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We perform spin-dynamics (SD) simulations to study the field induced incommensurate-to-commensurate
phase transition for the spiral antiferromagnet Ba,CuGe,0O-. Under an increasingly applied magnetic field, we
find that the system undergoes a transition from a two-dimensional (2D) spiral state to a spin-flop state, passing

through an intermediate phase. The simulations identify two order parameters to characterize this phase tran-
sition, of which one is the spiral period known previously, another is the root-mean-square value of a spin
component. For the 2D spiral phase identified previously, our SD simulations yield essentially the same spin
structures as previous continuum-field model studies when the applied field is very small, but quantitative
differences exist when the field is nor small. For the intermediate phase which was not fully understood by
previous studies, our simulations reveal that its spin structure is a soliton-like state consisting of two spin-flop

states connected by a three-dimensional spiral state.
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I. INTRODUCTION

Due to the extremely weak interlayer coupling,
Ba,CuGe,05 is essentially a two-dimensional (2D) spin sys-
tem with an antiferromagnetic nearest-neighbor coupling and
a Dzyaloshinskii-Moriya (DM) anisotropy.' In the absence
of an external magnetic field, the ground state of
Ba,CuGe,0; is a 2D spin spiral (i.e., S; confined in a plane)
with a well-defined spin-wave spectrum, resulted from a
competition between the exchange coupling and the DM an-
isotropy. When an external magnetic field was applied per-
pendicular to the plane, Zheludev et al. observed experimen-
tally that the ground state remained as an incommensurate
spiral-like one when H <H(Cl), but became a commensurate

spin-flop one when H >H(Cz).4 Located in between the spiral
and the spin-flop phase (i.e., Hil)<H< Hﬁ,z)) is an interme-
diate phase whose nature is not clear from the
experiments.*® These intriguing properties have attracted
much attention theoretically.’ Based on a continuum-field
model with parameter values extracted from experiments, the
same group performed theoretical calculations to confirm
that the ground state is indeed a spin spiral at a low field, and
computed the spin-wave spectrum at H=0.% They also pro-
posed that the intermediate phase might be a soliton lattice.®
Recently, Chovan et al. studied the same problem with a
more delicate field theory based on a nonlinear ¢ model,
with which they could obtain the spin-wave spectra with an
arbitrary H in both the spiral and the spin-flop phases.'® The
spin-wave analysis by Chovan et al. also reinforced the ex-
istence of an intermediate phase when H(Cl) <H <H£2), since
neither the spiral nor the spin-flop state was stable in that
region.'” However, the exact configuration of this intermedi-
ate phase could not be deduced from the spin-wave
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analysis.'” The authors only suggested that a nonflat spiral
was energetically more favorable when Hil) <H< HE‘Z), and a
vortex state had a lower energy than a spin-flop state as H
<H(C2).10 It is thus our understanding that the nature of this
intermediate phase is not yet completely clear.

The aim of the present paper is to study exactly how the
spin configuration develops from a spin-spiral state to a spin-
flop state as the applied field increases. In particular, we want
to reveal the spin configurations in the intermediate phase. In
contrast to previous theories, which were all based on mini-
mizing the energy functions of some continuum-field mod-
els, here we apply the spin-dynamics (SD) simulations'! on
the realistic discrete spin lattices. For the present system, the
spiral period at H=0 is about 36 times longer than the lattice
constant (denoted by a in the following), so that the applica-
tion of a continuum-field model is well justified in the low
field region. However, as H increases, the spin direction may
vary drastically in some situations so that the validity of a
continuum-field model should be carefully reexamined. In
contrast, the SD simulation is a highly reliable approach to
search for the ground state of a complex spin system. Thus,
in addition to providing information of the intermediate
phase, our brute-force simulation results can also serve as
some sort of justification of previous calculations based on
continuum-field models.

