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Constant proportion debt obligations (CPDOs) 
are one of the latest and most talked about 
innovations in the structured credit market. Since 
their debut in the summer of 2006, CPDOs have 
been frequently praised for providing an answer 
to investors searching for excess returns, but they 
have also been severely criticised for introducing 
more volatility into credit markets. The range of 
opinions of market participants has been wide 
indeed, and comments vary from “looks like a 
fi ve- or ten-year mezzanine tranche,” “similar to 
leveraged super-senior [LSS],” “a highly rated 
equity tranche,” “a rated trading strategy” and 
“similar to CPPI [constant proportion portfolio 
insurance], just the opposite.” 

Although the level of understanding of the 
product varies, a common concern is that early 
CPDOs have received AAA ratings at 200 basis 
points (bp) over LIBOR from certain rating 
agencies. Indeed, one journalist states, “But theo-
reticians – pundits in general and columnists in 
particular – would seem to know a bigger truth. 
The rules of risk and reward, they say, state that 
a triple-A security can’t pay 200 basis points (bp) 
over LIBOR. What’s more, they add, is that basic 
common sense will tell you that a structure that 
includes up to 15 times leverage can’t possibly 
be triple-A” (Salmon, F. (2007)). While there is 
little doubt that the attraction of CPDOs stems 
to a large extent from their ability to provide 
rated coupons, their growth highlights the impor-
tance of rating agencies in the development of 
the structured credit market, most of all their 
ability to assess both credit risk and market risk 
in the presence of a high degree of leverage. In a 
previous report, we outlined our initial views on 
the risks presented by CPDOs.1 This report con-
tinues that discussion, and demonstrates DBRS’s 
commitment to a rigorous and objective analysis 
of these innovative structures.

In this report, we provide an in-depth structural 
and risk analysis of CPDOs. In particular, we add 
to the existing (and extensive) body of CPDO 
publications by carrying out detailed empirical 
research in order to address the important issue 
of model risk; namely, the inherent sensitivity of 

CPDO performance to the choice of model and 
modelling parameters. After a brief introduction 
to the product, we focus on quantitative model-
ling aspects, including model risk and rating 
sensitivities, and discuss important insights gained 
from a back-testing experiment. In conclusion, we 
provide a brief product, performance and relative-
value discussion.

The key fi ndings of our CPDO research are 
outlined below.

CPDOs INVOLVE SIGNIFICANT 
MODEL RISK
Small changes in modelling assumptions, par-
ticularly regarding credit spread parameters, can 
have a signifi cant impact on key risk measures, 
including probability of default (PD) and loss-
given-default (LGD).

Higher spread volatility increases both the PD and 
LGD as a result of a greater chance of the CPDO 
being unwound when its net asset value (NAV) 
falls below a minimum threshold, known as a 
cash-out event. Similarly, the strength of spread 
mean reversion has a strong effect on PD, yet has 
little impact on LGD. We also fi nd a very signifi -
cant risk and ratings impact when varying the 
steepness of the credit curve, with model-implied 
ratings varying from AAA to BBB, depending on 
the choice of time period and data source used in 
the analysis.

The impact of changing bid-offer spreads is also 
surprising. Under an assumption of 0.25 bp, a 
typical model-implied rating might be as high 
as AA, but this falls to BBB (high) under a 1 bp 
assumption and BB under a conservative assump-
tion of 2 bp. Such a high sensitivity implicitly 
requires taking a view on future liquidity in credit 
markets within any ratings or risk management 
framework.

Overall, we show that the rating is very sensitive 
to most modelling parameters and compare an 
“optimistic” calibration, assuming 25% spread 
volatility and 7% time decay,2 with a calibration 
more in line with empirical fi ndings across credit 
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1 See “CPDOs: The DBRS Perspective”: DBRS CDO Newsletter, December 2006.
2 This corresponds to a 7% reduction in spreads over six months or 3.5% over a three-month period.
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default swap (CDS) and bond markets. Using the 
empirical data considered here, the AAA model-
implied rating under the optimistic calibration 
becomes BBB (high).

CREDIT SPREAD ANALYSIS 
REVEALS HIGH VOLATILITY
We have analysed spread volatility for a wide 
range of CDS and bond spread datasets – for 
different investment-grade (IG) rating classes and 
at different points in time – and fi nd that spread 
volatility exceeds 35% in many cases. A lower 
assumption (say 25%) cannot generate suffi cient 
fl uctuation in long term spreads and would be 
unable to capture the spread widening observed 
during the last downturn in credit markets 
between 1998 and 2003. Unsurprisingly, this has 
a signifi cant impact on CPDO risk and rating 
estimates, as very few cash-out events occur under 
a low volatility assumption.

TERM STRUCTURE DYNAMICS 
SHOW A LINK BETWEEN SPREADS 
AND SLOPE
Across all datasets, we fi nd a strong link between 
the level of credit spreads and the steepness of 
the credit curve, with fl atter term structures 
occurring in a high spread environment and 
steeper term structures in tight credit spread 
regimes (such as the one that exists at the time 
of writing). Incorporation of these dynamics 
into a CPDO model leads to a decrease in PD 
and an increase in LGD.

HIGH PATH DEPENDENCE AND 
MARK-TO-MARKET VOLATILITY 
CAN LEAD TO RATING VOLATILITY
Our back-testing exercise reveals very high path 
dependence in CPDOs, leading to a high implied 
level of volatility in NAV and implied ratings 
during the last credit cycle. For example, a CPDO 
issued in 2004 would show high NAV stability, as 
the structure would have experienced NAV gains 
and de-levered over the fi rst three years. However, 
the high sensitivity of ratings to the initial level 
of spreads may still have resulted in signifi cant 
ratings volatility. On the other hand, issuing a 
CPDO in 1997 shows a very different picture. 
A decline in NAV caused by immediate spread 
widening would have led to very high initial 
leverage, which would have caused signifi cant 
MTM losses when spreads continued to gap out.

CPDOs ARE HERE TO STAY
Notwithstanding the above fi ndings, we feel that 
CPDOs are an exciting addition to the structured 
credit market. Independent research shows that 
CPDOs may offer more value than investment 
alternatives in moderately bearish credit environ-
ments, whereas fi rst-loss products may perform 
better in bullish credit scenarios. The high level 
of model risk, however, makes the rating and risk 
assessment of these products very challenging, and 
as a result, we take a more conservative view than 
other agencies on the risk assessment of the static 
CPDOs that have so far been issued in the market. 

Nonetheless, we see considerable potential for 
mitigating some of these risks in the second gener-
ation of CPDO structures. For example, managed 
CPDOs can reference well-diversifi ed, bespoke 
portfolios and introduce structural features that 
allow for risk mitigation and ratings stability. In 
addition, innovations in the CPDO leverage mech-
anism have been shown reduce MTM volatility 
while still generating signifi cant carry. It is highly 
likely that some of these more innovative CPDO 
structures will be consistent with high investment 
grade ratings.
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Figure 1 below shows the main features of a 
typical CPDO, and Appendix 2 provides a 
detailed description of the mechanics of a typical 
CPDO, including the leverage algorithm.

At trade inception, CPDO issuance proceeds are 
held in a deposit account that earns interest at the 
risk-free rate. The special-purpose vehicle (SPV) 
enters into a total return swap with the arranging 
bank, which simultaneously sells protection on a 
certain leveraged notional amount of a risky refer-
ence portfolio (typically a combination of the main 
credit indices, CDX and iTraxx, but as with CPPI, 
bespoke portfolios, hybrid assets or more complex 
credit products may be also referenced). Over time, 
CDS premium payments and MTM gains are paid 
into the deposit account, while MTM losses and 
default payments are taken out of the cash deposit. 
Principal and coupon payments are made to CPDO 
noteholders subject to suffi cient funds being avail-
able in the deposit account. In contrast to credit 
CPPI (where only principal payments receive a 
rating), the arranging bank does not enter a zero 
coupon bond that guarantees principal investment, 
hence investors rely on – among other things – 
CPDO credit ratings to assess the likelihood of full 
principal and interest payments. In short, CPDOs 
put as much principal at risk as is needed to meet 
certain promised return, whereas the primary aim 
of CPPI is to maximise returns without putting 
principal at risk.

LEVERAGE
CPDOs provide returns to noteholders through 
leverage; namely, the selling of protection on 
a much larger notional amount than the note 
proceeds. The leverage factor is essentially a 
multiple of the difference – or shortfall – 
between the NAV of the CPDO strategy (the 
sum of the value of the cash deposit and the 
MTM value of the risky portfolio) and the present 
value of all future payments (Target Value) to be 
made by the SPV, including fees.3 The portfolio 
is “rebalanced” when the calculated or required 
leverage differs from the current leverage by a 
certain preset amount.  

In practice, losses due to defaults and spread 
widening lead to an increase in leverage compared 
with a decrease in leverage for a CPPI structure. As 
a result, CPDOs have been frequently called lever-
aged bets on credit quality and market spreads. 
In contrast, when the CPDO is performing well 
(increasing NAV), the structure is de-levered. 

CASHING IN AND CASHING OUT
A so-called cash-in event takes place when the 
shortfall decreases to zero, in which case the 
strategy is unwound completely and the proceeds 
are held in the deposit account in order to make 
all future payments promised by the SPV. On 
the other hand, if the NAV falls below a certain 
threshold (typically 5% or 10% of the notional of 
the reference portfolio), the strategy is unwound 

Overview of CPDOs 

Figure 1: Structure at Closing of a Typical CPDO Transaction
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3  Leverage is therefore purely formulaic (as opposed to discretionary) but will clearly vary over time depending on the performance of the strategy. Leverage is 
typically capped at around 15 to prevent unacceptably high leverage in periods of poor strategy performance.
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and the proceeds are distributed to CPDO note-
holders. This is known as a cash-out event.

INITIAL INDEX-BASED 
STRUCTURES AND INDEX ROLL
The fi rst CPDOs referenced “on-the-run” IG 
credit indices, which means that on or close to 
each roll date (20 March and 20 September), the 
arranging bank must buy protection on the “off-
the-run” indices (up to the full leveraged notional 
amount) and sell protection on the new on-the-run 
indices. The difference in off-the-run index spread 
compared with the contractual spread entered at 
the previous roll date determines the MTM gain 
or loss experienced by the strategy. Contracting at 
a new index spread also has an impact on CPDO 
performance due to the new CDS premium the 
SPV earns over the next roll period. This impact 
may be positive if the new spread is high enough 
to offset unwind costs. Hence, the dynamics of 
index spreads around roll periods (e.g., off-the-run 

spread widening due to replacement of credits that 
fall below IG) is very important. 

This contractual requirement to roll every six 
months into the new on-the-run indices has been 
a concern for many market participants. Indeed, 
many believe that both index and tranche markets 
were affected by the expectation of CPDO 
issuance (see, for example, Isla, Willemann and 
Soulier (2006)).4 This concern, along with related 
concerns over MTM volatility, has led to the 
development of more actively managed structures. 
Lightly managed structures allow the manager to 
(temporarily) apply leverage different from the 
formulaic level or to add fl exibility in the response 
of the CPDO to the rolling of the indices. The 
holy grail of CPDOs remains fully managed struc-
tures in which single name CDS or fully bespoke 
portfolios can be implemented while still achiev-
ing an attractively rated coupon.

