1. When the dividends are taxed at the rate R, the differential of the portfolio value $\Pi = -c + \Delta S$ is given by

$$d\Pi = -\left[\frac{\partial c}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 c}{\partial S^2} + (1 - R)q \Delta S\right] dt + \left(\Delta - \frac{\partial c}{\partial S}\right) dS.$$

Note that the capital gains on the change in value of c and S are not taxed. Again, we set $\Delta = \frac{\partial c}{\partial S}$ to eliminate the random term. Since interest incomes are taxed at the rate R, the deterministic rate of return from the money market account is $(1 - R)r$. We set $d\Pi = (1 - R)r\Pi dt$ to give

$$d\Pi = \left[\frac{\partial c}{\partial t} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 c}{\partial S^2} + (1 - R)qS\frac{\partial c}{\partial S}\right] dt = (1 - R)r \left(-c + S \frac{\partial c}{\partial S}\right) dt.$$

This gives the governing equation for the call price function as follows

$$\frac{\partial c}{\partial t} + (1 - R)(r - q)S \frac{\partial c}{\partial S} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 c}{\partial S^2} - (1 - R)rc = 0.$$

The European call and put price formulas are given by

$$c(S, \tau) = Se^{-(1-R)q\tau}N(d_1) - Xe^{-(1-R)r\tau}N(d_2)$$

$$p(S, \tau) = Xe^{-(1-R)r\tau}N(-d_2) - Se^{-(1-R)q\tau}N(-d_1),$$

where $\tau = T - t$ and

$$d_1 = \frac{\ln \frac{S}{X} + [(1 - R)(r - q) + \frac{\sigma^2}{2}] \tau}{\sigma \sqrt{\tau}}, \quad d_2 = d_1 - \sigma \sqrt{\tau}.$$

2. An investor has two choices at time t: (i) holding cash amount of S until T, (ii) use the cash amount of S to buy the underlying asset and short one unit of forward (causes nothing to enter into the short position of the forward). The values of wealth at T for both strategies are $Se^{r(T-t)}$ and $F + \sum_{i=1}^{N} D_i e^{r(T-t_i)}$. These two strategies should have the same value, so we obtain

$$F(S, t) = Se^{r(T-t)} - \sum_{i=1}^{N} D_i e^{r(T-t_i)}.$$

For the call price function $c(S, t)$, the governing differential equation is

$$\frac{\partial c}{\partial t} + rS \frac{\partial c}{\partial S} + \frac{\sigma^2}{2} S^2 \frac{\partial^2 c}{\partial S^2} - rc = 0,$$

where the risk neutral drift rate remains to be r due to the discrete nature of dividend payments. Consider the rules of differentials

$$\frac{\partial c}{\partial t}(S, t) = \frac{\partial c}{\partial t} + \frac{\partial c}{\partial F}(F, t) \frac{\partial F}{\partial t} = \frac{\partial c}{\partial t}(F, t) - rSe^{r(T-t)} \frac{\partial c}{\partial F}(F, t)$$

$$\frac{\partial c}{\partial S}(S, t) = \frac{\partial c}{\partial F}(F, t) \frac{\partial F}{\partial S} = e^{r(T-t)} \frac{\partial c}{\partial F}(F, t)$$
The forward start call option price is given by
\[
S > X
\]
For an in-the-money call, \(c\) is found to be
\[
\Theta_c = \frac{\partial c}{\partial t} - \frac{\partial c}{\partial \tau}
\]
Putting all these relations together, we obtain
\[
\frac{\partial c_F}{\partial t} + \frac{\sigma^2}{2} \left[F + \sum_{i=1}^{N} D_i e^{r(T-t_i)} \right] \frac{\partial^2 c_F}{\partial F^2} - r c_F = 0.
\]
Note that closed form solution to the above differential equation cannot be found.

Remark
Between two consecutive discrete dividend dates, the governing differential equation for the call price function remains the same. However, the transition density of the asset price will be affected by the discrete dividend payments since the asset price drops by the dividend amount on each ex-dividend date.