The present paper is organized as follows. In Sec. II, we
describe the adopted Hamiltonian for the system
Ba,CuGe,04, and the SD simulation approach. Section III is
devoted to the discussion of the results, which include a
complete description of how the spin configuration develops
as the applied field increases, illustrations of typical spin
configurations in three phase regions, and detailed compari-
sons with previous theories and experiments. We then sum-
marize our results in Sec. IV.
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II. HAMILTONIAN AND THE SPIN-DYNAMICS
SIMULATION

Following Ref. 8, the Hamiltonian of Ba,CuGe,0; is
taken as

H=H® + HOW 1 KSEA) 4 (), (1)

where

-

H(E) = E J(§nm : §n+l,m + §n,m : Sn,m+l) (2)

n,m

represents the Heisenberg antiferromagnetic exchange inter-
action with /=0.96 meV and the summation runs over all
sites [denoted by (n,m)] in the 2D lattice. The second term
denotes the DM anisotropy !

HOW = 3 DI(S, X Surt )y + S X Syme)ds (3)

n,m

where D=0.1774J, taken from Ref. 10. The third term,

H(KSEA) E Z(Sl\; mSiV1+l m + S Sn m+l) (4)

is the KSEA anisotropy term.® The last term

H(Z) == g/'l’BHE SIZI,m (5)

describes the Zeeman interaction with an external field along
the z axis, where H is the strength of the magnetic field, ug
is the Bohr magneton and g=2.474 is the gyromagnetic
ratio.”1°

We apply the classical SD simulation to search for the
ground state of the system. Within this approach, the evolu-
tion of the classical spin vectors is described by the Landau-

Lifshitz equation'>!3
as, . - -
- == Sn,m >< n.m ’ySn m >< (S” m X Fn m) (6)

dt

where I:”,,,m is the local force experienced by a spin at lattice
(n,m), which can be derived from the Hamiltonian by

+ S it S + 5,

. SH n+1m n,m—1
Fpm=- 5 I St S lm+Snm+l+S
Sn,m n+l m+S +Sn m+1 +Snm 1
Sfl ILm ™ fl+1,m
-D Slz1m+1 Sflm 1
2+lm n—1,m Snm 1 Sx,m+l
2 Sﬁm+1+snm 1 0
~57 Sy tm+ Sy | +H|O [ (7)
0 1

The second term in (6) is a damping term with 7y as a param-
eter. This term helps the system relax quickly to a steady
state, but does not affect the structure of the obtained state.
We took y=0.5 in all our calculations. For a fixed external
field H, we assume a random initial spin distribution and
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FIG. 1. (Color online) Part of spin configuration obtained by SD
simulations (bars) at H=0, compared with the analytical results
based on the continuum-field model (dashed line). Here the SD
simulations were performed on a 370 X 8 lattice.

then iteratively solve Eq. (6) by the fourth order Runge-
Kutta and Gauss-Seidel projection method.!'*!> To minimize
the risk of falling into a local minimum state, we used, for
each case, several different random initial configurations and
selected the true ground state by comparing the energies of
the obtained states. The SD simulations have to be performed
on a finite system. We note that the problem is essentially
one dimensional in most situations. In order to save compu-
tational power, we modeled the system by 2M chains (placed
along the x direction) each containing 2N sites (N> M). This
approximation will be justified later by checking the conver-
gence of the obtained results against varying N and M. We
adopted periodic boundary conditions for the y direction—
Sp1=Snome1> n=1,2,...,2N—and the free boundary condi-
tion for the x direction—S, ,,=Soy41,,=0, m=1,2,...,2M.
By doing so, we actually only allow the spin spiral to propa-
gate along the x direction. We thus save huge computational
resources and make the simulations more tractable.

As a benchmark test, we compare our simulation result
with the available analytical solution at H=0. In the analyti-
cal approach, we assume the spin configuration as an ideal
spiral

Sy = (— 1)"™" sin(gna + ¢), S, =0,

Sy = (=1)"" cos(gna + ¢), (8)

with ¢ as a parameter to be determined. Putting the above
Ansatz to the energy function Eq. (1), we can determine the
parameter g by minimizing the energy function, JH/dg=0,
which leads to the following equation:

D
=a”! tan_l(—>. 9
q I 9)
The period of the spiral can then be calculated by
2m 2ma
=——=——. (10)
g tan"'(D/J)