Assessing the Risks in CPDOs 

The need for CPDOs to provide a rating on 
principal and coupon has resulted in a demand for 
rating agencies to develop methodologies that go 
beyond their core competency; namely, credit risk. 
CPDOs are an extension of the trend toward non-
credit assets and MTM risk faced by the agencies 
in recent years, starting with equity default 
swaps in 2004, followed by LSS in 2005 and 
commodity-linked CDOs and CPDOs in 2006. 
Similarly, agency methodologies used to analyse 
market-value CDOs and credit derivative product 
companies (CDPCs) utilise many of the aspects 
required for modelling the risks in CPDOs. While 
agencies have a strong track record in assessing 
credit risk, their ability to assess market risk, 
particularly combined with high leverage, is less 
clear. We believe that the research summarised 
here demonstrates our ability to meet the chal-
lenge of analyzing these complex products. While 
we may not have all of the answers, we provide 
an objective and empirically grounded analysis of 
all of the key risks faced by investors.

In this section, we provide an overview of an 
approach to modelling the main components of 
long-only, index-based CPDOs and assess the 
sensitivity of the resulting model-implied ratings5 

to changes in the underlying assumptions and 
methodology. The quantitative approach dis-
cussed below is by no means unique, and several 
extensions or alternatives can be developed. 
Nevertheless, we feel that the approach is capable 
of addressing the main risks in CPDOs, with 
conclusions (particularly with respect to rating 
stability) that remain valid under alternative 
frameworks.

In particular, we describe the following quantita-
tive models and econometric techniques applied to 
address a CPDO’s main economic risks:
• Default risk.
• Credit spread risk.
• Roll risk and liquidity risk.
• Interest rate risk.

A particular focus is given to the two primary risk 
factors: default risk and the evolution of the term 
structure of credit spreads.

We discuss the general models that can be used 
to assess these risks, provide insights into the 
parameterisation of these models and show the 
impact of changes to both models and parameters 
on a typical CPDO. By “typical,” we refer to a 

4  The roll of the indices on March 20, 2007, was relatively benign, with CPDOs experiencing a 0.25 bp bid-offer spread. However, this was hardly surprising, 
given the relatively small number of CPDOs in the market at the time (less than USD 2 billion of issuance). 

5 Note that these are purely quantitative rating estimates, whereas DBRS ratings include both quantitative and qualitative factors.
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static CPDO that is long semi-annual iTraxx and 
CDX fi ve-year risk. The CPDO pays a coupon of 
LIBOR plus 200 bp, cashes out at 10% of par, 
can be levered 15 times (x) at most and matures 
in ten years. Standard fees are assumed, including 
a 1% upfront fee and various ongoing admin-
istration fees. Unless otherwise stated, bid-offer 
spreads of 1 bp are assumed.

2.1 DEFAULT RISK
We apply DBRS’s standard default methodol-
ogy, based on the Gaussian copula framework, to 
arrive at correlated default times for each of the 
underlying credits in both credit indices.6 

The credit quality of an obligor (i) is described via 
a single normally distributed latent variable 
( ), often referred to as the obligor’s asset value. 
Dependence between various obligors is intro-
duced through their dependence on common 
factors. For example, in the simplest case of 
a single factor F, , where  
denotes the correlation between two obligors 
and the standard normal variables F and  are 
global and idiosyncratic risk factors, respectively. 
In practice, a single correlation factor is often too 
restrictive for risk management purposes, and 
generalisations to a multifactor framework are 
preferred.

DBRS employs the following multifactor model:
, 

where F denotes the global,  a regional,  a 
sector-specifi c and  a region-sector factor. For 
corporate obligors, we use  = 2%,  = 15%, 

 =  = 4%, which implies the following cor-
relations between two obligors. 

Table 1: Corporate Correlation Assumptions

Within Sector Between Sectors

Same region 0.15 0.06

Different regions 0.11 0.02

Given N different sectors in M different regions, 
(N+M+ NM+1) different factors would need to 
be simulated. Default occurs prior to maturity 
(T) if the asset value ( ) falls below the default 
barrier –  – of obligor i, where  
denotes the obligor’s cumulative T-year default 
probability.

Rather than computing default events prior to 
maturity, a default time ( ) can be computed for 
each obligor as follows:

(1) Calculate . 

(2) Calculate a default time –  – for each 
asset.7

If  is less than the maturity of the transaction, 
the loss  is determined as , where  
and  are the exposure-at-default and recovery,8 
respectively, for the ith asset. We can therefore 
write the portfolio loss up to time t, L(t), as 

, where  is the default 
indicator for the ith asset.9 

As an example, a single default in a typical port-
folio comprising 250 names leads to a 0.24% 
credit loss (or reduction in NAV), assuming 40% 
recovery. On a 15x levered portfolio, this loss 
amplifi es to 3.6% of the initial notional.

To account for the fact that CDS indices roll 
every six months, we have generated a new set of 
default curves refl ecting the fact that upon a tran-
sition below IG, the respective name is removed 
from the index at the next roll date and replaced 
with an IG name. A conservative treatment, which 
compensates for the fact that we do not explicitly 
model rating migrations, is to assume that the 
credit replacing the downgraded name is rated 
BBB (low). Table 2 on the following page shows 
the results of adjusting the six-month transi-
tion matrix accordingly and applying the usual 
Markov property leads to the following modifi ed 
cumulative default probabilities.

For a standard index-based CPDO referencing 
50% iTraxx and 50% CDX, these assumptions 
lead to approximately 0.50 to 0.65 names default-
ing on average per annum.10 We provide some 
insight into the sensitivity of CPDO risk and 
ratings to default risk in Section 2.6.

Due to the high number of sensitivity tests, 
defaults are simulated in a computationally effi -
cient way using the six-month loss distribution 
generated from Table 2. Portfolio default rates 
are then simulated repeatedly for all six-month 
periods by sampling this distribution. The impact 

6  The same methodology is employed in the CDO Toolbox, our standard Monte Carlo CDO portfolio credit model (see The CDO Toolbox, a DBRS 
methodology report, available at www.dbrs.com). 

7  is used to denote the quasi-inverse of the survival function derived from the default curves .
8 The recovery can either be assumed to be constant or drawn from a distribution.
9 The default indicator equals 1 if the expression within parentheses is true and 0 if it is false.
10  Note that this is roughly intermediate between the average annual default rate observed historically for a portfolio of 250 IG and BBB corporates (0.34 and 

0.74 defaults, respectively) over the period 1994 to 2004 (Table 13).
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on average default rates over the simulation 
horizon is negligible, as the default rates shown in 
Table 2 increase roughly linearly over time.11

2.2 MODELLING THE TERM 
STRUCTURE OF CREDIT SPREADS
At least as important as the risk of default and 
subsequent credit losses is the future evolution of 
the term structure of credit spreads. CPDOs based 
on indices selling new protection every six months 
have a decreasing maturity profi le between [ IT ,
IT -0.5], where IT  denotes the index maturity in 

years. As a result, we need to specify the whole  
term structure of credit spreads, or at least the 
part of the term structure to which the transac-
tion is exposed (e.g., six months of time-decay for 
index-based structures).

Spread Data and Estimation
Modelling the credit spread dynamics for CPDOs 
(or any other synthetic spread or MTM trade) is 
challenging for various reasons, among them the 
lack of a long-time series of CDS spread data. 
For this reason, we have investigated a number 
of different data sources, including CDX/iTraxx 
index spread data (Markit Partners), yield spreads 
(Bloomberg) and bond-implied CDS (BCDS) 
spreads (Lehman Brothers). The reason for the 
latter two datasets is the limited amount of data 
available on CDS indices, which start as recently 
as March 2004.

A more detailed description and comparison is 
given in Appendix 1, but essentially BCDS spreads 
(just like actual CDS spreads) are based on the 
concept of default arrival (and its probability) 
and therefore are directly comparable with CDS 
spreads. We believe that BCDS spreads provide 

a suitable proxy for spread analysis, given the 
paucity of CDS historical data. As a result, most 
of the subsequent results are based either on a 
limited time series of CDX/iTraxx data or on a 
much more extensive time series of BCDS data 
of different frequencies and duration (monthly 
between May 1994 and November 2006, bi-
monthly from May 1997 and daily from January 
2002 onward).

Choice of Spread Model and Maximum 
Likelihood Estimation (MLE)
Following Prigent et al. (2001), we have estimated 
a general mean reverting (MR) stochastic process 
in order to gain some insight into the family of 
models suitable for modelling credit spreads: 

(1) .

The MR level (long term spread, or LTS) is 
given by  and the MR speed by .  
is a scalar measuring the degree of non-linear-
ity between the level of spreads and volatility. 
Depending on the choice of , several well-known 
models can be derived. For example,  = 0 leads 
to the Vasicek (1977) process,  = ½ results in the 
Cox, Ingersoll and Ross (1985) (CIR) process and 

 = 1 the Brennan & Schwartz (1980) process. 
 therefore tells us a lot about the relationship 

between spread volatility and level.

By estimating this general process on all datasets, 
we obtain estimates for  consistently above 80%, 
indicating that a Brennan & Schwartz process 
is reasonable. In order to enhance the compara-
tive analysis, we restrict the model to γ = 1 and 
estimate the process on different datasets. Table 
3 above shows a comparison of daily CDS index 

Table 2: Cumulative Default Probabilities for Adjusted Transition Matrix

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

AAA 0.02% 0.04% 0.07% 0.10% 0.14% 0.19% 0.24% 0.29% 0.35% 0.41%

AA (high) 0.04% 0.08% 0.12% 0.17% 0.23% 0.28% 0.34% 0.41% 0.48% 0.56%

AA 0.04% 0.09% 0.14% 0.19% 0.25% 0.32% 0.39% 0.47% 0.55% 0.64%

AA (low) 0.05% 0.11% 0.17% 0.24% 0.32% 0.40% 0.49% 0.58% 0.69% 0.79%

A (high) 0.06% 0.13% 0.20% 0.28% 0.37% 0.46% 0.57% 0.68% 0.80% 0.92%

A 0.07% 0.15% 0.24% 0.34% 0.45% 0.57% 0.70% 0.84% 0.99% 1.15%

A (low) 0.08% 0.18% 0.31% 0.46% 0.63% 0.80% 1.00% 1.19% 1.40% 1.61%

BBB (high) 0.19% 0.40% 0.62% 0.85% 1.10% 1.35% 1.60% 1.85% 2.11% 2.36%

BBB 0.28% 0.61% 0.95% 1.29% 1.62% 1.94% 2.25% 2.55% 2.83% 3.11%

BBB (low) 0.76% 1.34% 1.81% 2.21% 2.57% 2.89% 3.20% 3.50% 3.78% 4.05%

11  This approximation may have an impact on the tail of the loss distribution slightly. However, our tests confi rm that this does not affect our conclusions on 
default rate sensitivity.
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and BCDS data (fi ve-year term) over the period 
March 2005 to January 2007, whereas Table 5 
focuses on the longer time series available for the 
BCDS data (fi ve-year term). 

