RESEARCH INTERESTS:

         Mathematical Modeling and Simulation in Materials Science

         Numerical analysis and Scientific Computing

         Partial Differential Equations

         Image Processing

PUBLICATIONS:

Modeling and simulation of grain boundaries

1.      Y. Xiang and X.D. Yan, Stability of dislocation networks on low angle grain boundaries using a continuum energy formulation, Dis. Cont. Dyn. Sys. B, 2017.

 

2.      Y.C. Zhu, J. Wang, Y. Xiang, and X. Guo, A Three-scale Homogenisation Approach to the Prediction of Long-time Absorption of Radiation Induced Interstitials by Nanovoids at Interfaces, J. Mech. Phys. Solids, 105, 1-20,  2017.

 

3.      Y.J. Gu, J. Han, S.Y. Dai, Y.C. Zhu, Y. Xiang, and D. J. Srolovitz, Point defect sink efficiency of low-angle tilt grain boundaries, J. Mech. Phys. Solids, 101, 166-179,  2017.

 

4.      L.C. Zhang, Y.J. Gu, and Y. Xiang, Energy of low angle grain boundaries based on continuum dislocation structure, Acta Mater., 126, 11-24, 2017. (arXiv:1610.04318, 2016)

 

5.      S.Y. Dai, Y. Xiang, and D. J. Srolovitz, Twisted bilayer graphene: Moire with a twist, Nano Lett. 16, 5923-5927, 2016.

 

6.      S.Y. Dai, Y. Xiang, and D. J. Srolovitz, Structure and energetics of interlayer dislocations in bilayer graphene, Phys. Rev. B, 93, 085410, 2016.

 

7.      Y.J. Gu, Y. Xiang, and D.J. Srolovitz, Relaxation of low angle grain boundary structure by climb of the constituent dislocations, Scripta Mater., 114, 35-40, 2016.

 

8.      X.H. Zhu and Y. Xiang, Continuum framework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries, J. Mech. Phys. Solids, 69, 175-194, 2014.

 

9.      S.Y. Dai, Y. Xiang, and D. J. Srolovitz, Atomistic, generalized Peierls-Nabarro, and analytical models for (111) twist boundaries in Al, Cu and Ni for all twist angles, Acta Mater, 69, 162-174, 2014.

10.  S.Y. Dai, Y. Xiang, and D. J. Srolovitz, Structure and energy of (111) low angle twist boundaries in Al, Cu and Ni, Acta Mater., 61(4), 1327-1337, 2013.

11.  X.H. Zhu, S.Y. Dai, and Y. Xiang, Numerical simulation of dynamics of dislocation arrays and long-range stress fields of nonplanar dislocation arrays, Int. J. Plasticity, 43, 85-100, 2013.

12.  X.H. Zhu and Y. Xiang, A continuum model for the dynamics of dislocation arrays, Commun. Math. Sci., 10(4), 1081-1103, 2012.

13.  S.S. Quek, Y. Xiang, and D. J. Srolovitz, Loss of interface coherency around a misfitting spherical inclusion, Acta Mater., 59(14), 5398-5410, 2011.

14.  S.Y. Dai, Y. Xiang, and T.Y. Zhang, A continuum model for core relaxation of incoherent twin boundaries based on the Peierls-Nabarro framework, Scripta Mater., 64(5), 438-441, 2011.

15.  X.H. Zhu and Y. Xiang, Stabilizing force on perturbed grain boundaries using dislocation model, Scripta Mater., 64(1), 5-8, 2011.

Modeling and simulation of dislocations

1.      T. Luo, P. B. Ming, and Y. Xiang, From Atomistic Model to the Peierls-Nabarro Model with Gamma-surface for Dislocations, arXiv:1706.03145, 2017.

 

2.      X. H. Niu, Y. C. Zhu, S. Y. Dai, and Y. Xiang, A continuum model for distributions of  dislocations incorporating short-range interactions, arXiv:1707.05161, 2017.