The dashed line in Fig. 1 shows the envelope of the analyti-
cal solution Eq. (8). We then perform SD simulations to
search for the ground state configuration at H=0. We have
used several different initial spin configurations and found
that the obtained final states were essentially the same. The
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FIG. 2. (Color online) The incommensurability parameter ¢,
which is the inverse of the translation-invariant period, as a function
of the external magnetic field H, obtained by SD simulations with
various lattice sizes, by continuum-field model calculations, and by
experimental measurements.

obtained state is a 2D spin spiral traveling along the x direc-
tion, with S confined completely in the xz plane (i.e., S =0).
The spins in adjacent chains are perfectly antiparallel, and
the period of the spiral is ~36a, which is consistent with
experiments and previous theories. To compare with the ana-
lytical solution, we depict the x component of the spin vector
(8") as a function of the lattice site for one particular chain in
Fig. 1 as solid bars. Obviously, the SD result is in excellent
agreement with the analytical solution.

III. RESULTS AND DISCUSSIONS

Encouraged by the excellent agreement obtained at the
zero H case, we continue to study the ground states at non-
zero H fields. Both experiments and previous theories indi-
cated that the ground state remained like a spiral with a pe-
riod enlarged by the magnetic field.*~® However, the role of a
magnetic field is far more intriguing than just changing the
period. Let us first assume that the ground state at a nonzero
H is still an ideal spin spiral as described by Eq. (8), but with
a different period [determined by ¢ via Eq. (10)], then the
Zeeman term becomes

HD =— gugHY, S = gupH Y, (= 1)™" cos(gna + ¢).

(11)

In an infinitely large system, the above term is exactly zero
independent of the period, implying that the information of
H does not enter the treated problem at all. This suggests that
the ground state at a nonzero H field is not an ideal spin
spiral.

The SD simulations can take account of the Zeeman in-
teraction in an automatic manner, without any assumptions
other than the finite sample size. After some efforts, we have
successfully obtained the ground states at arbitrary H cases
through the SD simulations. In accordance with previous
studies, we take ¢, the inverse of the spiral period, as an
order parameter to describe this incommensurate-to-
commensurate phase transition.*~31%1¢ Figure 2 depicts { as
a function of H obtained through our SD simulations per-
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FIG. 3. (Color online) The root-mean-square values of three

spin components (S}, ., S% .85 ) as the functions of H.

formed on systems with different N and M. The good agree-
ments among different simulation results indicate that the
finite-size effects are well controlled. We then compare our
results with experimental*~® and previous theoretical results,
which were obtained by assuming that the ground state is a
flat spiral’ or a nonflat spiral.'” Our results show that the
ground state is indeed a spiral-like state as H< H(l
=1.65T, is a spin-flop state as H>H )=2.79 T, and the
order parameter { decreases as H increases. We also find an
intermediate phase (i.e., H£1)<H <H(Cz)) in which the spin
configuration is neither a spiral nor a spin-flop state. The
lower critical field H(l) 1.65 T is in excellent agreement
with both the expemment8 (~1.7T) and the spin-wave
analysis'® (1.7 T). The upper one, HE =2.79 T, lies in be-
tween the values suggested by the experiment® (~2.2 T) and
the spin-wave analysis'® (~2.9 T). All these features are
well consistent with experimental observations.*~8 However,
we note that the quantitative agreement with the experimen-
tal data is not very good, especially in the high magnetic
field regime. At present, we have not yet sorted out the exact
reason accounting for such discrepancy. We suspect that the
thermal fluctuations in the experiments and the ambiguities
in determining the value of J in the adopted Hamiltonian (1)
are possibly responsible for this inconsistency.

The SD simulations show that the intermediate phase can

be identified through a new order parameter S, .=/ (S” )2 the
root-mean-square (rms) value of the spin component along
the y direction. From the SD simulated spin configurations,
we calculated SfmsS:ms and S¢ as the functions of H and
show the results in Fig. 3. While the spin vectors are com-
pletely confined in the xz plane (i.e., $=0 for all sites) in
both the spiral and the spin-flop states, clearly the interme-
diate phase is characterized by the appearance of S”.

