure changes as the
thickness is increased by counting the number of cross-tie observed and measuring
the width (or the period) of the cross-tie. The results in Table 1 agree with the
experimental observations (Fig. 5.59 in [9]) in that the width (w) (or period) of the
cross-tie wall decreases as the thickness (d) of the sample increases. The results in
Table 1 also suggest that w will not change as the sample size is increased in the
direction parallel to the wall (the y direction in our case). Therefore the number
of the cross-tie will increase. However, if the sample is enlarged in the direction
perpendicular to the wall (i.e. from 120nm to 240nm in the x direction), the width
w of the cross-tie will increase. Another observation from the results in Table 1
is that the transition thickness d is also sample size (x dimension) dependent. For
samples with Lx = 120nm, the transition from the cross-tie wall to Bloch wall starts
before d = 30, while for samples with Lx = 240nm, this transition happens after
d = 30nm.

Table 1. The number (n) and the width (w) of the cross-tie walls
for different sample sizes (all lengths are in nanometer)

sample size sample size sample size
120× 480× d 120× 960× d 240× 960× d

d=15nm n=1, w=200nm n=4, w=200nm n=2, w=300nm
d=20nm n=3, w=100nm n=8, w=100nm n=2, w=250nm
d=30nm transient state transient state n=4, w=160nm
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Figure 5. Hysteresis loop for 7.5nm thick film of size 240nm ×
480nm. Three intermediate states (from left to right and up and
down) correspond to the red dots numbered 1-3 in the hysteresis
loop.

6. Conclusions. In summary, we have implemented the Gauss-Siedel projection
method in three dimensions for micromagnetic simulations based on Landau-Lifshitz-
Gilbert system. We simulated the three dimensional domain wall structures for thin
films and bulk materials. The transitions from Néel wall to cross-tie and Bloch wall
are observed which agree with the experimental resutls. Periodic structures of the
cross-tie walls are studied. The width of the cross-tie is shown to decrease with the
thickness of the film but increase with the size in the direction perpendicular to the
domain wall. The effect of cross-tie wall in the switching process is also shown in
the hysteresis loop.
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Figure 6. Hysteresis for 30 nm thick film of size 240nm×480nm.
Five intermediate states (from left to right and up and down) cor-
respond to the circle numbered 1-5 in the hysteresis loop.
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tom surface (left column) and xz cross section (right column).
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Figure 9. The magnetization field for sample size 120nm×480nm
and increasing thickness d = 15, 20, 30nm. Left: bottom surface;
Right: yz cross section.
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Figure 10. The magnetization field for sample size 120nm ×
960nm and increasing thickness d = 15, 20, 30nm. Left: bottom
surface; Right: yz cross section.
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Figure 11. The magnetization field for sample size 240nm ×
960nm and increasing thickness d = 15, 20, 30nm. Left: bottom
surface; Right: yz cross section.