Table 3 reveals fairly consistent estimates for 
spread volatilities, around 35%. Mean reversion 
speeds are high (85% to 100%) for CDS data and 
extremely high for BCDS data.

Table 4 shows A and BBB estimates for daily, 
bi-monthly and monthly data, covering the 
periods 2002–2006, 1997–2006 and 1994–2006, 
respectively.

Overall, we can summarise the fi ndings on the 
main model parameterisation as follows: 
•  Spread volatility ranges from 40% to 45% for 

BBB data, 60% to 70% for “A” spreads and 
33% to 36% for a very short time series of CDS 
index observations. 

•  Mean reversion speeds are fairly consistent, 
between 25% and 40% for BBB data and above 
40% for “A” data. 

•  Long term average spreads are very diffi cult to 
assess for various reasons, such as the change 
in liquidity in credit markets in recent years and 
the limited amount of CDS data. We believe 
that an assumption between 65 bp and 80 
bp for a typical CPDO transaction referenc-
ing 50% CDX and 50% iTraxx is reasonable. 
Empirically, longer-term BCDS spreads average 
at around 80 bp to 90 bp for BBB spreads and 
45 bp for “A” spreads (see Table 5).

Table 5: Average BCDS Spreads (in bp)

Monthly 
(1994–2006)

Bi-Monthly 
(1997–2006)

Daily 
(2002–2006)

BBB 78 88 91

A 40 45 46

Spread Simulation 
For CPDOs and other market-value structures, 
spreads often need to be simulated for long 
horizons (e.g., the ten-year term of a CPDO note). 
In order to gain further insight into the suit-
ability of a model and its parameterisation, we 
conducted a series of goodness-of-fi t tests that 
compare the statistical properties of the histori-
cal time series with the properties the simulation 
model produces.

As the above analysis indicates that a MR process 
where volatility is related to the level of spreads 
is adequate (indicated by strong levels of MR 
and high values of γ), we have chosen a common 
process discussed in detail in Schwartz (1997) and 
Geman (2005):

(2) .

Introducing the new variable x = ln(S), leads to 
, where .

The solution to the stochastic process in equation 
(2) is given by 

.

Table 3: MLE Results for Daily BDCS and CDS Index Data, March 2005 to January 2007

Data a b σ LTS (bp) MRS (%)

CDX 0.51 -1.07 36% 47 107%

iTraxx 0.31 -0.86 33% 36 86%

BCDS BBB 8.04 -16.85 35% 48 1685%

BCDS A 6.45 -25.04 36% 26 2504%

LTS = long term spread. MLE = maximum likelihood estimation. MRS = mean reversion speed. 

Table 4: MLE for BCDS Data of Different Frequency and Time Periods, Restricting  = 1

Data a b σ LTS (bp) MRS (%)

BCDS A (bi-monthly) 0.27 -0.61 60% 45 61%

BCDS A (monthly) 0.18 -0.44 58% 40 44%

BCDS BBB (daily) 0.23 -0.25 39% 91 25%

BCDS BBB (bi-monthly) 0.34 -0.38 45% 88 38%

BCDS BBB (monthly) 0.21 -0.27 46% 78 27%

LTS = long term spread. MLE = maximum likelihood estimation. MRS = mean reversion speed.



CPDOs Laid Bare: Structure, Risk and Rating Sensitivity
April 2007

12

One drawback of this model is that the simu-
lation does not converge to the required 
equilibrium spread level. For this reason, 
we simulate the adjusted process (3) 

, 

where Zi is dawn from a standard normal dis-
tribution. Computing  ensures that the 
simulation model converges to a desired long term 
spread ( ).12

In the following example, we simulate this model 
and test its ability to replicate the behaviour 
observed in the time series data. We focus on 
monthly BCDS data, but the main results hold 
across all datasets.13

Figure 2 plots the time series for BBB BCDS data, 
and Table 6 reports some summary statistics on 
spread returns. Returns are calculated over one 
month, three months, six months and one year 

using overlapping intervals (moving forward in 
monthly time steps). For example, Table 6 shows 
that the average annualised three-month return 
had a volatility of 58%. In addition, the lowest 
monthly return was -24%, and the 99th percentile 
of six-month returns was 180%.

In the following example, we simulate equation 
(3) for different assumptions on spread volatility, 
as this is an important parameter for CPDO risk 
analysis.14 We then compare some summary sta-
tistics with Figure 2 and Table 6 below. We start 
with a popular parameterisation, assuming LTS 
= 80 bp, MRS = 40%, Volatility = 25%, Starting 
Spread = 35 bp.

Figure 3 on the following page plots the average 
spread paths, as well as the minimum, maximum 
and various percentiles computed from the 10,000 
simulations conducted over a horizon of ten years 
(120 periods).

12  Generalisations toward a jump-diffusion setting can be easily incorporated following, for example, Prigent et al. (2001). Furthermore, multiple bond indices 
can be modeled or simulated separately following equation (3) by introducing correlation between the normal random variables (i.e., ).

13 See Jobst et al. (2007) for details.
14 Note that the impact of changes in other model parameters is available from the authors on request.

Figure 2: BBB BCDS History (Five-Year Term)

Source: Lehman Brothers.
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Table 6: Credit Spread Returns for Monthly BBB BCDS Data

Returns Time Horizon (Months)
1 3 6 12

Standard deviation (annualised) 46% 58% 62% 67%

Minimum -24% -36% -54% -74%

Pe
rc

en
ti
le

0.01 -22% -33% -51% -68%

0.05 -15% -26% -43% -62%

0.95 21% 49% 83% 138%

0.99 54% 110% 180% 220%

Maximum  75% 184% 243% 428%
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The fi gure reveals that this model does not 
reproduce spread levels observed over the last 
ten years, with the maximum simulated paths 
barely reaching levels observed in 2002 (i.e., 250 
bp). Furthermore, the 99th percentile produces 
spreads below 150 bp, while the 1st percentile 
does not fall below 23 bp over the entire simula-
tion horizon. 

In addition to the spread-level comparison, we also 
gain an understanding of the simulation model’s 
ability to capture changes in spreads (returns). In 
order to do so, we have computed one-, three-, 
six- and 12-month returns and the same return 
statistics as those shown in Table 6 (using overlap-
ping observations) for all simulation paths. Table 
7 shows the average (left-hand side (LHS)) of these 
statistics across each simulation path, as well as the 
99th percentile (right-hand side (RHS)) of all paths 
(which gives an indication of the most extreme 1% 
outcomes within the simulations). 

The table reveals that the simulated percentiles do 
not match the empirical estimates in Table 6 very 
well for any horizon, consistently producing less 
extreme outcomes than those observed historically. 

We now increase volatility to a more reasonable 
35%. In our opinion, a spread volatility of less 
than 35% is unjustifi ed, and a critical CPDO 
risk analysis should consider volatilities in the 
range of 35% to 40%. With all other parameters 
unchanged, this model reveals a better agreement 
to empirical observations (see Figure 4 and Table 
8 on the following page).

The spread simulation seems to produce more 
extreme outcomes in line with experience, where 
the 99th percentile converges on approximately 
200 bp. Assessing the return estimates also shows 
a signifi cant improvement. Note, however, that 
even using a volatility of 35%, the average of all 
simulations (LHS) appears low compared with 

Figure 3: Spread Simulation

Note: Simulated spread quantiles for a mean reverting process with 25% volatility, LTS of 80 bp, MRS of 40% and initial spread 
of 35 bp (monthly discretisation). 
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Table 7: Simulated Changes in Credit Spreads and Returns for a Mean Reverting Process 

Averages Across Simulations 1/99 Percentile of Simulations
Returns  Time Horizon (Months) Time Horizon (Months)
  1 3 6 12 1 3 6 12

Standard deviation (annualised)  25% 25% 25% 26%     

Minimum  -16% -25% -31% -35% -23% -35% -45% -54%

Pe
rc

en
ti
le

s

0.01 -15% -23% -29% -33% -19% -23% -42% -52%

0.05 -11% -17% -22% -26% -13% -22% -31% -44%

0.95 13% 25% 38% 58% 17% 33% 56% 105%

0.99 19% 35% 52% 77% 26% 53% 85% 141%

Maximum  21% 39% 56% 81% 32% 62% 93% 149%

Note: Assuming 25% volatility, LTS of 80 bp, MRS of 40% and initial spread of 35 bp (monthly discretisation).
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empirical data, whereas the 99th percentile (RHS) 
covers the data reasonably well. 

Summary of Simulation Insights
This simulation analysis confi rms the MLE 
results; namely, that volatilities below 35% are 
unjustifi ed and a lower assumption (e.g., 25%) 
may signifi cantly underestimate credit spread risk, 
rendering simulation models incapable of produc-
ing outcomes seen during the period of spread 
widening from 1998 to 2002. This conclusion 
also holds for all other datasets, including daily 
CDX and iTraxx analysis, and can be found in 
Jobst et al. (2007).

2.3 IMPACT OF CREDIT 
SPREAD PARAMETERS ON 
CPDO RISK AND RATINGS
After gaining insights into adequate credit spread 
parameterisations, we now investigate the impact 
of changes in these parameters on a hypotheti-
cal CPDO transaction. We consider a standard 

static CPDO that is long semi-annual iTraxx and 
CDX fi ve-year risk. The CPDO pays a coupon of 
LIBOR plus 200 bp, cashes out at 10% of par, 
can be levered 15x at most and matures in ten 
years. Standard fees are assumed, including a 1% 
upfront fee and various ongoing administration 
fees. Unless otherwise stated, we assume that the 
CPDO is issued at an average spread of 35 bp for 
the combined index (50% CDX, 50% iTraxx). 

Sensitivity to Spread Volatility 
We consider fi rstly the sensitivity of our standard 
CPDO to changes in spread volatility. We plot the 
probability that the CPDO will fail to redeem par on 
or before maturity (PD), the probability of cash-out 
(CO) and the subsequent loss given default (LGD), 
using spread volatilities in the range 25% to 45%. 
Note that we also attach an indicative model-
implied rating, derived under a fi rst-dollar-of-loss (or 
PD) ratings approach. These model-implied ratings 
are simply derived by comparing the PD (failure to 
redeem par) to DBRS’s benchmark default probabili-

Figure 4: Spread Simulation 

Note: Simulated spread quantiles for a mean reverting process with 35% volatility, LTS of 80 bp, MRS of 40% and initial spread 
of 35 bp (monthly discretisation). 
Source: Lehman Brothers.