3. The forward start call option price is given by
\[
e^{-r(T_t)} E_Q[(S_{T_t} - S_{T_1})^+ | \mathcal{F}_t]
\]
\[
e^{-r(T_2-t)} E_Q[E_Q[(S_{T_2} - S_{T_1})^+ | \mathcal{F}_{T_1}] | \mathcal{F}_t]
\]
\[
e^{-r(T_2-t)} E_Q \left[S_{T_1} e^{(r-q)(T_2-T_1)} N \left(\frac{r-q + \frac{\sigma^2}{2} \sqrt{T_2-T_1}}{\sigma} \right) - N \left(\frac{r-q - \frac{\sigma^2}{2} \sqrt{T_2-T_1}}{\sigma} \right) \right]_{\mathcal{F}_t}.
\]
Note that \(E_Q[S_{T_1} | \mathcal{F}_t] = e^{(r-q)(T_1-t)} S\) so that the call option price can be expressed as
\[
e^{-q(T_1-t)} \left\{ \left[S e^{-q(T_2-T_1)} N \left(\frac{r-q + \frac{\sigma^2}{2} \sqrt{T_2-T_1}}{\sigma} \right) - e^{-r(T_2-T_1)} N \left(\frac{r-q - \frac{\sigma^2}{2} \sqrt{T_2-T_1}}{\sigma} \right) \right] \right\}
\]
where \(c(S, T_2 - T_1; S)\) is the value of an at-the-money call with time to expiry \(T_2 - T_1\).

