1. Suppose \(u(w) = \ln(w) \). Show that the inverse function \(I(i) = i^{-1} \), the Lagrange multiplier \(\lambda = v^{-1} \), the optimal attainable wealth is \(W = vL^{-1}B_1 \), and the optimal objective value is \(\ln(v) - E[\ln(L/B_1)] \). Compute these expressions and solve for the optimal trading strategy in the case where \(N = 1, K = 2, r = 1/9, S_0 = 5, S_1(\omega_1) = 20/3, S_1(\omega_2) = 40/9 \), and \(P(\omega_1) = 3/5 \).

2. Suppose \(u(w) = \gamma^{-1}w^\gamma \), where \(-\infty < \gamma < 1 \) and \(\gamma \neq 0 \). Show that the inverse function \(I(i) = i^{-1/(1-\gamma)} \), the Lagrange multiplier
\[
\lambda = v^{-(1-\gamma)}\{E[(L/B_1)^{-\gamma/(1-\gamma)}]\}^{(1-\gamma)}
\]
the optimal attainable wealth
\[
W = \frac{v(L/B_1)^{-1/(1-\gamma)}}{E[(L/B_1)^{-\gamma/(1-\gamma)}]}
\]
and the optimal objective value \(E[u(W)] = \lambda u' \). Compute these expressions and solve for the optimal trading strategy in the case where the underlying model is as in Problem 2.

3. Derive formulas for \(\lambda, C_0 \), and \(C_1 \) for the consumption investment problem in the case where the utility function is:
 (a) \(u(c) = -\exp(-c) \).
 (b) \(u(c) = \gamma^{-1}c^\gamma \), where \(-\infty < \gamma < 1 \) and \(\gamma \neq 0 \).

4. Suppose we allow the customer to have income or endowment \(\bar{E} \) at time \(t = 1 \), where \(\bar{E} \) is a specified random variable. Consider the optimization problem:
\[
\begin{align*}
\text{maximize} \quad & u(C_0) + E[u(C_1)] \\
\text{subject to} \quad & C_0 + H_0B_0 + \sum_{n=1}^{N} H_nS_n(0) = v \\
& C_1 - H_0B_1 - \sum_{n=1}^{N} H_nS_n(1) = \bar{E} \\
& C_0 \geq 0 \quad C_1 \geq 0 \quad H \in \mathbb{R}^{N+1}
\end{align*}
\]
The pair \((v, \bar{E}) \) is sometimes called the endowment process for the consumer. Show that the consumption-investment plan \((C, H) \) is admissible if and only if
\[
C_0 + E_Q[C_1 - \bar{E}/B_1] = v
\]
for every risk neutral probability measure \(Q \).
5. Assume a one-period model. The aggregate consumption at time 0 is 8 units. There are three states at time 1, \(\{\omega_1, \omega_2, \omega_3\} \). All agents have homogeneous beliefs, and the probability of each state is 1/3. (This is the \(P \) measure.) The aggregate consumption in these states is
\[
C(\omega_1) = 64, \quad C(\omega_2) = 27, \quad C(\omega_3) = 125.
\]
The representative agent’s utility function is of the form
\[
v(c_0, C_1) = c_0^{1/3} + C_1^{1/3}.
\]
Suppose the three Arrow-Debreu securities are traded in this model. Compute the prices of these three securities. A traded asset exists that pays 1% of aggregate consumption at time 1 in each state. Find the price of this asset at time 0.

6. There are \(K = 3 \) states and \(N = 3 \) securities with the payouts
\[
\begin{align*}
d_1(\omega_1) &= 24, \quad d_2(\omega_1) = 44, \quad d_3(\omega_1) = 12 \\
d_1(\omega_2) &= 20, \quad d_2(\omega_2) = 44, \quad d_3(\omega_2) = 12
\end{align*}
\]
The prices of these securities are
\[
p_1 = 35, \quad p_2 = 40, \quad \text{and} \quad p_3 = 12.
\]
(a) Find the set of all the attainable consumption processes.
(b) Is the consumption process
\[
c(0) = 10, \quad c(T, \omega_1) = 6, \quad c(T, \omega_2) = 5, \quad c(T, \omega_3) = 12
\]
attainable? Find the initial endowment and the trading strategy that attain it.
(c) Is the consumption process
\[
c(0) = 0, \quad c(T, \omega_1) = 9, \quad c(T, \omega_2) = 1, \quad c(T, \omega_3) = 17
\]
attainable? Find the initial endowment and the trading strategy that attain it.
(d) Does the given price system permit arbitrage strategies?