0

1

2

3

4

5

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113

S
p
re

ad
 (

in
 %

) Min

0.001

0.05

Mean

0.95

0.99

Max

Table 8: Simulated Changes in Credit Spreads and Returns for a Mean Reverting Process 

Averages Across Simulations 1/99 Percentile of Simulations
Returns  Time Horizon (Months) Time Horizon (Months)
  1 3 6 12 1 3 6 12

Standard deviation (annualised)  35% 36% 36% 36%     

Minimum  -22% -33% -41% -46% -31% -46% -57% -66%

Pe
rc

en
ti
le

s

0.01 -20% -31% -38% -45% -27% -31% -54% -65%

0.05 -15% -23% -30% -36% -18% -30% -42% -56%

0.95 19% 35% 53% 82% 24% 49% 83% 154%

0.99 27% 52% 77% 112% 38% 79% 134% 219%

Maximum  21% 39% 56% 81% 47% 92% 149% 236%

Note: Assuming 35% volatility, LTS of 8 0bp, MRS of 40% and initial spread of 35 bp (monthly discretisation).
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ties (see Appendix 3) and should not be mistaken 
as the rating DBRS would assign to such a transac-
tion. The main objective of this investigation is to 
examine the potential mark-to-model sensitivity of 
CPDO ratings.15

Figure 5 above shows the three risk measures 
under an assumption of moderate, constant 
time decay =  = 0.45, corresponding 
to approximately 2.25% or 4.5% roll-down 
over three or six months, respectively. Standard 
assumptions of MRS = 40% and LTS = 70 bp are 
applied for the remaining parameters.

Figure 5 reveals that increasing volatility increases 
all risk measures signifi cantly. Cash-out events 

typically result from credit losses and signifi cant 
spread widening, which cannot be attained under 
a very low volatility assumption. Hence, all risk 
measures would be underestimated compared 
with realistic volatility assumptions in the range 
of 35% to 40%. For these levels of volatility, we 
observe a signifi cant increase in cash-out events, 
resulting in very high LGDs that have an impact 
on the overall CPDO LGD estimate. The fi gure 
shows that the probability of not redeeming at par 
more than doubles, from 4% to approximately 
9.5% (LHS), when volatility increases from 25% 
to 45%, whereas LGD more that triples, from 
15% to 50% (RHS). This tripling in LGD stems 
from an increase in the probability of cash-out 
from 0% to 3.6%, respectively. Under a PD 

15  Owing to the computational complexity, these results are based on a limited number of simulations (10,000). While convergence is not guaranteed for such 
a low number of simulations, selected tests with a much higher number show that our general conclusions still hold. We also assume that default and credit 
spread processes are independent, and further work is needed to adequately incorporate these risk factors and assess their impact on CPDO risk and ratings 
analysis. 

Figure 5: PD, CO and LGD by Volatility (Average Time Decay)

Note: Sensitivity of a CPDO (200 bp, 15x) to changes in spread volatility. Standard assumptions are applied 
to all other parameters (MRS = 40%, LTS = 70 bp, α = 0.45 (average time decay) and S_0 = 35 bp).

0

0.02

0.04

0.06

0.08

0.1

0.12

25% 30% 35% 40% 45%
Spread Volatility

0

0.1

0.2

0.3

0.4

0.5

0.6

PD (LHS) Cashout (LHS) LGD (RHS)

BBB
BBB (low)

BB (high)

Figure 6: PD, CO and LGD by Volatility (High Time Decay)

Note: Sensitivity of a CPDO (200 bp, 15x) to changes in spread volatility. A higher time decay of α = 0.7 is assumed and 
standard assumptions are applied to all other parameters (MRS = 40%, LTS = 70 bp and S_0 = 35 bp).
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ratings framework, the indicative rating would 
vary between BBB and BB (high), respectively.

Figure 6 on the previous page repeats the analysis 
under a different (and popular) assumption of 

 =  = 0.7 (or approximately 7% roll-
down benefi t over six months). 

This exercise confi rms the previous results, but 
shows an even more dramatic picture. A relatively 
low volatility assumption of 25%, combined 
with a higher roll-down assumption of 7% over 
the index holding period of 6 months, reduces 
the PD to 0.5%, which is consistent with a AAA 
rating. Across various volatility assumptions, an 
increase of roll-down from 0.45 to 0.7 essentially 
decreases the PD by 3 to 7 times. These results 
give a fi rst indication of the importance of not 
only specifying the parameters of the stochastic 
spread process correctly, but also of modelling the 
dynamics of the (local) term structure adequately. 
A more detailed discussion follows in Section 2.4. 

Sensitivity to Long Term Spread (LTS)
Next, we consider the sensitivity of varying the 
LTS between 60 bp and 80 bp under a moderate 
time-decay assumption, leaving other model 
parameters unchanged (  = 35%,  =  
= 0.45, MRS = 40%).

Figure 7 reveals once again a signifi cant impact 
on CPDO risk measures, with opposite effect on 
PD and LGD however. Overall, with increasing 
LTS, the PD decreases, whereas the probability 
of a cash-out event increases slightly, resulting in 
higher LGDs. These results appear intuitive, in 
that a higher LTS leads to more extreme spread 
simulations, which in turn result in an increase in 

extreme NAV declines and cash-out rates. On the 
contrary, a higher mean spread leads on average 
to higher contractual spreads on each roll date, 
when protection on the old index is bought back 
and the CPDO sells protection on the new, on-the-
run index  contracts. Overall, however, the impact 
of changes in LTS appears more moderate (and 
linear) compared with changes in volatility.

Sensitivity to Mean Reversion Speed (MRS)
We now assess the impact of varying MRS from 
25% to 45% by leaving all other parameters 
unchanged: α = 35%, α(S) = α = 0.45, LTS = 
70 bp. Figure 8 reveals a very high sensitivity of 
PD to MRS, whereas the LGD is fairly insensitive. 
This stems from the fact that the ratio of cash-out 
events to PD (failure to redeem) is quite stable, 
varying between 7% and 8% under all differ-
ent MRS assumptions considered. In contrast, 
when varying volatility between 25% and 40%, 
the ratio of cash-out to PD changes from 0% to 
approximately 40%, which has a considerable 
impact on the LGD.

2.4 MODELLING THE 
LOCAL TERM STRUCTURE 
OF CREDIT SPREADS
As indicated above, index-based static CPDOs are 
required to buy back protection on the roll date 
and sell protection on the new on-the-run index. 
As CPDOs are market-value products, the steep-
ness of the credit curve plays an important part 
in determining the MTM gain the strategy cumu-
lates as a result of rolling down the curve over 
each six-month exposure period in between roll 
dates. Furthermore, preliminary results in Section 
2.3 have shown that CPDO risk measures and 
ratings may be very sensitive to such assumptions. 

Figure 7: PD, CO and LGD by Volatility (Average Time Decay)

Note: Sensitivity of a CPDO (200 bp, 15x) to changes in long-term spread. 
Standard assumptions are applied to all other parameters (σ = 35%, MRS = 40%, α = 0.45 and S_0 = 35 bp).
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Modelling the whole term structure dynamics of 
credit indices is a non-trivial exercise for various 
reasons, among them the availability of spread data 
for maturities below three and above seven years. 
While this is an area of ongoing research for DBRS, 
we focus here on term-structure dynamics based on 
three-, fi ve- and seven-year observations, refl ect-
ing the fact that a CPDO referencing fi ve-year 
CDX and iTraxx is typically exposed to the [5.25y, 
4.75y] part of the credit curve.

Empirical Observations
In this section, we estimate and then simulate 
a constant maturity IT -year spread )( I

t TS  
and refl ect term-structure effects by adjusting 
the simulated spread according to the following 
relationship: )(

)()(
S

I
tt IT

TTSTS
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T
.16

Here, )(Sα  denotes an adjustment or time-decay 
factor that depends on the level of spreads (i.e., 
the steepness of the credit curve is a function of 
spread levels). We start this analysis by consider-
ing CDX, iTraxx and BCDS spreads for maturities 
T = three, fi ve and seven years and compute a 
time series of time-decay factors tα .

iTraxx 
Figure 9 shows the fi ve-year iTraxx composite 
spread and the time series of three-to-fi ve-year and 
fi ve-to-seven-year slope factors over the period 
March 2005 to January 2007. It is apparent that 
there is an inverse relationship between slope and 
spreads, refl ecting the fact that when spreads are 

wider, perceived default risk is higher in the near 
term, leading to a fl atter term structure. Over the 
period reported, fi ve-year spreads are tight, aver-
aging at around 35 bp. This results in relatively 
high time-decay parameters tα , averaging at 
around  35

tα  = 1.09 for the three-to-fi ve-year part 
of the curve and 57

tα  = 0.78 for the fi ve-to-seven-
year data. Note that in May 2005, when spreads 
widened to around 60 bp, these time-decay 
parameters fell to a range of 0.5% to 0.6%. The 
correlation between fi ve-year spread and slope is 
minus 70% and minus 90%, respectively, with a 
75% correlation between  35

tα  and 57
tα . 

Lehman Brothers BCDS Data
Once again, the BCDS dataset provided by 
Lehman Brothers provides a good proxy to 
CDS data and spans a much longer time period, 
particularly for monthly observations. Figure 10 
shows the time series of spreads and time-decay 
factors  for monthly BBB observations.

It is apparent that the inverse relationship holds 
across the whole sample period,17 and one can 
see that BCDS term structures appear on average 
fl atter than CDX or iTraxx term structures (e.g., 
they never exceed 1). Furthermore, the difference 
between slopes from three-to-fi ve and fi ve-to-seven 
years also appears to be lower, which is confi rmed 
by a 99% correlation between  35

tα  and 57
tα  and is 

shown Table 9, which looks at the average time-
decay factors for different datasets.

Figure 8: PD, CO and LGD by MRS (Average Time Decay)

Note: Sensitivity of a CPDO (200 bp, 15x) to changes in mean reversion speed. Standard assumptions are applied to all other 
parameters (σ = 35%, LTS = 70%, α = 0.45, S_0 = 35 bp).
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16  As an example, a constant α = 0.4 corresponds to approximately 4% reduction in spreads over six months or 2% over a three-month period. In general, 

tα /20 is a very good approximation to a linear estimate (in %) over a three-month period and tα /10 over a six-month period
17 The results also hold for all other datasets considered, including daily BCDS and CDX data (see Jobst et al. (2007) for further details).
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Modelling Time Decay (Roll-Down)
Given the strong relationship between spreads 
and the steepness of the credit curve across all 
datasets, we conducted a more in-depth regres-
sion analysis that incorporates the link between 
spreads and slope. We focus on modelling the 
relationship between fi ve-year spread and fi ve-
to-seven-year slope factor, which results in a 
conservative modelling approach, as 57

tα  tends to 
be on average lower than  35

tα  for CDS indices. 
Whether or not this is a result of CDS market 
technicals or factors specifi c to our data sources 
needs to be investigated further.

Across various datasets, we have considered a 
number of different regression models, among 

them two very simple specifi cations that appear to 
yield good results.

Model 1 is a very simple regression model that 
is extended to include an autoregressive term in 
Model 2:

Model 1: 

Model 2: 

Tables 10 and 11 show the results of the regres-
sion analysis for monthly BCDS data and daily 
iTraxx data, respectively.

