1. (a) It is easily seen that
\[X_1(t + s) - X_1(s) = k \left[Z \left(\frac{t + s}{k^2} \right) - Z \left(\frac{s}{k^2} \right) \right] \]
is normally distributed with mean zero and variance \(k^2 \left(\frac{t + s}{k^2} - \frac{s}{k^2} \right) = t \). Also the increments \(X_1(t_{i+1}) - X_1(t_i) = k[Z(t_{i+1}/k^2) - Z(t_i/k^2)] \) over disjoint time intervals \([t_i, t_{i+1}], \, i = 1, 2, \cdots, n - 1\) are independent and \(X_1(t) \) is continuous at \(X_1(0) = 0 \). Hence \(X_1(t) \) is a standard Brownian motion.

(b) Since \(Z \left(\frac{1}{t} \right) - Z \left(\frac{1}{t + s} \right) \) and \(Z \left(\frac{1}{s} \right) \) are independent, it follows that
\[X_2(t + s) - X_2(s) = tZ \left(\frac{1}{t + s} \right) - s \left[Z \left(\frac{1}{s} \right) - Z \left(\frac{1}{t + s} \right) \right] \]
is normally distributed with mean zero and variance \(\frac{t^2}{t + s} + s^2 \left(\frac{1}{s} - \frac{1}{t + s} \right) = t \). To prove that the increments \(X_2(t_{i+1}) - X_2(t_i) \) over disjoint time intervals \([t_i, t_{i+1}], \, i = 1, 2, \cdots, n - 1\) are independent, since they are normal, it suffices to show that \(\text{cov}(X_2(t_{i+1}) - X_2(t_i), X_2(t_{j+1}) - X_2(t_j)) = 0 \), for \(i < j \). This follows from
\[
E[(X_2(t_{i+1}) - X_2(t_i))[X_2(t_{j+1}) - X_2(t_j)]] = t_{i+1}t_{j+1}E\left[Z \left(\frac{1}{t_{i+1}} \right) Z \left(\frac{1}{t_{j+1}} \right) \right] - t_{i+1}t_jE\left[Z \left(\frac{1}{t_{i+1}} \right) Z \left(\frac{1}{t_j} \right) \right] \\
- t_{i}t_{j+1}E\left[Z \left(\frac{1}{t_i} \right) Z \left(\frac{1}{t_{j+1}} \right) \right] + t_{i}t_jE\left[Z \left(\frac{1}{t_i} \right) Z \left(\frac{1}{t_j} \right) \right] \\
= t_{i+1}t_{j+1} - t_{i+1}t_j - t_{i}t_{j+1} + t_{i}t_j \\
= 0.
\]
To show that \(X_2(t) \) starts at \(t = 0 \) almost surely, we establish
\[
E \left(\lim_{t \to 0^+} |X_2(t)| \right) = \lim_{t \to 0^+} E |X_2(t)| \\
= \lim_{t \to 0^+} \sqrt{\frac{2t}{\pi}} \int_0^\infty xe^{-x^2/2} dx \\
= \lim_{t \to 0^+} \sqrt{\frac{2t}{\pi}} \\
= 0,
\]
implying \(P[\lim_{t \to 0^+} X_2(t) = 0] = 1 \). Hence \(X_2(t) \) is a standard Brownian motion.
2. We have

\[E \left[\int_t^T [Z(u) - Z(t)] \, du \right] = \int_t^T E[Z(u) - Z(t)] \, du = 0 \]

and

\[\var \left(\sigma \int_t^T [Z(u) - Z(t)] \, du \right) = \sigma^2 E \left[\int_t^T [Z(u) - Z(t)] \, du \right]^2 = \sigma^2 \int_t^T \int_t^T [Z(u) - Z(t)][Z(v) - Z(t)] \, dudv = \sigma^2 \int_t^T \int_t^T E[\{Z(u) - Z(t)\}\{Z(v) - Z(t)\}] \, dudv = \sigma^2 \int_t^T \int_t^T \min(u, v) - t] \, dudv = \sigma^2 \left[\int_t^T (u - t) \, du \right] \int_t^T \int_t^T (v - t) \, dv \int_t^T du) = \sigma^2 (T - t)^3/3. \]

3. By virtue of the properties of normal distributions and the definition of a Brownian motion, we observe that \(\sigma_1 dZ_1(t) + \sigma_2 dZ_2(t) \) is a Brownian motion with mean 0 and variance rate \(\sigma^2 \), where \(\sigma^2 = \sigma_1^2 + \sigma_2^2 + 2\rho_{12}\sigma_1\sigma_2 \). Define \(Z(t) = \frac{\sigma_1 Z_1(t) + \sigma_2 Z_2(t)}{\sigma} \), which is seen to be a Brownian motion with zero mean and unit variance rate. Note that \(dZ_1 dZ_2 = \rho_{12} dt \) in the mean square sense. For \(f = S_1 S_2 \), it follows that

\[
\begin{align*}
 df &= S_1 dS_2 + S_2 dS_1 + dS_1 dS_2 \\
 &= S_1 S_2 (\mu_2 dt + \sigma_2 dZ_2) + S_2 S_1 (\mu_1 dt + \sigma_1 dZ_1) + S_1 S_2 \sigma_1 \sigma_2 dZ_1 dZ_2 \\
 &= f(\mu_1 + \mu_2 + \rho_{12}\sigma_1\sigma_2) dt + f(\sigma_1 dZ_1 + \sigma_2 dZ_2) \\
 &= f \mu dt + f \sigma dZ.
\end{align*}
\]