 

3.      X. H. Niu, T. Luo, J. F. Lu, and Y. Xiang, Dislocation climb models from atomistic scheme to dislocation dynamics, J. Mech. Phys. Solids, 99, 242-258, 2017. (arXiv:1607.08734, 2016)

 

4.      S. D. Jiang, M. Rachh, and Y. Xiang, An efficient high order method for dislocation climb in two dimensions, SIAM Multiscale Model. Simul, 15, 235-253, 2017.

 

5.      Y.C. Zhu, X.H. Niu, and Y. Xiang, Continuum dynamics of the formation, migration and dissociation of self-locked dislocation structures on parallel slip planes, J. Mech. Phys. Solids, 96, 369-387, 2016.

 

6.      S. J. Chapman, Y. Xiang, and Y. C. Zhu, Homogenisation of a row of dislocation dipoles from discrete dislocation dynamics, SIAM J. Appl. Math., 76(2), 750-775, 2016.

 

7.      Y.C. Zhu, Y. Xiang, and K. Schulz, The role of dislocation pile-up in flow stress determination and strain hardening, Scripta Mater., 116, 53-56, 2016.

 

8.      Y.C. Zhu and Y. Xiang, A continuum model for dislocation dynamics in three dimensions using the dislocation density potential functions and its application to micro-pillars, J. Mech. Phys. Solids, 84, 230-253, 2015.

 

9.      Y.J. Gu, Y. Xiang, S.S. Quek, and D.J. Srolovitz, Three-dimensional formulation of dislocation climb, J. Mech. Phys. Solids, 83, 319-337, 2015.

 

10.  A.Y. Zhu, C.M. Jin, D.G. Zhao, Y. Xiang, and J.F. Huang, A numerical scheme for generalized Peierls-Nabarro model of dislocations based on the fast multipole method and iterative grid redistribution, Commun. Comput. Phys, 18, 1282-1312, 2015.

 

11.  Y.C. Zhu, H.Q. Wang, X.H. Zhu, and Y. Xiang, A continuum model for dislocation dynamics incorporating Frank-Read sources and Hall-Petch relation in two dimensions, Int. J. Plasticity, 60, 19-39, 2014.

12.  H.Q. Wang and Y. Xiang, An adaptive level set method based on two-level uniform meshes and its application to dislocation dynamics, Int. J. Numer. Meth. Engng, 94(6), 573-597, 2013.

13.  D.G. Zhao. H. Wang, and Y. Xiang, Asymptotic behaviors of the stress fields in the vicinity of dislocations and dislocation segments, Phil. Mag., 92(18), 2351-2374, 2012.

14.  D.G. Zhao, J.F. Huang, and Y. Xiang, Fast multipole accelerated boundary integral equation method for evaluating the stress field associated with dislocations in a finite medium, Commun. Comput. Phys., 12(1), 226-246, 2012.

15.  C.M. Jin, Y. Xiang, and G. Lu, Dislocation cross-slip mechanisms in aluminum, Phil. Mag., 91(32), 4109-4125, 2011.

16.  X.H. Zhu and Y. Xiang, Continuum model for dislocation dynamics in a slip plane, Phil. Mag., 90 (33), 4409-4428, 2010.

17.  D.G. Zhao, J.F. Huang, and Y. Xiang, A new version fast multipole method for evaluating the stress field of dislocation ensembles, Modelling Simul. Mater. Sci. Eng., 18(4), 045006, 2010.

18.  C.M. Jin, W. Ren, and Y. Xiang, Computing transition rates of thermally activated events in dislocation dynamics, Scripta Mater., 62(4), 206-209, 2010.

19.  S. S. Quek, Y. W. Zhang, Y. Xiang, and D. J. Srolovitz, Dislocation cross-slip in heteroepitaxial multilayer films, Acta Mater., 58(1), 226-234, 2010 .