We now illustrate the spin configurations in each phase
region and show how the spin configuration evolves as H
increases. The solid bars in Fig. 4(a) denote the projected
spin configuration for H=1.55 T. Compared with an ideal
spiral with the same period [dashed line in Fig. 4(a)], we find
the obtained spin configuration is no longer an ideal spiral,
but rather a distorted one with more spin components lying
along the x axis (see also Fig. 3). We also calculated the spin
configuration employing the continuum-field model'® under
exactly the same H field and show the result in the same
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FIG. 4. (Color online) (a) Part of the spin configuration obtained
by SD simulations (bars) in the case of H=1.55 T, compared with
those obtained by continuum-field model calculations (solid sym-
bols) and the ideal spiral solution (dashed line). (b) Angle difference
between adjacent staggered spin vectors, A¢, as a function of the
lattice site at H=1.55 T (symbols) and H=0 (line). (c) The maxi-
mum angle difference (A¢y,,,) as a function of the H field. Here the
SD simulations were performed on a 370 X 8 lattice.

figure by solid symbols. The comparison between the SD
result and the model one shows that surprisingly quantitative
differences exist between the two configurations, and even
the periods are different in the two cases. To explore the
underlying physics, we computed the angle differences be-
tween two adjacent staggered spin vectors, Agp,=d,.1— P,
+ 1, and depict A, as a function of lattice site n in Fig. 4(b).
As a reference, we also show the A¢,~n relation for the
case of H=0 in the same figure as a solid line. Here, we have
omitted the index m for the sake of simplicity. It is interest-
ing to note that A¢, has an odd-even oscillation when H
#0, in consistency with previous continuum-field model
analysis.”! More interestingly, we notice that, whereas, in
the case of H=0, A¢, is uniform and is a small quantity
(~10°) everywhere; in the case H=1.55T, A¢, could be
quite large (>20°) at some lattice sites. This tendency is
more significant as H increases, as shown in Fig. 4(c), where
the maximum angle difference A, is depicted as a function
of H. Since the continuum-field approximation is justified
only when the spin direction has a slow spatial variation, we
conclude here that the continuum-field model becomes less
accurate as H increases, particularly when approaching the
intermediate phase when the spiral is distorted too much.
The spiral is distorted more and more as H increases.
Finally, when H >H )=1.65 T, just distorting a 2D spiral is
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FIG. 5. (Color online) 3D view of spin configuration obtained
by SD simulations at H=2.57 T. The calculations were performed
on a 370 X § lattice, and here we only depict the spin configuration
along one chain.

not enough to relax the effect of the H field. The system then
enters the intermediate phase. Figure 5 shows a three-dimen-
sional (3D) view of the spin configurations in the case of
H=2.57 T, which is a typical example inside the intermedi-
ate phase. Obviously, the ground state is now a mixing of a
spiral, located in the middle, and two spin-flop states located
in two boundaries. In addition, the spiral is no longer a 2D
one, but becomes a 3D one signaled by the appearance of S”
component.

To gain a better understanding, we show the projected
spin configurations for three spin components in Figs.
6(a)-6(c), respectively. The pattern of S* [Fig. 6(a)] mani-
fests clearly that the ground state is a soliton, which links
two spin-flop states by a 3D spiral state. The fact that the
spiral is 3.5 periods long suggests that the two spin-flop
states must be out of phase. This is a very typical feature of
a standard soliton solution.!”

It is interesting to note that the S* components are greatly
suppressed in this state, and those missing S° components are
transferred to the $¥ components. In fact, the H field has a
very subtle effect on the spin polarization along the z direc-

FIG. 6. (Color online) Projected spin configurations for three
spin components at H=2.57 T.
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FIG. 7. (Color online) 3D view of the spin configuration ob-
tained by SD simulations with H=2.75 T. The calculations were
performed on a 370X 8 lattice, and here we only depict the spin
configuration along one chain.