Figure 9: iTraxx Europe: Spread (LHS) Versus Slope (RHS), March 2005 to January 2007

Note: Historic spread and time decay factors (a measure of slope/steepness of the 
three-to-five- and five-to-seven-year part of the credit curve) for iTraxx Europe.
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Figure 10: BCDS BBB Monthly: 1994–2006

Note: Historic spread and time-decay factors (a measure of slope/steepness of the 
three-to-five-year and five-to-seven-year part of the credit curve) for monthly BBB BCDS data.
Source: Lehman Brothers.
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The results indicate that both models fi t the 
observed data very well, with R2 = 70% for 
Model 1 and 90% to 92% for Model 2. For both 
models, all coeffi cients are statistically signifi cant 
at a 99% level as indicated by the relevant t-statis-
tic. The pickup in R2 for the autoregressive model 
is less relevant for our application, where the rela-
tionship between spreads and the term structure 
is incorporated within a simulation framework. 
For that reason, root mean square errors are 
computed, which can be seen as a simple out-of-
sample performance measure. The results indicate 
that the additional complexity of an autoregres-
sive component may not add signifi cant value 
within our simulation framework, and we proceed 
in the remainder of this document with Model 1. 
Note also that for Model 1, the coeffi cients are 
very similar despite the difference in time periods 
and datasets considered. 

Figure 11 shows the level of time decay α gen-
erated by different regression models as credit 
spreads vary. We focus here for completeness on 

CDX and daily BBB BCDS data. In line with our 
empirical results, the higher the credit spread, the 
fl atter the term structure, as indicated by a lower 
α. Figure 11 also shows an Aggregate Model that 
aims to produce a single model combining the 
features of various models estimated across all dif-
ferent data sources. In general, the time series for 
CDS indices is limited and almost entirely corre-
sponding to a tight spread environment, resulting 
in reasonably good estimates for low to moderate 
spreads. BCDS data, in particular the monthly 
time series, provide a good model across the 
spread spectrum, from very tight spreads before 
1998 and after 2003 to high spreads from 1998 
to 2002. 

The Aggregate Model corresponds to 
α = -1.79 + 9(1/ln(St)). This model refl ects the 
CDS-based dynamics for very tight spreads and 
is more in line with BCDS data for moderate to 
wide spreads.18

Table 9: Average Time-Decay Factor for BCDS and CDS Index Histories

Data Average α (3,5) Average α (5,7) Average of α (5,7) and α (3,5)

BBB BCDS (m) 0.34 0.36 0.35

BBB BCDS (d) 0.38 0.40 0.39

A BCDS (m) 0.50 0.50 0.50

CDX (from March 2004) 0.95 0.50 0.73

iTraxx (from March 2005) 1.09 0.78 0.94

BBB BCDS (d from March 2005) 0.64 0.62 0.63

Table 10: Regression Results for Time-Decay Models to Monthly BCDS Data (BBB)

Model 1 Model 2 (Autoregressive)

Variable Coeffi cient
Standard 

Error t-Statistic Coeffi cient
Standard 

Error t-Statistic

c -0.89 0.07 -13.34 -0.25 0.06 -4.36

β1

5.16 0.27 18.89 1.38 0.29 4.83

β2

   0.76 0.05 16.12

R2 70% 89%

Root mean squared error (RMSE) 1.1% 1.2%

Table 11: Regression Results for Time-Decay Models to Daily iTraxx

Model 1 Model 2 (Autoregressive)

Variable Coeffi cient
Standard 

Error t-Statistic Coeffi cient
Standard 

Error t-Statistic

c -1.00 0.05 -18.36 -0.13 0.04 -3.75

β1 6.23 0.19 32.80 0.83 0.17 4.81

β2    0.87 0.02 37.08

R2 70% 92%

Root mean squared error (RMSE) 0.39% 0.44%

18  Another way of interpreting the model is that the BCDS data provided by Lehman Brothers corresponds to a constant credit-quality index and as such 
doesn’t refl ect possible credit quality deterioration and subsequent spread widening, which would reduce the benefi t of time decay. By lowering the slope in a 
high spread environment, we implicitly capture credit deterioration.
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Table 12 tabulates the slope factor across a 
range of spreads, supplementing Figure 11. For 
example, in a very tight trading environment, we 
would assume a slope in the range of 0.8 to 0.9, 
broadly in line with data on CDX and iTraxx. At 
a spread level of 60 bp, the assumption of 0.41 
may be viewed as slightly conservative, given the 
iTraxx slope was at around 0.6 when spreads 
were trading at this level in May 2005. However, 
concerns relating to the impact of high volumes of 
CPDO issuance on the term structure warrant a 
conservative treatment of this parameter.

Figure 12 shows the fi t of the aggregate model to 
monthly BCDS.19

2.5 IMPACT OF ROLL-DOWN 
ON CPDO RISK AND RATINGS
While the previous section provides ample empiri-
cal support for jointly modelling the relationship 
between credit spreads and the steepness of 
the credit curve and Section 2.3 indicated that 
CPDO performance may be very sensitive to the 
assumption of curve steepness, we present a more 
detailed analysis of this sensitivity throughout this 
section.

Assuming the benchmark CPDO underlying 
all previous sensitivity results and the standard 
assumptions (  = 35%, LTS = 70 bp, MRS = 

40%), we vary the time-decay parameter  
between 0.4 and 0.8 (i.e., assuming 4% and 8% 
roll-down over a six-month period) and plot PD, 
CO and LGD in Figure 13.

Figure 13 confi rms the indications of Section 2.3 
in that CPDO risk as measured by the inability 
to redeem par (PD) is extremely sensitive to the 
term-structure assumption. This of course has also 
a very strong impact on model-implied ratings, 
varying from AAA with  = 0.8 to non-investment 
grade (NIG) with  = 0.4. Notice that the former 
estimate is in line with CDS index estimates based 
on a very short time series of recent data, whereas 
the latter is more consistent with a much longer 
history of BCDS data.

Figure 14 shows the impact of modelling the 
inverse relationship between spreads and slope 
as outlined in the Aggregate Model. We also 
compare this more dynamic model with a risk 
analysis based on a constant , where  is 
chosen to be in line with the average  produced 
by the “coupled” spread-slope simulation. In 
order to gain some insight, we compare these two 
models for different levels of spread volatility.20

The impact of dynamically modelling spreads 
and slope is interesting. It appears that in a tight 
starting spread environment, the Aggregate Model 

Figure 11: Comparison of Time-Decay Functions by Credit Spread

Note: Comparison of various time-decay (regression) models for different data sources.
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Table 12: Time-Decay Factor for Different Spread Levels for the Aggregate Model

Spread (bp) 20 30 40 50 60 70

Time-decay factor 1.21 0.86 0.65 0.51 0.41 0.33 

19 In these fi gures, it is assumed that the slope cannot become negative. 
20  Note that in the present simulation study,  is a deterministic function of credit spreads. However, extensions that incorporate uncertainty are 

straightforward.
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reduces the overall probability of not cashing in, 
particularly under a low-volatility assumption, 
whereas LGD and CO both increase, particularly 
for higher volatilities. This matches our intu-
ition, as the CPDO benefi ts more in a low-spread 
environment (through a steeper curve) and is 
penalised more in a wide-spread environment. 
Hence, the number of simulation paths where the 
CPDO just doesn’t manage to cash in may decline 
when refl ecting the dynamics adequately, whereas 
more extreme spread paths may lead to cash-out 
events as a result of less roll-down benefi t for 
high spreads. Of course, in more volatile envi-
ronments, the ratio of not redeeming at par to 
cash-out is smaller, leading to a convergence of 
both models at a PD level and a divergence for 
LGD. Overall, we can see that the ratings impact 
of a detailed modelling of the spread dynamics 

compared with a constant assumption is between 
one and two notches.

2.6 ADDITIONAL SENSITIVITIES: 
BID-OFFER SPREAD, DEFAULT 
RATE, NOTE COUPON 
AND LEVERAGE
Bid-Offer Spread Sensitivity
Index-based CPDOs that roll into the new index 
every six months incur signifi cant amounts of 
transaction costs (frequently expressed and imple-
mented as the difference between the bid and 
the offer spread). Figure 15 shows the bid-offer 
spread on iTraxx Europe Series 1 to Series 5 (June 
2004 to September 2006). 

Figure 15 shows clearly how liquidity in 
this market improved with bid-offer spreads 

Figure 12: BCDS BBB Monthly

Note: Historic spread, time-decay factors and Aggregate Model fit for monthly BBB BCDS data.
Source: Lehman Brothers.
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Note: Sensitivity of a CPDO (200 bp, 15x) to changes in time-decay parameter. 
Standard assumptions are applied to all other parameters (σ =  35%, LTS = 70%, MRS = 40%, S_0 = 35bp).
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continuously tightening from series to series. The 
average bid-offer spreads for Series 1 to Series 5 
are 1.23 bp, 1.25 bp, 0.49 bp, 0.35 bp and 0.24 
bp, respectively. Essentially bid-offer spreads 
declined from more than 1 bp to below 0.25 bp. It 
is also apparent that once the index series goes off 
the run, bid-offer spreads widen again, although 
the impact seems to get smaller over time as 
liquidity improves. Within our CPDO model, a 
constant bid-offer spread is assumed,21 and Figure 
16 shows the sensitivity of CPDO risk and ratings 
to bid-offer spreads. 

We can observe a signifi cant sensitivity to bid-
offer spreads for index-based CPDOs that roll 
their entire levered position every six months. 
According to Figure 15, it appears that a 1 bp 
assumption is conservative. However, one should 
remember the tight credit spread environment 
over the reported period of 2004 to 2006. The 
sensitivity of CPDOs to bid-offer spreads clearly 
demands an assumption on future liquidity when 
assessing long term performance.

Default Rate Sensitivity
In order to test the sensitivity of CPDO risk and 
ratings to default rates, we reduced our six-month 
probabilities of default by 20% before generating 
the six-month loss distribution for the portfo-
lio. This results, on average, in 0.50 defaults per 
annum, compared to the previous assumption of 
0.65 defaults. Note that this is signifi cantly lower 
than the average annual BBB default experi-
ence over the period 1994–2004 (Table 13), and 

higher than the annual IG default experience over 
the same period. We consider a standard CPDO 
for varying levels of spread volatility leaving all 
other parameters unchanged (LTS = 70%, MRS 
= 40%, α = AggM, S_0 = 35 bp, bo = 1 bp). The 
experiment reveals some interesting insights, in 
that CPDO risk measures and ratings are much 
more sensitive to changes in default risk under 
low spread volatility, stemming from the fact that 
under very low volatilities, a CPDO essentially 
can only default when very high default rates 
are observed. As a result, higher default rates are 
more signifi cant in low volatility settings. For 
example, a model-implied BBB (high) rating using 
25% volatility would improve to AAA under the 
reduced default rate, compared to a change from 
BBB (high) to A (high) under a 35% volatility 
assumption. As the rating only improves to BBB 
under a 45% volatility, the (rating) impact of 
varying default rates is more moderate for higher 
volatilities. 

Sensitivity to Structural Features – Note 
Coupon and Leverage
Finally, we assess the impact of changing two 
structural features – note coupon and maximum 
leverage – on CPDO risk and ratings. Figure 17 
shows a comparison of the usual risk measures 
for coupons between 40 bp and 200 bp and two 
levels of leverage – 15x (standard assumption) 
and 10x. 