4. The price formula of a European call on a continuous dividend paying asset is given by
\[
c = S e^{-q} N(\hat{d}_1) - X e^{-r} N(\hat{d}_2),
\]
where
\[
\hat{d}_1 = \frac{\ln \frac{S}{X} + (r-q + \frac{\sigma^2}{2}) \tau}{\sigma \sqrt{\tau}} , \hat{d}_2 = \hat{d}_1 - \sigma \sqrt{\tau}.
\]
The theta is found to be
\[
\frac{\partial c}{\partial t} = \frac{\partial c}{\partial \tau}
\]
\[
q S e^{-q} N(\hat{d}_1) - \frac{S e^{-q} - \frac{\hat{d}_1^2}{2} \sigma}{\sqrt{2\pi}} \frac{\partial \hat{d}_1}{\partial \tau} - r X e^{-r} N(\hat{d}_2) + \frac{X e^{-r} - \frac{\hat{d}_2^2}{2} \sigma}{\sqrt{2\pi}} \frac{\partial \hat{d}_2}{\partial \tau}
\]
\[
q S e^{-q} N(\hat{d}_1) - \frac{1}{\sqrt{2\pi}} \frac{S e^{-q} - \frac{\hat{d}_1^2}{2} \sigma}{2 \sqrt{\tau}} - r X e^{-r} N(\hat{d}_2)
\]
\[
rc + S e^{-q} \left[(q - r) N(\hat{d}_1) - \frac{1}{\sqrt{2\pi}} e^{-\frac{\hat{d}_1^2}{2} \sigma} \right].
\]
For an in-the-money call, \(S > X\), when \(q\) is sufficiently high, the theta may become positive.
5. Recall \(M(T) = e^{rT} \) with \(M(0) = 1 \). From the numeraire invariance theorem, we have
\[
\frac{dQ^*}{dQ} = \frac{S_T}{S_0} = \frac{M(T)}{M(0)} = \frac{S_T e^{-rT}}{S_0} = e^{(r - \frac{\sigma^2}{2})T + \sigma Z_T} e^{-rT} = e^{-\frac{\sigma^2}{2} T + \sigma Z_T}.
\]
Note that
\[
\exp\left(-\frac{\sigma^2}{2} T + \sigma Z \right) = \exp\left(\int_0^T (-(\sigma) dZ - \frac{1}{2} \int_0^T (-\sigma)^2 ds\right),
\]
we deduce that \(Z_T^* = Z_T + \int_0^T -\sigma ds = Z_T - \sigma T \) is a Brownian process under \(Q^* \) by virtue of Girsanov’s Theorem. We then obtain
\[
\ln \frac{S_T}{S_0} = \left(r + \frac{\sigma^2}{2} \right) T + \sigma Z_T^*.
\]
From the density function of a normal random variable, we deduce that the transition density function of \(S_T \) under \(Q \) is given by
\[
\psi^*(S_T, T; S_0, 0) = \frac{1}{S_T \sigma \sqrt{2\pi T}} \exp\left(-\frac{\ln \frac{S_T}{S_0} - \left(r + \frac{\sigma^2}{2} \right) T}{2\sigma^2 T}\right).
\]
Suppose we set \(\ln \frac{S_T}{S_0} = y \), it follows that
\[
E_{Q^*}[1_{\{S_T \geq X\}}] = \int_X^\infty \psi^*(S_T, T; S_0, 0) dS_T
\]
\[
= \int_{-\infty}^{\ln \frac{S_0}{X}} \frac{1}{\sigma \sqrt{2\pi T}} \exp\left(-\frac{y + \left(r + \frac{\sigma^2}{2} \right) T}{2\sigma^2 T}\right) dy
\]
\[
= N\left(\frac{\ln \frac{S_0}{X} + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}\right).
\]
Finally, we consider
\[
E_Q[S_T 1_{\{S_T \geq X\}}] = E_{Q^*}\left[\frac{dQ}{dQ^*} S_T 1_{\{S_T \geq X\}}\right]
\]
\[
= e^{rT} S_0 E_{Q^*}[1_{\{S_T \geq X\}}]
\]
\[
= e^{rT} S_0 N\left(\frac{\ln \frac{S_0}{X} + \left(r + \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}}\right).
\]
6. The time-\(t \) value of the contingent claim is given by
\[
e^{-r(T-t)} E_Q[\min(S_{T_0}, S_T) | \mathcal{F}_t]
\]
\[
e^{-r(T-t)} E_Q[E_Q[\min(S_{T_0}, S_T) | \mathcal{F}_{T_0}] | \mathcal{F}_t]
\]
\[
e^{-r(T-t)} E_Q[E_Q[S_T - \max(S_T - S_{T_0}, 0) | \mathcal{F}_{T_0}] | \mathcal{F}_t]
\]
\[
e^{-r(T-t)} E_Q[e^{(r-q)(T-T_0)} S_T \{1 - N(d_1)\} + e^{-r(T-T_0)} N(d_2) | \mathcal{F}_t]
\]
\[
e^{-q(T-t)} S_t \{1 - N(d_1) + e^{-r(T-T_0)} N(d_2)\},
\]
where
\[
d_1 = \frac{r - q + \frac{\sigma^2}{2} \sqrt{T - T_0}}{\sigma}, \quad d_2 = d_1 - \sigma \sqrt{T - T_0}.
\]
7. Recall
\[d \left(\frac{X_t}{S_t} \right) = \mu \, dt + \sigma_R dZ^Q_{R,t}, \]
where \(\mu = -\rho \sigma_X \sigma_S + \sigma^2_S \), \(\sigma^2_R = \sigma^2_X - 2\rho \sigma_X \sigma_S + \sigma^2_S \) and
\[\sigma_R Z^Q_{R,t} = \sigma_X dZ^Q_{X,t} - \sigma_S dZ^Q_{S,t}. \]

Putting all these relations together, we obtain
\[d \left(\frac{X_t}{S_t} \right) = (-\rho \sigma_X \sigma_S + \sigma^2_S) dt + \sigma_X dZ^Q_{X,t} - \sigma_S dZ^Q_{S,t} \]
\[= \sigma_X (dZ^Q_{X,t} - \rho \sigma S dt) - \sigma_S (dZ^Q_{S,t} - \sigma S dt). \]

Since \(Z^Q_{X,t} - \rho \sigma S t \) and \(Z^Q_{S,t} - \sigma S t \) are \(Q^* \)-Brownian, so the difference \(\sigma_X (Z^Q_{X,t} - \rho \sigma S t) - \sigma_S (Z^Q_{S,t} - \sigma S t) \) is also \(Q^* \)-Brownian. Here, \(X_t/S_t \) is a martingale under \(Q^* \).