From \(S_2(t) = S_2(0) \exp \left[\left(\mu_2 - \frac{\sigma_2^2}{2} \right) t + \sigma_2 Z_2(t) \right] \), we deduce

\[
S_2^{-1}(t) = \frac{1}{S_2(0)} \exp \left[\left(- \mu_2 + \frac{\sigma_2^2}{2} \right) t - \sigma_2 Z_2(t) \right].
\]

The corresponding dynamic equation is seen to be

\[
\frac{dS_2^{-1}}{S_2^{-1}} = (-\mu_2 + \sigma_2^2) dt - \sigma_2 dZ_2.
\]

From the first result, for \(g = S_1/S_2 \), it follows that

\[
dg = g\mu dt + g\sigma d\tilde{Z},
\]

where \(\mu = \mu_1 - \mu_2 - \rho_{12}\sigma_1\sigma_2 + \sigma_2^2 \), \(\sigma^2 = \sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2 \) and

\[
\tilde{Z}(t) = \frac{\sigma_1 Z_1(t) - \sigma_2 Z_2(t)}{\sigma}.
\]
4. First, we have \(\text{var}_P(X) = 2/3 \). By solving the following equations:

\[
E_P[X] = 2\tilde{P}[\omega] + 3\tilde{P}[\omega] + 4\tilde{P}[\omega] = 3.5,
\]

\[
\text{var}_P(X) = (2 - 3.5)^2\tilde{P}[\omega] + (3 - 3.5)^2\tilde{P}[\omega] + (4 - 3.5)^2\tilde{P}[\omega] = 2/3,
\]

and

\[
\tilde{P}[\omega] + \tilde{P}[\omega] + \tilde{P}[\omega] = 1,
\]

there is a unique solution: \(\tilde{P}[\omega] = 5/24, \tilde{P}[\omega] = 1/12, \tilde{P}[\omega] = 17/24 \). Since \(\tilde{P}[\omega], i = 1, 2, 3 \) are all nonnegative, we do obtain the required probability measure \(\tilde{P} \) and it is unique.

5. Let \(\gamma = \mu - \mu' \) and consider the Radon-Nikodym derivative:

\[
\frac{d\tilde{P}}{dP} = \rho(t)
\]

where

\[
\rho(t) = \exp\left(\int_0^t -\gamma(s) \, dZ(s) - \frac{1}{2} \int_0^t \gamma(s)^2 \, ds\right).
\]

Under the measure \(\tilde{P} \), the stochastic process

\[
\tilde{Z}_t = Z_t + \int_0^t \gamma(s) \, ds
\]

is \(\tilde{P} \)-Brownian by the Girsanov Theorem. It is seen that when we set \(\gamma = \mu - \mu' \), then

\[
\mu' dt + \sigma d\tilde{Z}_t = \mu' dt + \sigma dZ_t + \gamma dt = \mu dt + \sigma dZ_t.
\]

Therefore, \(S_t \) is governed by

\[
\frac{dS_t}{S_t} = \mu' dt + \sigma d\tilde{Z}_t
\]

under the measure \(\tilde{P} \).

6. Let \(K \) be the delivery price of the commodity forward, then the value of the forward contract is given by

\[
f = S - Ke^{-r\tau} = S - V(\tau),
\]

where \(V(\tau) \) denotes the price of a bond with par value \(K \) at time \(t \), hence the hedge ratio \(\Delta \) is always one. The forward contract is an agreement where the holder agrees to buy the commodity at the delivery time \(T \) for the delivery price \(K \). It can be replicated by holding one unit of the commodity and shorting one unit of a bond with par value \(K \), implying the hedge ratio is one. Setting \(f = 0 \) we get \(K = Se^{r\tau} \).

It follows that the forward price \(F(S, \tau) \) is given by

\[
F(S, \tau) = Se^{r\tau} = S/B(t, T), \quad \tau = T - t.
\]
7. When the self-financing trading strategy is adopted, the purchase of additional units of asset is financed by the sale of the riskless asset, hence \(Sd\Delta + dM = 0 \) and it follows that

\[
d\Pi = \Delta dS + Sd\Delta + rMdt + dM = \Delta dS + rMdt.
\]

By substituting \(dS = \rho S dt + \sigma S dZ \) into the above equation, we obtain

\[
d\Pi = (\rho S\Delta + rM) dt + \sigma S\Delta dZ.
\]