The fi gure provides some interesting insights. 
Firstly, using a CPDO model with parameters 

Figure 14: PD, CO and LGD by Volatility – Constant Versus Dynamic Time Decay

Note: Comparison of a constant time-decay assumption versus a linked spread/time-decay approach (Aggregate Model = AggM) 
for a CPDO. Standard assumptions are applied to all other parameters. The constant is chosen to match the average of 
AggM (σ =  35%, LTS = 70%, MRS = 40%, S_0 = 35 bp).
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21  We have also experimented with a spread-dependent bid-offer spread refl ecting the fact that in a wider trading market, bid-offer spreads are likely to be higher. 
The results, however, were fairly insensitive when compared with a constant bid-offer spread identical to the average of the spread-dependent approach.
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that are in line with empirical research (σ = 35%, 
LTS = 70 bp, MRS = 40%, spread-dependent 
α, 1 bp bid-offer spread) and assuming a 35 bp 
initial spread level, a AAA rating seems only to be 
consistent with an 80 bp (or lower) coupon, while 
a transaction offering a 200 bp coupon would be 
assigned a BBB (high) rating for the hypothetical 
15x leveraged trade. 

Reducing leverage essentially increases the PD, as 
there are more scenarios under which the CPDO 
just does not reach its target. On the contrary, 
lower leverage has a positive effect on LGD, as it 
essentially reduces the number of cash-out events 
(i.e., a CPDO with lower leverage is more resilient 
in a bad credit environment). 

2.7 RATINGS SENSITIVITY:
“EMPIRICAL” VERSUS 
“OPTIMISTIC” MODEL 
CALIBRATION
We now compare the risk profi le of a number of 
CPDOs – differing only in the coupon they offer 
– and consider two models; one that is calibrated 
in line with the empirical fi ndings presented above 
and one that takes a more optimistic view on some 
of the parameters; namely, σ = 25% and α = 0.7.  

Figure 18 highlights once again the sensitivity of 
CPDO risk measures (PD and LGD) to modelling 
assumptions. The increase in LGD stems predomi-
nantly from the higher volatility of 35% (at the 
lower end of our empirical estimates) compared 
with the 25% assumed under the optimistic model 
calibration. The increase in PD (failure to redeem 

Figure 15: iTraxx Bid-Offer Spread in bp for Different Series

Source: The Royal Bank of Scotland (RBS) and Bloomberg.
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Note: Sensitivity of a standard CPDO to changes in bid-offer spread. Standard assumptions are applied to all other parameters 
(σ =  35%, LTS = 70%, MRS = 40%, α = AggM, S_0 = 35 bp).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.25 0.5 1 1.5 2

Bid/Ask (bp)

0

0.1

0.2

0.3

0.4

0.5

0.6

PD (LHS) CO (LHS) LGD (RHS)

AA

BBB (high)

A

BB (high)

BB



CPDOs Laid Bare: Structure, Risk and Rating Sensitivity
April 2007

24

par) stems from this increase in volatility, but also 
from the assumption of lower average time decay. 
Figure 18 also reveals the difference in model-
implied ratings under these two different model 
calibrations. Under the optimistic setting, CPDOs 
up to a coupon of 200 bp would be rated AAA, 
whereas the empirical setting only allows a rating 
of AAA for an 80 bp coupon, whereas a 200 bp 
coupon would imply a BBB (high) rating.

Figure 19 shows the sensitivity of a standard 200 
bp CPDO (15x) to initial spread under the empiri-
cal parameterisation.

It is apparent that the lower the starting spread, 
the higher the PD and the lower the LGD, caused 
by two effects. Firstly, if the starting spread 
is lower, the mean reversion of credit spreads 
pushes average spreads toward the LTS, resulting 

in higher MTM losses for lower initial spreads. 
Secondly, under a lower starting spread, the excess 
spread is lower during the fi rst few roll dates 
as the CPDO sells protection at a lower spread, 
which also has a negative impact on NAV. 

Interestingly, our empirical model parameterisation 
leads to results broadly in line with Varloot et al. 
(2006), where according to their model, a CPDO 
paying a 100 bp coupon would be rated BBB (high) 
given an initial spread of 30 bp. Although an exact 
comparison is not possible because the leverage 
mechanism and other structural features may vary 
slightly, the empirical model implies a BBB rating 
for a CPDO paying a coupon of 100 bp with 
maximum leverage of 10x and an A (low) rating 
for a maximum leverage of 15x.

Figure 17: PD, CO and LGD – Impact of Leverage and Note Coupon (S_0 = 35 bp)

Note: Sensitivity of a CPDO to changes in leverage and note coupon. 
Standard assumptions are applied (σ = 35%, LTS = 70%, MRS = 40%, α = AggM, S_0 = 35 bp).
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2.8 SUMMARY AND DISCUSSION 
The previous sections provided a brief overview of 
the main economic risk factors affecting CPDOs, 
the empirical data available to estimate models 
and the sensitivity of CPDOs to model risk and 
assumptions on the relevant model parameters. 
From these experiments, we gained a deeper 
understanding of CPDO performance, allowing us 
to draw the following conclusions:
•  CPDOs are very sensitive to all spread model 

parameters: PD and LGD increase with spread 
volatility, PD decreases while LGD increases 
with LTS, and PD decreases with MRS while 
LGD is relatively insensitive.

•  CPDOs are extremely sensitive to assumptions 
on the steepness of the credit curve. Modelling 
the dynamics of fl atter term structures when 
spreads are wider reduces PD but increases LGD 
considerably.

•  CPDOs are very sensitive to bid-offer spreads, 
implicitly requiring any risk manager, analyst 
or investor to make an assumption on future 
liquidity.

•  Spread model risk in general is very high, up to 
a point where a misspecifi cation of one or more 
parameters increases risk multifold. In ratings 
terms, an overly optimistic parameterisation 

may lead to AAA ratings that, in the long run, 
might behave more like BBB ratings.

•  Sensitivity to credit losses is also high, high-
lighting that the package of assumptions across 
default, spread and liquidity needs to be con-
structed adequately.

•  Reducing leverage reduces LGD considerably 
and makes the CPDO more resilient to a severe 
credit downturn at the cost of increasing the PD.

•  The sensitivity to changes in initial spread also 
deserves further comment, as it may mitigate 
the high rating volatility that would otherwise 
accompany the sudden tightening or widening 
of spreads. For example, if spreads widen over 
a period of time, NAV losses will be partially 
offset by the higher carry that the CPDO 
can generate, which in turn may lead to less 
signifi cant rating changes, whereas spread tight-
ening will lead to NAV increases, dampening 
somewhat the downgrade actions. 

In light of the above, we strongly encourage 
market participants to engage in further discus-
sions on model risk and mitigation strategies, 
aiming toward the highest possible level of trans-
parency for complex structured credit products. 

Figure 19: PD, CO and LGD by Starting Spread

Note: Sensitivity of a standard CPDO to changes in initial spread. Standard assumptions are applied 
(σ =  35%, LTS = 70%, MRS = 40%, α = AggM).
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Back-Testing Insights

22  Using monthly data could lead to small inaccuracies caused by re-leverage and de-leverage mechanisms based on the NAV from the previous period. If we 
rebalance the positions daily, the NAV from the previous period will not be very different from the current NAV. However, in this case, as we only have 
monthly spread data, the MTM may have been changed dramatically within a month. Obviously, daily rebalancing allows the strategy to react faster to the 
NAV changes, thus better implementing the strategy. However, this means that transaction costs are also likely to be higher.  

23  Although the true slope could also have been taken into consideration, the good model fi t provides a good and effi cient proxy throughout the back-testing 
analysis.

24 For details, see Jobst et al. (2007).

In addition to the previous analysis, we have 
conducted a series of back-testing experiments. 
Although index composition has changed over 
time and CDS indices have only been trading since 
2004, we can still set up a number of experiments 
using observed aggregate default rates and his-
torical BCDS spreads. The main objective of this 
section is to provide some insight into the MTM 
and ratings volatility of a CPDO. The latter, of 
course, is of great interest to investors and rating 
agencies alike.

We assume that a CPDO with a certain coupon 
(e.g., 200 bp) is launched at various different 
points in the past (e.g., March 1997, June 1997, 
etc.). Within the analysis, we assume a constant 
1 bp bid-offer spread, IG average default rates 
as published in Vazza et al. (2005) and Lehman 
Brothers’ monthly BCDS data.22 The aggregate 
slope model developed above is employed as a 
proxy for index term structure.23 Adding data on 
the actual term structure of interest rates allows 
us to compute the CPDO NAV going forward. 
Figure 20 and Tables 13 and 14 show the respec-
tive spread and default data. 

The spread evolution is approximated by a linear 
combination of observed BCDS spreads to refl ect 
the average ratings distribution in the indices. 
Defaults are assumed to take place at the begin-

ning of the year and are in line with the historic 
rating-specifi c default rates observed over this 
period (Table 13). We consider an IG default rate 
that translates into 3.4 defaults for the 250-name 
reference portfolio, as well as a more conservative 
BBB experience that translates into 7.4 defaults (see 
Table 14). Although the average credit quality in 
the index is only marginally better than BBB, the 
fact that the indices roll should reduce default risk 
considerably. We therefore consider frequently the 
IG experience in our back-testing exercise.
Figure 21 shows the NAV performance of a 
number of CPDOs issued at different times. From 
left to right, each line represents a single CPDO 
issued six months after the previous transaction. 
Each CPDO offers a coupon of 200 bp and can be 
leveraged up to 15x. 

Figure 21 reveals that NAV volatility can be 
very high, depending on the date the CPDO 
was issued. Although CPDOs appear very path-
dependent, even under the BBB default rate, 
all CPDOs redeem par at maturity (i.e., cash in 
early). Reducing the underlying defaults to IG 
level would still lead to a very high NAV volatility, 
indicating that most volatility stems from spread 
widening (and, most importantly, its timing).24

Repeating the above analysis assuming that index 
spreads evolved according to BBB BCDS spreads 

Figure 20: BCDS history (1994–2006)

Note: BCDS spread history for “A” and BBB. Combined denotes a hypothetical spread history comprising 40% “A” and 60% BBB credits.
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has a more signifi cant impact on CPDO perfor-
mance. Although the use of BBB spreads may be 
very conservative, Figure 1 in Appendix 1 indi-
cates that on average, BBB BCDS spreads are in 
line with CDX over the two-year period from 
November 2004 to November 2006. Although all 
CPDOs would cash in if no defaults occurred in 
the underlying indices, under moderate IG default 
rates, seven CPDOs fail to redeem par at maturity. 
Furthermore, under the more conservative BBB 
default assumption, 22 defaults occur, out of which 
21 correspond to cash-out events. These cash-out 
events occurred during the third quarter of 2002, 

with a starting spread from November 29, 1996, to 
July 31, 1998, in the range of 20 to 30 bp, subse-
quently widening to around 220-255 bp. 