8. Recall \(V(S_1, S_2, \tau) = S_2 W(S_1, S_2, \tau) \) so that
\[\frac{\partial V}{\partial \tau} = S_2 \frac{\partial W}{\partial \tau^1}, \quad \frac{\partial V}{\partial S_1} = S_2 \frac{\partial W}{\partial S^1_1}, \quad \frac{\partial V}{\partial S_2} = W + S_2 \frac{\partial W}{\partial S^2_2}, \]
\[\frac{\partial^2 V}{\partial S^2_1} = S_2 \frac{\partial^2 W}{\partial S^2_1^2}, \quad \frac{\partial^2 V}{\partial S^2_2} = \frac{\partial W}{\partial S^2_1} + S_2 \frac{\partial^2 W}{\partial S^2_1 \partial S^2_2}, \quad \frac{\partial^2 V}{\partial S^2_2} = 2 \frac{\partial W}{\partial S^2_2} + S_2 \frac{\partial^2 W}{\partial S^2_2}. \]

The governing equation for \(W = W(S_1, S_2, \tau) \) is given by
\[\frac{\partial W}{\partial \tau} = \frac{\sigma^2}{2} S_1 \frac{\partial^2 W}{\partial S^2_1} + \rho \sigma_1 \sigma_2 \left(S_1 \frac{\partial W}{\partial S^2_1} + S_1 S_2 \frac{\partial^2 W}{\partial S^2_1 \partial S^2_2} \right) + \frac{\sigma^2}{2} \left(2 S_2 \frac{\partial W}{\partial S^2_2} + S_2 \frac{\partial^2 W}{\partial S^2_2} \right) \]
\[+ (r - q_2) S_1 \frac{\partial W}{\partial S^2_1} + (r - q_2) \left(W + S_2 \frac{\partial W}{\partial S^2_2} \right) - r W. \]

Next, we let \(y_1 = \ln S_1, \ y_2 = \ln S_2 \) and \(y = \ln x - \ln S_1 - \ln S_2 = y_1 - y_2 \).

Note that
\[S_1 \frac{\partial W}{\partial S^1_1} = \frac{\partial W}{\partial y_1}, \quad S_1 \frac{\partial^2 W}{\partial S^2_1^2} + S_1 \frac{\partial W}{\partial S^2_1} = \frac{\partial^2 W}{\partial y_1^2}, \]
\[S_2 \frac{\partial W}{\partial S^2_2} = \frac{\partial W}{\partial y_2}, \quad S_2 \frac{\partial^2 W}{\partial S^2_2^2} + S_2 \frac{\partial W}{\partial S^2_2} = \frac{\partial^2 W}{\partial y_2^2}, \quad S_1 S_2 \frac{\partial^2 W}{\partial S^1_1 \partial S^2_2} = \frac{\partial^2 W}{\partial y_1 \partial y_2}, \]
so the governing equation for \(W = W(y_1, y_2, \tau) \) can be expressed as
\[\frac{\partial W}{\partial \tau} = \frac{\sigma^2}{2} \frac{\partial^2 W}{\partial y^2_1} + \rho \sigma_1 \sigma_2 \frac{\partial^2 W}{\partial y_1 y_2} + \frac{\sigma^2}{2} \frac{\partial^2 W}{\partial y^2_2} \]
\[+ \left(r - q_1 - \frac{\sigma^2}{2} + \rho \sigma_1 \sigma_2 \right) \frac{\partial W}{\partial y_1} + \left(r - q_2 + \frac{\sigma^2}{2} \right) \frac{\partial W}{\partial y_2} - q_2 W. \]

Lastly, we consider \(W = W(y, \tau) \), where \(y = y_1 - y_2 \) and observe
\[\frac{\partial W}{\partial y_1} = \frac{\partial W}{\partial y} \text{ and } \frac{\partial W}{\partial y_2} = \frac{\partial W}{\partial y}, \]