tion. A naive understanding from the Zeeman interaction (5)
suggests that a H field should favor a large S° value. How-
ever, things are quite different and complicated in such a
frustrated spin system. In the absence of a H field, the ground
state is a spiral so that the spin components along the x and
z directions are equal (see Fig. 3). When H is large enough to
destroy the spiral state, but not enough to compete with the
antiferromagnetic exchange J, the competition between H
and J results in a spin-flop state in which the spins are almost
parallel to the x axis leaving some components along the z
direction (see the spin-flop regime in Fig. 3). Thus, quite
contrary to an intuitive expectation, the effect of a H field is
to suppress S° value in this situation. From Fig. 3, we have
seen precisely that the S° component decreases through dis-
torting a usual spiral state as H increases in the spiral regime.
However, when H is so large that just distorting a spiral is
not enough to reflect this tendency, the appearance of §”
component is another choice to decrease the S* component.
This is the inherent physics accounting for the appearance of
a 3D spiral in the intermediate phase.

As H increases, the total length of the 3D spiral regime in
the soliton shrinks so that the spiral period decreases slightly
(¢ increases slightly accordingly). However, when H in-
creases to some specific points, the 3D spiral loses one pe-
riod abruptly, resulting in a sudden increase of the spiral
period (and thus a sudden decrease in {). For the specific
example shown in Figs. 5 and 6, the spiral loses a period
abruptly and transits to a 2.5-period state at H=2.62 T. This
process continues as H increases, until H:HE,Z) when the
system departs from the intermediate phase and enters the
spin-flop phase. Figure 7 shows a 3D view of the spin con-
figuration at H=2.75 T (e.g., right before the phase transi-
tion). From the projected spin configuration for $* shown in
Fig. 8(a), we find that the spiral regime has only 0.5 period.
The half period is the precise requirement to ensure that the
two spin-flop states are out of phase.!” When H increases
further, such a soliton configuration cannot be sustained, and
the system then transits to a purely commensurate spin-flop
state.

We emphasize that this step-like -H relation is a typical
feature of a finite-sized system. However, we expect the {-
H relation will become smooth in a realistic experiment,
since the studied system is much larger and thermal fluctua-
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FIG. 8. (Color online) Projected spin configurations for three
spin components at H=2.75 T.

tions are inevitable to smear all step-like features.

Although the results shown in Figs. 5-8 were all obtained
with a relatively short sample (length=370a), we note that
the qualitative conclusions drawn here (i.e., soliton, 3D spi-
ral, the intermediate phase, etc.) are independent of the
sample length. For example, we show, in Fig. 9, the pro-
jected spin configuration at H=2.57 T, calculated with a
longer sample (length=1480a). Obviously, the ground spin
configuration is still a soliton with a 3D spiral located in
between two spin-flop states. This conclusion remains valid
for even longer samples (up to length=3000a, according to
our computations). To make the whole story complete, we
have calculated the size dependences of the two critical
fields, H(cl) and H(Cz), and have shown the results in Fig. 10.

The fact that Hil) and Hiz) are nearly independent of the
sample size indicates that the intermediate phase is an intrin-
sic property of the system, rather than a finite-size artifact.

IV. SUMMARIES AND CONCLUSIONS

With the help of SD simulations, we have presented here
a systematic study of the field-induced incommensurate-to-
commensurate phase transition for the spiral antiferromagnet

»n 0

Spiral
Spin—ﬂop-§>
1000 1480

‘0'54: Spin-flop
0 500

FIG. 9. (Color online) Projected spin configuration along the x
direction at H=2.57 T calculated on a 1480 X 8 lattice.
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FIG. 10. (Color online) Critical fields (Hil) ,Hiz)) as the func-
tions of the sample length adopted in the SD simulations.

Ba,CuGe,0O5. Our results confirmed the 2D spiral-like spin
configuration in the low field regime and the spin-flop states
in the high field regime, which have been understood by
previous experiments and continuum-model theories. What
is unclear from previous studies is the nature of the interme-
diate phase, which has been revealed by our simulations as a
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soliton-like solution linking two spin-flop states by a 3D spin
spiral. The appearance of S” is identified as a crucial charac-
ter of the intermediate phase. Moreover, we have illustrated
the complete process of how the spin configuration develops
from the 2D spiral through the intermediate phase to the
spin-flop state. Some conjectures proposed previously for the
intermediate phases, such as the soliton state and a nonflat
(i.e., 3D) spin spiral, have been verified by our brute-force
simulations.
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