20.  H. Wei and Y. Xiang, A generalized Peierls-Nabarro model for kinked dislocations, Phil. Mag., 89(27), 2333-2354, 2009.

21.  Y. Xiang, Continuum approximation of the Peach-Koehler force on dislocations in a slip plane, J. Mech. Phys. Solids, 57(4), 728-743, 2009.

22.  H. Wei, Y. Xiang, and P.B. Ming, A generalized Peierls-Nabarro model for curved dislocations using discrete Fourier transform, Commun. Comput. Phys., 4(2), 275-293, 2008.

23.  Y. Xiang, H. Wei, P.B. Ming, and W. E, A generalized Peierls-Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu, Acta Mater., 56(7), 1447-1460, 2008.

24.  S.S. Quek, Z. Wu, Y.W. Zhang, Y. Xiang, and D.J. Srolovitz, Dislocation junctions as barriers to threading dislocation migration, Appl. Phys. Lett., 90, 011905, 2007.

25.  Y. Xiang and D.J. Srolovitz, Dislocation climb effects on particle bypass mechanisms, Phil. Mag., 86, 3937-3957, 2006.

26.  Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1(3), 383-424, 2006.

27.  S.S. Quek, Y. Xiang, Y.W. Zhang, D.J. Srolovitz, and C. Lu, Level set simulation of dislocation dynamics in thin films, Acta Mater., 54(9), 2371-2381, 2006.

28.  Y. Xiang, D.J. Srolovitz, L.T. Cheng, and W. E, Level set simulations of dislocation-particle bypass mechanisms, Acta Mater., 52 (7), 1745-1760 , 2004.

29.  Y. Xiang, L.T. Cheng, D.J. Srolovitz, and W. E, A level set method for dislocation dynamics, Acta Mater., 51(18), 5499-5518, 2003.

Modeling and simulation of epitaxial growth

1.      T. Luo, Y. Xiang, and N. K. Yip, Energy scaling and asymptotic properties of step bunching in epitaxial growth with elastic effects, Multiscale Model. Simul., 44(2),  737-771, 2016.

2.      X.H. Zhu, H.Y. Xu and Y. Xiang, Continuum model for the long-range elastic interaction on stepped epitaxial surfaces in 2+1 dimensions, Phys. Rev. B, 79(12), 125413, 2009.

3.      H.Y. Xu and Y. Xiang, Derivation of a continuum model for the long-range elastic interaction on stepped epitaxial surfaces in 2+1 dimensions, SIAM J. Appl. Math., 69(5), 1393-1414, 2009.

4.      J.F. Huang, M.C. Lai, and Y. Xiang, An integral equation method for epitaxial step-flow growth simulations, J. Comput. Phys., 216(2), 724-743, 2006.

5.      Y. Xiang and W. E, Misfit elastic energy and a continuum model for epitaxial growth with elasticity, Phys. Rev. B, 69, 035409, 2004.

6.      Y. Xiang, Derivation of a continuum model for epitaxial growth with elasticity, SIAM J. Appl. Math., 63(1), 241-258, 2002.

7.      Y. Xiang, and W. E, Nonlinear evolution equation of the stress-driven morphological instability, J. Appl. Phys., 91,   9414-9422, 2002.

  Image Processing

1.      Y. Xiang, A.C.S. Chung, and J. Ye, An active contour model for image segmentation based on elastic interaction, J. Comput. Phys., 219(1), 455-476, 2006.

2.      A.C.S. Chung, Y. Xiang, J. Ye, and W.K. Law, Elastic interaction models for active contours and surfaces, The International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, The Tenth IEEE International Conference on Computer Vision (ICCV Workshop 2005), Beijing, China, Oct, 2005, LNCS 3765, pp. 314-323.

3.      Y. Xiang, A.C.S. Chung, and J. Ye, A new active contour method based on elastic interaction, IEEE International Conference on Computer Vision and Pattern Recognition 2005 (CVPR 2005), San Diego, CA, USA, June 20-26, 2005, Vol. 1, 452-457.