We obtain the following equation for \(W = W(y, \tau) \):
\[\frac{\partial W}{\partial \tau} = \frac{\sigma^2}{2} - 2 \rho \sigma_1 \sigma_2 + \frac{\sigma^2}{2} \frac{\partial^2 W}{\partial y^2} + \left(q_2 - q_1 - \frac{\sigma^2}{2} - 2 \rho \sigma_1 \sigma_2 + \frac{\sigma^2}{2} \right) \frac{\partial W}{\partial y} - q_2 W. \]
In terms of $W = W(x, \tau)$, where $x = \ln y$, we have
\[
\frac{\partial W}{\partial \tau} = \frac{\sigma^2}{2} x^2 \frac{\partial^2 W}{\partial x^2} + (q_2 - q_1)x \frac{\partial W}{\partial x} - q_3 W,
\]
where $\sigma^2 = \sigma_1^2 - 2 \rho \sigma_1 \sigma_2 + \sigma_2^2$. The terminal payoff is $\max(x - 1, 0)$. Corresponding to the usual call price formula, we set $X = 1$, $\gamma = q_2$ and $q = q_1$ and obtain the price formula presented in the question.

9. The digital quanto option is in-the-money if one Singaporean dollar is more than α Hong Kong dollars, or equivalently, $F_{S\setminus H} > \alpha$. The digital quanto option value is given by
\[
e^{-\tau r} E^{Q_U}_{|T} \left[1_{\{F_{S\setminus H} > \alpha\}} \right] = e^{-\tau r} N(d),
\]
where
\[
d = \frac{\ln \frac{F_{S\setminus H}}{\alpha} + \left(\delta_{F_{S\setminus H}} - \frac{\sigma_{S\setminus H}^2}{2} \right) \tau}{\sigma_{F_{S\setminus H}} \sqrt{\tau}}.
\]
and
\[
\delta_{F_{S\setminus H}} = \delta_{F_{S\setminus H}}^S - \rho \sigma_{F_{S\setminus H}} \sigma_{F_U \setminus S}.
\]

10. We write $P(t, T)$ as the time-t value of unit par discount bond maturing at time T. Consider the function defined by
\[
g(S_T, T) = P(t, T)(S_T - K)^+,
\]
and assume that S_t follows the process under a risk neutral measure Q
\[
dS_t^2 = (r_t - q_t)dt + \sigma_t(S_t, t)dW_t.
\]
By Ito’s lemma, the differential of g is given by
\[
dg = \left[\frac{\partial g}{\partial T} + (r_T - q_T)S_T \frac{\partial g}{\partial S_T} + \frac{\sigma_T^2}{2} S_T^2 \frac{\partial^2 g}{\partial S_T^2} \right] dt + \sigma_T S_T \frac{\partial g}{\partial S_T} dW_T.
\]
Recall the following identities:
\[
\frac{\partial}{\partial S} (S - K)^+ = 1_{\{S > K\}}, \quad \frac{\partial}{\partial S} 1_{\{S > K\}} = \delta(S - K),
\]
\[
\frac{\partial}{\partial K} (S - K)^+ = -1_{\{S > K\}}, \quad \frac{\partial}{\partial K} 1_{\{S > K\}} = -\delta(S - K),
\]
\[
\frac{\partial c}{\partial K} = -P(t, T)E[1_{\{S > K\}}], \quad \frac{\partial^2 c}{\partial K^2} = P(t, T)E[\delta(S - K)].
\]
We then have
\[
dg = P(t, T)[-r_T(S_T - K)^+ + (r_T - q_T)S_T 1_{\{S_T > K\}} + \frac{\sigma_T^2}{2} S_T^2 \delta(S_T - K)]dT + P(t, T) \sigma_T S_T 1_{\{S_T > K\}} dW_T.
\]
By substituting all the necessary relations and observe $E[dW_T] = 0$, we obtain
\[
dc = E[dg]
\]
\[
= P(t, T)E \left[r_T K 1_{\{S_T > K\}} - q_T S_T 1_{\{S_T > K\}} + \frac{\sigma_T^2}{2} S_T^2 \delta(S_T - K) \right] dT.
\]
Furthermore, we observe

\[P(t, T)E \left[S_T 1_{S_T > K} \right] = c + KP(t, T)E \left[1_{S_T > K} \right] \]

so that

\[
\frac{\partial c}{\partial T} = KP(t, T)r_T E \left[1_{S_T > K} \right] - q_T \left\{ c + KP(t, T)E \left[1_{S_T > K} \right] \right\} + P(t, T)E \left[\frac{\sigma_T^2 S_T^2}{2} \delta(S_T - K) \right] \\
= -K (r_T - q_T) \frac{\partial c}{\partial K} - q_T c + P(t, T)E \left[\frac{\sigma_T^2}{2} S_T^2 \delta(S_T - K) \right].
\]