Although the scenario leading to cash-out events 
is somewhat extreme, this example further high-
lights the NAV sensitivity and path dependence 
of CPDOs, and shows that the timing of issuance 
seems to be crucial. With that in mind, one can 
also reach an opinion about the severity of the 
1998–2002 credit cycle and whether or not a 
product issued in 1997 should survive the subse-
quent events.25

Table 14: Defaults in 250-Name CDO Portfolio

% 1994 1995 1996 1997 1998 1999 2000

IG 0.13 0.1 0 0.2 0.35 0.35 0.43

BBB 0 0.43 0 0.6 1.03 0.48 0.93

% 2001 2002 2003 2004 Total Defaults

IG 0.5 1.13 0.25 0 3.43

BBB 0.83 2.53 0.55 0 7.35

Note: Derived from IG and BBB default rates by multiplying the annual default rate by 250.

Table 13: Annual Default Rates for IG and BBB-Rated Corporates (1994-2004)  

% 1994 1995 1996 1997 1998 1999 2000

IG 0.05 0.04 0 0.08 0.14 0.14 0.17

BBB 0 0.17 0 0.24 0.41 0.19 0.37

% 2001 2002 2003 2004    

IG 0.2 0.45 0.1 0  

BBB 0.33 1.01 0.22 0    

Source: Vazza et al., 2005.

Figure 21: CPDO NAV Performance – BBB Defaults and Combined Spreads

Note: NAV evolution of standard CPDOs issued between June 1994 and November 2005 in six-month intervals. From left to right, 
each line represents a single CPDO, issued six months after the previous transaction. The combined BCDS spread history (60% BBB, 
40% “A”) and BBB default rates have been used in the NAV computation.
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25  One may argue that our back-testing data is highly conservative, as IG and especially BBB default rates are unlikely to have occurred within the index 
portfolios as a result of asset selection and index rolls. Similarly, one may argue that credit markets nowadays are so much more effi cient that such extreme 
spread widening is not expected to occur again in modern markets. On the contrary, one may argue that the 1998–2003 period hardly corresponds to a 
AAA or AA environment, and as a result, a CPDO rated AAA or AA would have to withstand such stress tests.
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We now look closer at the path dependence of 
CPDOs, focusing mostly on two different points 
in time of CPDO issuance: June 30, 1994, and 
February 28, 1997. Figure 22 shows the corre-
sponding NAV evolution.

Although the CPDO redeems at par in each case, 
the NAV volatility and extreme path dependence 
is clearly visible. Starting in 1994, the structure 
would have generated enough carry and NAV gain 
to de-lever during the fi rst three years, and subse-
quent spread widening would affect the transaction 
to a lesser extent. Figure 23 and Figure 24 illustrate 
this in more detail. The NAV plot (Figure 23) also 

shows the cash-in barrier (approximated assuming 
a constant 5% interest rate). 

In contrast, issuing the CPDO in 1997 would lead 
to NAV deterioration below 20%, close to a cash-
out event. This is caused by an NAV that declines 
from the outset, and as a result the CPDO runs at 
the maximum leverage for a prolonged period. As 
spreads continue to widen, high leverage leads to 
severe NAV deterioration. Figure 25 and Figure 
26 illustrate this more clearly.

25  One may argue that our back-testing data is highly conservative, as IG and especially BBB default rates are unlikely to have occurred within the index 
portfolios as a result of asset selection and index rolls. Similarly, one may argue that credit markets nowadays are so much more effi cient that such extreme 
spread widening is not expected to occur again in modern markets. On the contrary, one may argue that the 1998–2003 period hardly corresponds to a 
AAA or AA environment, and as a result, a CPDO rated AAA or AA would have to withstand such stress tests.

Figure 22: CPDO NAV Performance for Two Different Issuance Dates

Note: NAV evolution of a standard CPDO issued at two points in time, 30 June 1994 and 28 February 1997. The combined spread 
history (60% BBB, 40% A) and both BBB and IG default rates are used in the NAV computation. The BCDS spread history 
is also shown.
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Figure 23: Evolution of NAV for a Standard CPDO Issued on 30 June 1994

Note: 200 bp coupon, 15x maximum leverage.
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RATING STABILITY
In addition to concerns about MTM and NAV 
volatility, many market participants are also 
concerned about the rating stability of the CPDO 
product. Figure 22 also provides some initial 
insight into a possible rating evolution. Using 
our CPDO model parameterised in line with the 
empirical fi ndings, we have determined indicative 
ratings at issuance and then re-rated the transac-
tion every year until cash-in takes place. For both 
the 1997 and 1994 issuance, we have assumed 
the CPDO has a coupon of 200 bp and maximum 
leverage of 15x, resulting in an initial rating of 
AAA in June 1994, when spreads were at around 

50 bp, and BB (high) in February 1998, when 
spreads were trading between 20 bp and 30 bp. 

Despite the stable NAV evolution for the deal 
issued in 1994, Figure 22 reveals that ratings 
may fl uctuate considerably under this scenario. 
The transaction would still be rated AAA in May 
1996, but would be downgraded to BBB (low) 
and BB (high) within two years because of the 
extremely tight spread environment of 24 bp and 
28 bp in May 1997 and May 1998, respectively.26 
This volatility would be problematic for investors, 
particularly those that are forced to liquidate their 
positions at certain rating triggers. Note 

Figure 24: Evolution of Leverage for a Standard CPDO issued on 30 June 1994

Note: 200 bp coupon, 15x maximum leverage.
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Figure 25: Evolution of NAV for a standard CPDO issued on 30 October 1997

Note: 200 bp coupon, 15x maximum leverage.
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26  This may seem counter-intuitive, given the high NAV, but results from the fact that very tight spreads automatically lead to lower ratings in a pure “mark-
to-model” framework.
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especially that one year later, with spreads at 55 
bp to 60 bp, the model-implied rating moves 
back to AAA (the higher level of spread compen-
sates for the NAV decline over that period). This 
example highlights the possible ratings volatility 
in the CPDO product, as well as the importance 
of a transparent and consistent surveillance 
approach by rating agencies.

The transaction issued in February 1997 would 
have had ratings varying between NIG and IG 
throughout its life. Given the initial low rating of 
BB (high), such high rating volatility is perhaps 
not unreasonable. 

Additional back-testing experiments reveal that 
lower leverage generally stabilises the structure, 

in that MTM and NAV volatility are reduced 
and the likelihood of cash-out events decreases, 
which also results in lower LGD. On the other 
hand (and possibly against our intuition at fi rst 
sight), the probability of investors not receiv-
ing full principal may increase, resulting in more 
situations where the structure does not cash in 
before maturity, but with lower LGD. Similarly, 
decreasing the coupon stabilises the structure and 
signifi cantly increases the probability of cashing in 
before maturity. Unfortunately, in an environment 
where a cash-out event is more likely, a lower 
coupon has little effect on NAV stability and 
CPDO performance.

Figure 26: Evolution of Leverage for a Standard CPDO  issued on 30 Ocotber 1997

Note: 200 bp coupon, 15x maximum leverage.
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We have shown that there are signifi cant chal-
lenges in the estimation of suitable models and 
risk parameters for accurate analysis of CPDO 
risk and ratings, due in large part to the relative 
paucity of CDS index spread data. These chal-
lenges are exacerbated by a high level of model 
risk, where CPDO risk measures such as PD and 
LGD can be very sensitive to both the choice 
of model and modelling assumptions. Market 
participants, therefore, need to derive proxies 
for missing data and/or enrich the modelling 
paradigm by qualitative judgement (e.g., on future 
liquidity and bid-offer spreads of CDS indices). 
This combination of quantitative and qualita-
tive analysis is crucial, as we have shown that 
– depending on the level of coupon and leverage 
– an indicative rating of a typical CDPO can differ 
by multiple rating categories between optimistic 
modelling assumptions and those in line with the 
empirical estimates derived in this study. 

DBRS encourages all market participants, and 
particularly investors, to review all modelling 
assumptions very carefully and to insist on the 
maximum level of transparency and disclo-
sure possible. Although CPDOs clearly involve 
multiple risks, we believe that there is potential 
to mitigate some of these risks in the next wave 
of CPDO structures, driven by a high demand 
from arrangers and asset managers toward 
bespoke CPDO strategies. Managed CPDOs may 
reference well-diversifi ed, bespoke portfolios; 
introduce fl exibility around the roll date and 
variable coupon and/or leverage mechanics; and 
execute early hedging of reference obligations 
with declining credit quality, all of which show 
potential for risk mitigation and additional ratings 
stability. For example, lower volatility collateral 
such as asset-backed securities (ABS) or com-
mercial mortgage-backed securities (CMBS) may 
mitigate some of the cash-out risk, and effi cient 
credit selection (highly liquid collateral) may 
help reduce transaction and roll costs. However, 
it goes without saying that the risk management 
and quantitative framework required to address 
many of these enhancements needs to be at least 
as transparent and empirically grounded as the 
one for static, index-based products. One of the 
key remaining challenges is the development of an 
integrated spread and default risk engine, appli-
cable at both an index and single-name level.  

Model risk and ratings aside, the path dependence 

and automatic-trading rules lead to interest-
ing relative-value considerations. For example, 
Varloot et al. (2006) show that CPDOs offer a 
fair amount of carry, similar to a traditional mez-
zanine tranche or rated equity. Furthermore, the 
authors also provide the following observations in 
a series of interesting scenario analyses:
•  CPDOs behave very well in good but also mildly 

bearish credit environments. An adequate risk 
assessment is still required, however, as no 
principal protection (as in CPPI) is guaranteed 
and in extreme scenarios, CPDOs do not redeem 
at par.

•  CPDOs perform best in mildly bearish credit 
environments and if an investor is bullish, he or 
she would prefer fi rst-lost products such as rated 
equity or zero equity. For bearish investors, 
CPDO is a good investment unless they don’t 
want  to be long credit at all. 

•  CPDOs can be potentially volatile, but on 
average their risk profi le is not too far from a 
CDO mezzanine 6%-9% tranche for a buy-and-
hold investor.

The fact that CPDOs are similar to a range of 
different products (e.g., rated equity or mezza-
nine tranches) for different credit environments 
highlights the complexity of modern structured 
credit transactions. If the risk and return profi le is 
properly assessed, CPDO notes can provide a high 
level of capital effi ciency within an investment 
portfolio. 

Overall, DBRS is both able and willing to provide 
rating opinions on these products, but feels that 
more transparency, disclosure and dialogue 
among market participants are necessary to 
adequately assess the risks in complex structured 
products. Given the high path dependence, NAV 
and potential ratings volatility, DBRS feels that 
clear and transparent ratings and surveillance 
processes, combined with measures that quantify 
ratings volatility, are necessary in order to provide 
market participants with a good indication of the 
“true” risk in complex structured credit products 
such as CPDOs.

While this report focuses on index-based CPDOs, 
the market is moving toward managed structures 
that allow structural enhancements (e.g., short 
buckets) and the consideration of bespoke portfo-
lios. DBRS is currently expanding its quantitative 
platform to address these proposals. 

Concluding Remarks
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The analysis presented in this document has 
been based on a number of different spread data 
sources.

