1. Suppose we choose the mixture distribution in the Bernoulli mixture model to be the beta distribution whose density function is given by

$$f(\tilde{p}) = \frac{1}{\beta(a, b)} \tilde{p}^{a-1} (1 - \tilde{p})^{b-1}, \quad a, b > 0, \quad 0 < \tilde{p} < 1,$$

where the beta function \(\beta(a, b) \) is defined by

$$\beta(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a + b)}, \quad \Gamma(a) = \int_0^\infty e^{-x} x^{a-1} dx.$$

(a) Based on the Bernoulli mixture model, show that the probability of \(k \) defaults out of \(m \) obligors is given by

$$P[M = k] = \binom{m}{k} \int_0^1 \tilde{p}^k (1 - \tilde{p})^{m-k} f(\tilde{p}) d\tilde{p} = \binom{m}{k} \frac{\beta(a + k, b + m - k)}{\beta(a, b)}.$$

Find the corresponding default-event correlation coefficient \(\rho(X_i, X_j) \).

(b) Recall that the mean and variance of the beta distribution are given by

$$\text{mean} = \frac{a}{a + b} \quad \text{and} \quad \text{variance} = \frac{ab}{(a + b)^2 (a + b + 1)}.$$

As \(a \) increases, do we have higher or lower default-event correlation?

Hint: Look at various combinations of the two parameters for which \(\frac{a}{a + b} = \bar{p} \) for some default probability \(\bar{p} \).

2. Consider the Davis-Lo contagion model, show that

$$E[D_n] = n[1 - (1 - p)(1 - pq)^{n-1}]$$

$$\text{cov}(Z_i, Z_j) = \beta_n pq - (E[D_n/n])^2,$$

where

$$\beta_n pq = p^2 + 2p(1 - p)[1 - (1 - q)(1 - pq)^{n-2}] + (1 - p)^2[1 - 2(1 - pq)^{n-2} + (1 - 2pq + pq^2)^{n-2}].$$

Hint: The event \((Z_1 = 1, \ldots, Z_k = 1, Z_{k+1} = 0, \ldots, Z_n = 0)\) can be achieved in various disjoint combinations. Firstly, we may have \((X_1 = 1, X_k = 1, X_{k+1} = 0, X_n = 0, Y_{ij} = 0, i = 1, \ldots, k, j = k + 1, \ldots, n)\) i.e. bonds 1 to \(k \) default directly and do not infect bonds \(k + 1 \) to \(n \). On the other hand, bonds 1 to \(i \) (for some \(i < k \)) may default directly and infect the other bonds of the first \(k \) but none of the remaining.
3. This problem is an extension of the mixture approach to the Poisson model of default. Consider the Poisson mixture model where the loss statistic S is a random vector $L = (L_1, \cdots, L_m)$ of Poisson random variables $L_i \sim \text{Pois}(\Lambda_i)$, where $\Lambda = (\Lambda_1, \cdots, \Lambda_m)$ is a random vector with some distribution function F with support in $[0, \infty)^m$. Note that the default probability of obligor i is given by $p_i = \mathbb{P}[L_i \geq 1]$ (apparently allowing multiple defaults). We assume that conditional on a realization $\lambda = (\lambda_1, \cdots, \lambda_m)$ of Λ, the variables L_1, L_2, \cdots, L_m are independent:

$\left. L_i \right|_{\lambda_i = \lambda_i} \sim \text{Pois}(\lambda_i), \quad (\left. L_i \right|_{\lambda = \lambda})_{i=1,\cdots,m}$ are independent.

The (unconditional) joint distribution of the variables L_i is given by

$$\mathbb{P}[L_1 = \ell_1, \cdots, L_m = \ell_m] = \int_{[0, \infty)^m} e^{-\sum \lambda_i} \prod \lambda_i^{\ell_i} \ell_i! \, dF(\lambda_1, \cdots, \lambda_m).$$

Show that the correlation coefficient between pairwise default events is given by

$$\rho(L_i, L_j) = \frac{\text{cov}(\Lambda_i, \Lambda_j)}{\sqrt{\text{var}(\Lambda_i) + \mathbb{E}[\Lambda_i] \sqrt{\text{var}(\Lambda_j) + \mathbb{E}[\Lambda_j]}}}.$$

Hint:

$$\mathbb{E}[L_i] = \mathbb{E}[\Lambda_i]$$

$$\text{var}(L_i) = \text{var}(\mathbb{E}[L_i|\Lambda]) + \mathbb{E}[\text{var}(L_i|\Lambda)]$$

$$= \text{var}(\Lambda_i) + \mathbb{E}[\Lambda_i].$$

4. Consider a portfolio of m risky bonds (of equal face value) with uniform default probability p. Let L_i denote the default event indicator of bond i, where $L_i \sim \text{B}(1; p)$. Let ρ be the uniform correlation coefficient between pairwise defaults of any two bonds. In this problem, we use the Binomial Expansion Technique where the defaults in a comparison portfolio are assumed to be independent. By matching the second order moment of the original portfolio and the comparison portfolio consisting of $n(\rho)$ independent bonds, show that the diversification score $n(\rho)$ is given

$$n(\rho) = \frac{m}{1 + \rho(m - 1)}.$$

Explain why the above diversification score is bounded from above by $1/\rho$.