The last term can be rewritten as

\[
P(t, T)E \left[\frac{\sigma_T^2}{2} S_T^2 \bigg| S_T = K \right] E[\delta(S_T - K)]
= P(t, T)E \left[\frac{\sigma_T^2}{2} S_T^2 \bigg| S_T = K \right] K^2 \frac{\partial c}{\partial K^2}.
\]

Lastly, we obtain

\[
\frac{\partial c}{\partial T} = -K (r_T - q_T) \frac{\partial c}{\partial K} - K^2 E \left[\frac{\sigma_T^2}{2} \bigg| S_T = K \right] \frac{\partial^2 c}{\partial K^2} - q_T c.
\]

11. The Black-Scholes call price can be written as

\[c_{BS}(S_0, K, \Sigma(K, T), T) = F_T [N(d_1) - e^y N(d_2)], \]

where

\[y = \ln \frac{K}{F_T}, \quad w = \Sigma(K, T)^2 T, \]
\[d_1 = \frac{\ln S_0/K + \int_0^T r_t - q_t \ dt + w}{\sqrt{w}} = \frac{-y}{\sqrt{w}} + \frac{\sqrt{w}}{2}, \quad d_2 = d_1 - \sqrt{w}. \]

Note that

\[n(d_1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(d_1 + \sqrt{w})^2}{2}} = n(d_2) e^{-d_2 \sqrt{w} - \frac{w}{2}} = n(d_2) e^y, \]

so that

\[\frac{\partial c_{BS}}{\partial w} = \frac{F_T}{2} e^y n(d_2) / \sqrt{w}. \]
we use an alternative derivation approach to arrive at

\[\frac{\partial^2 c_{BS}}{\partial w^2} = \frac{F_T}{2} \left[e^y n(d_2)/\sqrt{w} \right] \left(-d_2 \frac{\partial d_2}{\partial w} - \frac{1}{2\sqrt{w}} \right) \]

\[= \frac{\partial c_{BS}}{\partial w} \left[\left(\frac{y}{\sqrt{w}} + \frac{\sqrt{w}}{2} \right) \left(\frac{y}{2w\sqrt{w}} - \frac{1}{4\sqrt{w}} \right) - \frac{1}{2\sqrt{w}} \right] \]

\[= \frac{\partial c_{BS}}{\partial w} \left(\frac{1}{8} - \frac{1}{2w} + \frac{y^2}{2w^2} \right), \]

\[\frac{\partial^2 c_{BS}}{\partial w \partial y} = \frac{F_T}{2} \frac{\partial}{\partial y} \left[e^y n(d_2) \right] \]

\[= \frac{F_T}{2} \frac{\partial}{\partial y} \left[e^y n(d_2) - e^y n(d_2) d_2 \frac{\partial d_2}{\partial y} \right] \]

\[= \frac{\partial c_{BS}}{\partial w} \left(\frac{1}{2} - \frac{y}{w} \right), \]

\[\frac{\partial c_{BS}}{\partial y} = -F_T e^y N(d_2) \]

\[\frac{\partial^2 c_{BS}}{\partial y^2} = \frac{\partial c_{BS}}{\partial y} + 2 \frac{\partial c_{BS}}{\partial w}. \]