On the other hand, Ito’s Lemma implies

\[
dV = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial S} dS + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} dt
\]

\[
= \left(\frac{\partial V}{\partial t} + \rho S \frac{\partial V}{\partial S} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} \right) dt + \sigma S \frac{\partial V}{\partial S} dZ.
\]

Since \(\Pi \) is a replicating portfolio, in order to match \(d\Pi = dV \), it is necessary to choose

\[\Delta = \frac{\partial V}{\partial S}. \]

This leads to

\[\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} - rM = 0. \]

Note that \(M = V - \Delta S = V - S \frac{\partial V}{\partial S} \), the Black-Scholes equation for \(V \) is then given by

\[\frac{\partial V}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0. \]

8. Consider \(\Delta_c = N(d_1) \) and \(\Delta_p = -N(-d_1) \), where

\[d_1 = \frac{\ln \frac{S}{X} + (r + \frac{\sigma^2}{2}) \tau}{\sigma\sqrt{\tau}}. \]

We have

\[\frac{\partial d_1}{\partial \sigma} = \frac{\sqrt{\tau}}{2} - \frac{\ln \frac{S}{X} + r\tau}{\sigma^2 \sqrt{\tau}}, \quad \frac{\partial d_1}{\partial \tau} = \frac{-\ln \frac{S}{X} + (r + \frac{\sigma^2}{2}) \tau}{2\sigma^2 \tau^{\frac{3}{2}}}. \]

The financial interpretation of the above results is presented below. When the option is sufficiently out-of-the-money currently, a higher volatility of the asset price or a longer time to expiry implies a greater value of delta. Therefore, it is more likely for the option to expire in-the-money. We have the opposite effect when the option is currently in-the-money.

9. The convexity of the European call price with respect to the asset price implies

\[\frac{c(S, \tau; X) - c(S', \tau; X)}{S - S'} \geq \frac{c(S, \tau; X)}{S}. \]
Let \(S' \to S \), we get \(\frac{dV}{dS} \geq \frac{e}{S} \), hence \(e_c \geq 1 \).

For European options, the elasticity gives the measure of the percentage change in the option price for a unit percentage change in the asset price, so

\[
e_V \sim \frac{S \frac{\partial V}{\partial S}}{S - X e^{-r \tau}}.
\]

For a greater value of \(X/S \) and a smaller value of \(\tau \), the option becomes more out-of-the-money and closer to expiry. These would give greater elasticity in absolute value. Since

\[
e_p = \left(\frac{\partial p}{\partial S} \right) \left(\frac{S}{p} \right) = \frac{-SN(-d_1)}{X e^{-r \tau} N(-d_2) - SN(-d_1)},
\]

the European put’s elasticity has absolute value less than one when the put is sufficiently out-of-the-money.

10. (a) By Ito’s Lemma and observing \(\Delta = 0 \), it follows that

\[
df \; = \; \left(\frac{\partial f}{\partial t} + \frac{\sigma^2 S^2}{2} \frac{\partial^2 f}{\partial S^2} \right) dt + \frac{\partial f}{\partial S} dS
\]

\[
\; = \left(\Theta + \frac{\sigma^2 S^2}{2} \Gamma \right) dt
\]

By virtue of no arbitrage, we set \(df = rfdt \) and obtain

\[
\Theta + \frac{\sigma^2 S^2}{2} \Gamma = rf.
\]

(b) When the asset value is sufficiently high, the call will always be exercised with terminal payoff \(S_T - X \). Therefore, the call price tends asymptotically to \(S - X e^{-r \tau} \). It is seen that the theta tends asymptotically to \(-rX e^{-r \tau} \) from below.

11. Using the risk neutral valuation principle, the value of the European call option is given by

\[
c_M(S, \tau; X, M) = e^{-r \tau} EQ[c_M(S_T, 0; X, M)]
\]

\[
= e^{-r \tau} EQ[\max(S_T - X, 0) + M - \max(\max(S_T - X, 0), M)]
\]

\[
= e^{-r \tau} EQ[\max(S_T - X, 0)] + e^{-r \tau} EQ[\max(S_T - X - M, 0)]
\]

\[
= c(S, \tau; X) - c(S, \tau; X + M).
\]

12. The terminal payoff function of this call is given by

\[
c_L(S, \tau; X, \alpha) = \min(\max(S_T - X, 0), \alpha S_T).
\]

Using the risk neutral valuation principle, it follows that

\[
c_L(S, \tau; X, \alpha) = e^{-r \tau} EQ[c_L(S_T, 0; X, \alpha S_T)]
\]

\[
= e^{-r \tau} EQ[\max(S_T - X, 0) + \alpha S_T - \max(\max(S_T - X, 0), \alpha S_T)]
\]

\[
= e^{-r \tau} EQ[\max(S_T - X, 0)] - (1 - \alpha)e^{-r \tau} EQ \left[\max \left(\frac{S_T - X}{1 - \alpha}, 0 \right) \right]
\]

\[
= c(S, \tau; X) - (1 - \alpha)c \left(S, \tau; \frac{X}{1 - \alpha} \right).
\]