1. This exercise is related to the *Dictionary Order*. Consider the choice set
\[B = \{(x, y) : x \in [0, \infty) \text{ and } y \in [0, \infty)\}. \]
Consider the following preference relation:
\[(x_1, y_1) \in B \text{ and } (x_2, y_2) \in B \]
\[(x_1, y_1) \succeq (x_2, y_2) \text{ if and only if } \]
\[[x_1 > x_2] \text{ or } [x_1 = x_2 \text{ and } y_1 \geq y_2]. \]
Show that \(\succeq \) satisfies the three axioms of Reflexivity, Comparability and Transitivity.

2. Recall the “Order Preserving” Axiom:
For any \(x, y \in B \), where \(x \succ y \) and \(\alpha, \beta \in [0, 1] \),
\[[\alpha x + (1 - \alpha)y] \succ [\beta x + (1 - \beta)y] \text{ if } \alpha > \beta. \]
Show that the above Dictionary Order satisfies this Axiom.

3. It is known that the Dictionary Order does not satisfy the “Intermediate Value” Axiom. Show that the function
\[U(x, y) = \ln(x + y) \]
cannot be an utility function representing the Dictionary Order.
Hint: A utility function \(U : B \to \mathbb{R} \) satisfies
(i) \(x \succ y \) if and only if \(U(x) > U(y) \).
(ii) \(x \sim y \) if and only if \(U(x) = U(y) \).

4. Suppose an investor has exponential utility function \(U(x) = -e^{-ax} \) and an initial wealth \(W \).
The investor is faced with an opportunity to invest an amount \(w \leq W \) and obtain a random payoff \(x \). Show that his evaluation of this incremental investment is independent of \(W \). Try to develop your argument from the first principle.

5. Consider the exponential utility function
\[u(x; \gamma) = \begin{cases}
\frac{e^{\gamma x}}{\gamma}, & x \in \mathbb{R} \text{ for } \gamma \in (-\infty, 0) \\
x, & x \in \mathbb{R} \text{ for } \gamma = 0
\end{cases} , \]
show that its inverse function is given by

(i) \(\gamma \in (-\infty, 0) \)

\[
\begin{align*}
 u^{-1}(y; \gamma) = \begin{cases}
 \frac{1}{\gamma} \ln y, & y < 0 \\
 \infty & y \geq 0
 \end{cases}
\end{align*}
\]

(ii) \(\gamma = 0 \)

\[
 u^{-1}(y; \gamma) = y \quad y \in \mathbb{R}.
\]

Assume \(X > 0 \) is a bounded positive random variable. Suppose we choose \(\gamma \neq 0 \) but small, by taking the Taylor expansion of \(u^{-1}(E[u(X); \gamma]) \), show that

\[
 u^{-1}(E[u(X); \gamma]; \gamma) = E[X] + \frac{\gamma}{2} \text{var}[X] + \cdots.
\]

Give the financial interpretation of the above result (recall that \(\gamma < 0 \)).

6. Suppose an individual faces with an uncertain loss \(X \) in the next period. He is willing to pay an amount \(\rho \) as risk premium so that the future loss becomes a deterministic quantity \(E[X] \).

Let \(u(x) \) denote his utility function. The payment of the insurance premium is to guarantee

\[
 E[u(x)] \leq u(E[X] - \rho).
\]

Since \(u(E[X] - \rho) \) is a monotonically decreasing function with respect to \(\rho \), the maximum amount of premium paid by the individual is given by

\[
 E[u(X)] = u(E[X] - \rho).
\]

Show that

\[
 \rho(X) = - \frac{\text{var}(X) u''(E[X])}{2} + \frac{\rho^2}{u'(E[X])} \int_0^1 \alpha u''(E[X] - (1 - \alpha)\rho) \, d\alpha
\]

\[
 - E \left[\frac{r(X, E[X])}{u'(E[X])} (X - E[X])^2 \right].
\]

Hint: The Taylor series expansion of \(u(x) \) up to the second order term is given by

\[
 u(x) = u(x_0) + u'(x_0)(x - x_0) + \frac{u''(x_0)}{2}(x - x_0)^2 + r(x, x_0)(x - x_0)^2
\]

where

\[
 r(x, x_0) = \int_0^1 \alpha [u''(\alpha x_0 + (1 - \alpha)x) - u''(x_0)] \, d\alpha.
\]