If we write \(c(S_0, K, T) = c_{BS}(S_0, F_T e^y, w(0), T) \), we obtain

\[\frac{\partial c}{\partial y} = a(w, y) + b(w, y) \ell(y) \]

where \(a(w, y) = \frac{\partial c_{BS}}{\partial y}, b(w, y) = \frac{\partial c_{BS}}{\partial w}, \ell(y) = \frac{\partial w}{\partial y}. \) The other derivatives of \(c \) are found to be

\[\frac{\partial^2 c}{\partial y^2} = \frac{\partial a}{\partial y} \frac{\partial a}{\partial w} + b(w, y) \frac{\partial \ell}{\partial y} + \left(\frac{\partial b}{\partial y} + \frac{\partial b}{\partial w} \right) \ell(y) \]

\[= \frac{\partial^2 c_{BS}}{\partial y^2} + 2 \frac{\partial^2 c_{BS}}{\partial y \partial w} \frac{\partial c_{BS}}{\partial w} \frac{\partial c_{BS}}{\partial y^2} + \frac{\partial^2 c_{BS}}{\partial w^2} \left(\frac{\partial w}{\partial y} \right)^2, \]

\[\frac{\partial c}{\partial T} = \frac{\partial c_{BS}}{\partial T} + \frac{\partial c_{BS}}{\partial w} \frac{\partial w}{\partial T} = \mu_T c_{BS} + \frac{\partial c_{BS}}{\partial w} \frac{\partial w}{\partial T}. \]

Recall the Dupire equation

\[\frac{\partial c}{\partial T} = \frac{v_L}{2} \left(\frac{\partial^2 c}{\partial y^2} - \frac{\partial c}{\partial y} \right) + \mu_T c. \]

Substituting all the above relations, we obtain

\[\frac{\partial c_{BS}}{\partial w} \frac{\partial w}{\partial T} = \frac{v_L}{2} \left[\frac{\partial^2 c_{BS}}{\partial y^2} + 2 \frac{\partial^2 c_{BS}}{\partial y \partial w} \frac{\partial c_{BS}}{\partial w} \frac{\partial c_{BS}}{\partial y^2} + \frac{\partial^2 c_{BS}}{\partial w^2} \left(\frac{\partial w}{\partial y} \right)^2 - \frac{\partial c_{BS}}{\partial y} + \frac{\partial c_{BS}}{\partial w} \frac{\partial w}{\partial y} \right] \]

\[= \frac{v_L}{2} \frac{\partial c_{BS}}{\partial w} \left[2 + 2 \left(\frac{1}{2} - \frac{y}{w} \right) \frac{\partial w}{\partial y} + \left(\frac{1}{8} - \frac{1}{2w} + \frac{y^2}{2w^2} \right) \left(\frac{\partial w}{\partial y} \right)^2 + \frac{\partial^2 w}{\partial y^2} - \frac{\partial w}{\partial y} \right]. \]

Solving for \(v_L \), we obtain the first identity in the question. For the second identity, we use an alternative derivation approach to arrive at

\[v_L = \frac{K^2}{2} \sqrt{\frac{2}{K^2} + 2 \left(\frac{1}{2} - \frac{y}{w} \right) \frac{\partial w}{\partial K} + \left(\frac{1}{8} - \frac{1}{2w} + \frac{y^2}{2w^2} \right) \left(\frac{\partial w}{\partial K} \right)^2 + \frac{\partial^2 w}{\partial K^2}} \]
and observe the following relations:

\[
\frac{\partial w}{\partial T} = 2\Sigma T \frac{\partial \Sigma}{\partial T} + \Sigma^2, \quad \frac{\partial w}{\partial K} = 2\Sigma T \frac{\partial \Sigma}{\partial K} \quad \text{and} \quad \frac{\partial^2 w}{\partial K^2} = 2T \left[\left(\frac{\partial \Sigma}{\partial K} \right)^2 + \Sigma \frac{\partial^2 \Sigma}{\partial K^2} \right]
\]

so that the numerator and denominator can be expressed as

\[
\Sigma^2 + 2\Sigma T \left(\frac{\partial \Sigma}{\partial T} + \mu_T K \frac{\partial \Sigma}{\partial K} \right)
\]

and

\[
1 + 2K T \left[1 - \frac{y}{w} \right] \frac{\partial \Sigma}{\partial K} + 2K^2 \Sigma^2 \left(-\frac{1}{8} - \frac{1}{2w} + \frac{y^2}{2w} \right) \left(\frac{\partial \Sigma}{\partial K} \right)^2
\]

\[+ \ K^2 T \left[\left(\frac{\partial \Sigma}{\partial K} \right)^2 + \Sigma \frac{\partial^2 \Sigma}{\partial K^2} \right], \]

respectively. After some simplification, we obtain the second identity.