CDX/ITRAXX INDEX SPREADS 
– MARKIT
Index spread data is available on iTraxx and CDX 
from March 2004. From March 2005 onward, 
quotes for both indices for maturities of three, 
fi ve, seven and ten years are available.

BOND YIELD SPREADS 
– BLOOMBERG
We have compiled data on U.S. industrial bond 
yields aggregated by rating and deducted the 
yield-to-maturity of a risk-free treasury bench-
mark with similar maturity. Index level data and 
U.S. and euro-zone industrial yields are available 
from August 1991 and 2001, respectively. As a 
risk-free benchmark, we have employed interest 
rate swap quotes (LIBOR or Euribor) rather than 
yields on Treasury bills, which is consistent with 
empirical research (see Hull and White (2005)) on 
CDS markets.

BOND-IMPLIED CDS (BCDS) 
SPREADS – LEHMAN BROTHERS
In a series of publications (see Mashal and Naldi 
(2005) and Berd et al. (2004)), Lehman Brothers 
discusses BCDS spreads. Essentially, corporate 
bond pricing is used to fi t (or strip out) term 
structures of survival probabilities. These survival 
probabilities are then used in the standard CDS 

pricing equation, resulting in BCDS spreads. This 
implementation ensures that BCDS spreads are 
directly comparable with CDS spreads and there-
fore suitable for CPDO analysis. We have monthly 
data for “A,” BBB and BB indices for maturities 
of three, fi ve and seven years over the period May 
1994 to November 2006. Similar bi-monthly data 
is available from May 1997 and daily data from 
January 2002.

COMPARATIVE ANALYSIS
While a full comparison of various bond measures 
is beyond the scope of this discussion, a good 
understanding can be gained from Berd et al. 
(2004) and O’Kane and Sen (2004). Intuitively, 
the fact that BCDS spreads are based on standard 
CDS conventions and directly comparable with 
CDS quotes (in contrast to option-adjusted 
spreads (OAS) or yield spreads) makes BCDS 
spreads a good choice for further analysis. 
Appendix 1 Figure 1 plots fi ve-year CDX, iTraxx 
and BBB BCDS spreads from November 2004 
to January 2007. It is apparent that during the 
correlation crises of May 2005, caused by the 
downgrade of Ford Motor Company and General 
Motors Corporation, the CDS market appeared 
to have reacted stronger than the bond market. 
Furthermore, since August 2006, CDS spreads 
have continued to tighten compared with BBB 
bond-implied spreads, which may be caused, to 
some degree, by technical factors (such as the 
hype surrounding CPDOs).

Appendix 1: Spread Data 

Appendix 1 Figure 1: Comparison of BCDS Spreads with iTraxx and CDX Spreads
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Appendix 1 Figure 2 shows a comparison of BBB 
BCDS spreads to BBB yield spreads computed 
from Bloomberg U.S. Industrial fair-value spreads 
and risk-free, benchmark fi ve-year swap rates.  
The fi gure reveals a high correlation and also that 
yield spreads were 100 bp tighter than BCDS 
spreads in 2002. This difference can be explained, 
as BCDS spreads (just like actual CDS spreads) 
are based on the concept of default arrival (and 
its probability), while nominal spreads are simply 
differences between internal rates of returns. 

Typically, when there is a sharp decrease in 
observable bond prices, default probabilities 
(and BCDS spreads) react more signifi cantly than 
bond yields, which are still discounting all of the 
promised cash fl ows as if they were going to be 
received by investors with certainty. We therefore 
believe that BCDS spreads provide a suitable 
proxy for credit spread analysis in the absence of 
suffi cient CDS data.

Appendix 1 Figure 2: Bond Yield Spread Versus BCDS
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Appendix 2: CPDO Cash Flow Mechanics

Evaluating a CPDO requires a series of distinct 
steps in order to compute the strategy NAV, short-
fall and hence required leverage. In broad terms, a 
CPDO algorithm can be described by the following 
steps, assuming the algorithm has been executed up 
to time , and we are now at time :

(1) Simulate spreads and rates for time  
(survival curves and discount factors).

(2) Generate default events for period .

(3) Book incurred defaults. 

(4) Update risky exposure due to default events in 
preceding period. 

(5) Calculate value of liabilities and assets, 
 and . 

(6) Calculate MTM. 

(7) Calculate cash balance (add rate and spread 
income and subtract fees, default losses and 
coupons). 

(8) Calculate NAV. 

(9) Calculate target leverage. 

(10) Calculate implied leverage. 

(11) Adjust leverage. 

(12) Update risky exposure due to change of 
leverage. 

(13) Update cash balance (e.g., realised MTM 
losses or gains as a result of adjusting notional on 
rebalancing or roll dates). 

(14) Update effective contractual spread due to a 
leverage-up event. 

In the following section, we will outline most 
of these steps in further detail, starting with 
the present value liabilities and assets (step 5), 
assuming spreads are simulated according to the 
models outlined in Section 2.

PRESENT VALUE (PV) 
OF LIABILITIES
The PV of liabilities at time is obtained by 
discounting coupon payments C( ), fees F( ) 
and note notional N at the risk-free discount rate, 
taking into consideration the actual day count 
fraction  between periods  and :

  

 

.

Here B(t,T) denotes the present value of a risk-
free zero-coupon bond (ZCB) with maturity T as 
seen at time t and can be given by

 

where ( ) denotes the expectation under the 
risk-neutral (pricing) measure and r(t) the spot 
interest rate/short rate.1 

PRESENT VALUE OF ASSETS
In order to compute the PV of assets, a risky 
discount factor or survival probability needs to be 
computed. A simple approach is to assume that 
the term structure of the index spread corresponds 
to a constant hazard rate . This assumption 
implies that the corresponding survival curve is 

. Considering a CDS expiring at time T in 
a continuous setting, one obtains

.

1  Depending on the model chosen for the short-rate process r(t), B(t,T)  may be derived in closed form. For example, the CIR model 
(Cox et al. (1985)) is a popular, mean-reverting short-rate model for interest rates: , where  denotes the steady-state 

or long term mean of r,  mean reversion speed, α the interest rate volatility, and Zr the usual Wiener process. It can be shown that this model allows 

one to compute the price of a ZCB as , where ,  and 

.
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This leads to the relationship . As a 
result, the risky discount factor or survival prob-
ability is given by

.
The PV of the assets consisting of a short CDS 
exposure is then given by

, where 

 denotes the present value of a 
risky coupon stream between times Tg and  
(risky duration), and  the contractual 
CDS spread that applies to time Tg.

RISKY EXPOSURE
The risky exposure is defi ned as the total notional 
of the short CDS position: 

with initial condition: 

MTM OF RISKY CDS 
INDEX POSITION
A MTM gain or loss is realised at any rebalancing 
event or roll date when protection is bought back 
on the off-the-run index and sold on the new, 
on-the-run index. For the roll date, this MTM is 
given by

where   denotes the spot spread at time 
Tg, ba the bid-offer spread on the index, and 

 the indicator function equal to 1 if Tg 
denotes a roll date. The MTM is computed 
accordingly in between roll dates when the CDS 
position is rebalanced (caused by changes in 
leverage). 

VALUE OF CASH ACCOUNT
The cash account is credited with the following: 
• Accrued interest in the LIBOR account. 
•  Credit premiums from the risk holding (CDS 

index portfolio).
•  Realised MTM gains on any roll or rebalancing 

date.

The cash account is debited with the following: 
• Note coupon payments.
• Losses from defaults. 
•  Realised MTM losses on any roll or rebalancing 

date.
• Fees. 
The balance of the cash account is given by 

Here  denotes credit losses from defaults, 
F, and C fees and coupons as introduce above, 
and  incorporates an 
upfront fee .

STRATEGY NAV
The NAV is the net value of the asset position. 
This means that it equals the present value of the 
CDS position plus the value of the cash account: 

.

LEVERAGE FACTOR
The target leverage  is defi ned as the 
leverage that makes the expected income equal 
to the difference in expected future costs (PV of 
liabilities) and total asset value (PV of assets), also 
denoted as the shortfall. More precisely, it is the 
leverage that makes the present value of the assets 
equal to the difference in the present value of 
the liabilities and the NAV. The setup of CPDOs 
varies. For example, a more aggressive leverage 
strategy may be employed by means of a gearing 
factor; this means that the CPDO may acceler-
ate the “catching-up” of the shortfall. A strategy 
may also include a cushion (here introduced as 
fraction cush of the notional). This means that the 
target leverage will be such that asset value will be 
higher than what is required to cover the shortfall 
at all times (up to the maximum allowed contrac-
tual leverage). 

More formally, we obtain from

 
the target leverage implemented by the CPDO 
strategy:
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The implied leverage2 at any point in time is 

The rebalancing procedure is controlled by the 
rebalancing factor (rf) given as a percentage of the 
target leverage. If the absolute value of the current 
leverage and the target leverage is bigger than rf, 
rebalancing will occur. More precisely we have 

 

Essentially, if the current leverage, 
denoted by , lies within the 
bounds given by the rebalancing factor 

, 
no rebalancing action is required and the new 
leverage . 
On the contrary, if 

,
 the new leverage is set at the target leverage, i.e., 

.

After determining the new leverage, the new risky 
exposure is given by  as 
previously defi ned.

SELLING ADDITIONAL INDEX 
PROTECTION (INCREASING 
LEVERAGE)
If the CPDO leverage mechanism determines that 
the portfolio should be de-levered, the CPDO 
buys back protection on a fraction of the holding, 
at which point the proceeds are realised in the 
cash account in the form of realised MTM gains 
or losses (depending on the spot spread  
at time Tg  compared with the contractual spread  

).

After levering up, however, the new contractual 
spread income equals the old contractual spread 
income on the old risky exposure plus the spot 
spread income on the additional risky exposure, 
and this defi nes the new effective contractual 
spread at time Tg (required in the subsequent com-
putation of the PV of assets). Starting from

 
we obtain
  

, where 
 

denotes the percentage weighted holding on which 
we generate the previous contractual spread. 

2 Implied from the current position.
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Appendix 3: Cumulative Corporate Default Probabilities

Cumulative Corporate Default Probabilities

Maturity (Years) AAA AA A BBB BB B CCC

1 0.017% 0.047% 0.073% 0.304% 2.206% 5.299% 46.789%

2 0.043% 0.113% 0.172% 0.695% 4.386% 10.554% 60.798%

3 0.078% 0.190% 0.294% 1.145% 6.438% 15.186% 66.091%

4 0.123% 0.277% 0.439% 1.635% 8.341% 19.155% 68.785%

5 0.177% 0.373% 0.607% 2.154% 10.096% 22.540% 70.541%

6 0.241% 0.480% 0.796% 2.693% 11.712% 25.435% 71.861%

7 0.315% 0.597% 1.008% 3.246% 13.198% 27.925% 72.924%

8 0.399% 0.727% 1.240% 3.807% 14.567% 30.080% 73.809%

9 0.493% 0.868% 1.492% 4.374% 15.828% 31.959% 74.561%

10 0.597% 1.022% 1.762% 4.943% 16.994% 33.608% 75.209%
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