12. Recall

\[
g(\tau; d) = \frac{\sigma V(\tau; d)}{\sigma} = \frac{N(h_1(\tau; d))}{N(h_2(\tau; d)) + \frac{1}{d} N(h_1(\tau; d))},
\]

where

\[
h_1(\tau; d) = -\frac{\sigma^2_\tau - \ln d}{\sigma \sqrt{\tau}} \quad \text{and} \quad h_2(\tau; d) = -\frac{\sigma^2 \tau + \ln d}{\sigma \sqrt{\tau}}.
\]

We rewrite \(g(\tau; d)\) as

\[
\frac{1}{g(\tau; d)} = 1 + \frac{N(h_2(\tau; d))d}{N(h_1(\tau; d))}
\]

so that one can deduce readily \(0 \leq g \leq 1\). This agrees with the intuition that the debt of the firm can never be more risky than the firm or the equity of a levered firm must always be at least as risky as the firm.

By performing straightforward differentiation, we obtain

\[
\frac{\partial g}{\partial d} = \frac{g}{d} \left[-(1 - g) + \frac{1}{\sqrt{\tau}} \frac{d}{N(h_1)} \right] > 0,
\]

and

\[
\frac{\partial g}{\partial \tau} = -\frac{g \frac{d}{N(h_1)}}{2 \sqrt{\tau} N(h_1)} \left[\frac{1}{2} (1 - 2g) + \frac{\ln d}{T} \right]
\]

which remains positive (negative) when \(d < 1\) \((d > 1)\) and \(\frac{\partial g}{\partial \tau} = 0\) when \(d = 1\).

Furthermore, it is easily seen that \(N(h_2(\tau; 1)) = N(h_1(\tau; 1))\) and

\[
\lim_{\tau \to \infty} N(h_2(\tau; d)) = \lim_{\tau \to \infty} N(h_1(\tau; d)), \quad 0 < d < \infty.
\]

Therefore, we obtain

\[
g(\tau; 1) = \frac{1}{2}, \ \tau > 0 \quad \text{and} \quad \lim_{\tau \to \infty} g(\tau; d) = \frac{1}{2}, \ 0 < d < \infty.
\]

Financial intuition

When \(d > 1\), the present value of the promised payment is higher than the current
value of the firm, the chance that the debt will become equity through default is higher and this is reflected in the risk characteristics of the debt through a higher value of g. By increasing τ, the chances of default become less since the firm value will appreciate enough to meet the promised payment. Therefore, g is a decreasing function of τ when $d > 1$. When $d = 1$, g equals a half. The replicating portfolio is exactly half equity and half riskless debt. For $d < 1$, g is less than a half and the argument goes just the opposite to that of the case, $d > 1$.

13. (a) The probability of default is given by

$$
E_Q \left[1_{\{A_T < D_T + C_T\}} \right] = \int_{-\infty}^{D_T + C_T} \frac{1}{\sigma \sqrt{2\pi T}} \exp \left(-\frac{u - \ln(A_t - F) + \left(\mu - \frac{\sigma^2}{2}\right) T}{\sigma \sqrt{T}} \right) du
$$

$$
= N \left(\frac{\ln \frac{D_T + C_T}{A_t - F} - \left(\mu - \frac{\sigma^2}{2}\right) T}{\sigma \sqrt{T}} \right).
$$

Here, we have made the assumption that the time-t depleted firm asset value is $A_t - F$ while the drift rate and volatility of the depleted firm asset value process remain to be μ and σ, respectively.

(b) When $A_T < C_T$, the full amount of debt loss D_T is resulted since the firm value is not sufficient to pay the senior claim C_T. When $C_T < A_T < D_T + C_T$, the firm value can meet the full payment of the senior claim C_T while the loss of debt payment is $D_T - (a - C_T) = D_T + C_T - a$. Therefore, the expected loan loss is the sum of the expected losses in these two scenarios.