
MATH4321 — Game Theory

Topic Two: Nonzero sum games and Nash equilibrium

2.1 Nonzero sum games under pure strategies

– Dominant and dominated strategies

– Pure strategy Nash equilibrium

– Examples: Prisoner’s dilemma; battle of sexes; coordination
games; Cuban crisis; voters participation

– Iterated dominance: Battle of the Bismark Sea; beauty con-
test

2.2 Two-person nonzero sum games under mixed strategies

– Mixed strategy Nash equilibrium

– Best response functions

– Equality of payoff theorem (indifference principle)

– Examples: Welfare game, chicken game, civic duty game and
expert diagnosis

– Safety values
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2.1 Nonzero sum games under pure strategies

Dominated and dominant strategies

Let Si denote the set of all pure strategies of player i. The strategy
sdi ∈ Si is said to be strictly dominated if there exists a single si

′ ∈ Si
such that

πi(s
d
i , s−i) < πi(si

′
, s−i), for all s−i ∈ S−i.

Here, s−i represents a profile of strategies for all players other than
i and

S−i = S1 × S2 × · · · × Si−1 × Si+1 × · · · × Sn,

where n is the total number of players. That is, sdi is strictly inferior

to (dominated by) some other strategy si
′

for any combination of
the other players’ strategies s−i.

There may exist some pure strategy that have better payoff to
the player i compared to all his other pure strategies under any
combination of strategies that can be played by all other opponents.
The strategy s∗i is a strictly dominant strategy if for any s−i

πi(s
∗
i , s−i) > πi(si

′
, s−i), for all si

′
6= s∗i and s−i ∈ S−i.
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Let sD ∈ S (set of all strategy profiles) and write sD = (sD1 , . . . , s
D
n ).

We say sD is a strict dominant strategy equilibrium if sDi ∈ Si is a
strictly dominant strategy for all i ∈ N (set of all players).

In other words, a strictly dominant strategy equilibrium is a strategy
profile that consists of each player’s strictly dominant strategy.

We may manage to find a plausible equilibrium using the concept
of “weak dominance”.

• Strategy si
′

is weakly dominated if there exists si
′′

such that

πi(si
′′
, s−i) ≥ πi(si

′
, s−i), for all s−i;

with strict inequality for some s−i.

• Similarly, a weakly dominant strategy is one that is always at
least as good as every other strategy and better than some.
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Best responses

The strategy si ∈ Si is player i’s best response to his opponents’
strategies s−i ∈ S−i if

πi(si, s−i) ≥ πi(s′i, s−i) ∀s′i ∈ Si.

Claims

1. If si is a strictly dominated strategy for player i, then it cannot
be a best response to any s−i ∈ S−i.

2. If s∗i is a strictly dominant strategy, then s∗i is a player’s strictly
best response to any strategies the other players might pick,
even to wildly irrational actions of the other players.

3. The best response correspondence of player i selects for each
s−i ∈ S−i is denoted by Bi(s−i), which is a subset of Si where
each strategy si ∈ Bi(s−i) is a best response to s−i.
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Nash equilibrium under pure strategies

A solution concept is a method of analyzing games with the objec-
tives of restricting the set of all possible outcomes to those that are
more reasonable than others. An equilibrium refers to one of the
strategy profiles that emerges as one of the solutions’ predictions.

Modellers commonly use the solution concept of Nash equilibrium.
The strategy profile s∗ is a Nash equilibrium if no player has incentive
to deviate from his part of the Nash strategy given that the other
players do not deviate from their parts of Nash equilibrium strategies.
That is

πi(si
∗, s∗−i) ≥ πi(si

′
, s∗−i), for all si

′
.

• To define strong Nash equilibrium, we make the inequality strict:

πi(si
∗, s∗−i) > πi(si

′
, s∗−i), for all si

′
6= s∗i .

In other words, the strategy profile s∗ is a Nash equilibrium of a
game if and only if every player’s action is a best response to the
other players’ strategy choices: s∗i is in player i’s best response
correspondence to s∗−i, denoted by Bi(s

∗
−i), for every player i.
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Nash equilibrium concept, being less restrictive, helps yield predic-
tions in more games than the dominant strategy equilibrium con-
cept.

Every (weakly) dominant strategy equilibrium is a Nash equilibrium,
but not every Nash equilibrium is a dominant-strategy equilibrium.
We may drop “weakly” for brevity in later discussion if there is no
ambiguity.

• If a strategy is dominant, it is a best response to any strategies
the other players pick, including their Nash equilibrium strate-
gies.

• If a strategy is part of a Nash equilibrium, it needs only be a
best response to the other players’ Nash equilibrium strategies.
In general, it fails to be a dominant strategy since it may not
be the best response to all strategies of other players.
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Prisoner’s dilemma — Noncooperative game with conflict

• If each prisoner tries to provide convicting evidence of the crime
committed by the other, each is sentenced to 8 years in prison.

• If both remain silent, each is sentenced to one year (say, charging
on some other minor offenses).

• If just one provides convicting evidence, he is set free but the
silent prisoner is sentenced to higher imprisonment of 10 years.

Each player has 2 possible actions: Confess (blaming the other)
and Deny (silent).

7



Each player has a strictly dominant strategy of Confess since the
payoff under Confess is better than Deny under all strategies (Con-
fess and Deny) played by the other player. The strictly dominant
strategy equilibrium is (Confess, Confess).

To show that the strategy profile (Confess, Confess) in the Pris-
oner’s Dilemma is a strong Nash equilibrium, we test whether each
player’s strategy is a best response to the other’s Nash equilibrium
strategies.

• If Row chooses Confess, then Confess is the best response of
Column.

• By symmetry, Confess is the best response of Row if Column
chooses Confess.
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Knowledge of the opponent’s strategy

If Column is allowed to know Row’s move before taking his own,
the equilibrium is unchanged. Row still chooses Confess, knowing
that Column will surely choose Confess afterwards.

Communication between players

What difference would it make if the two prisoners could talk to
each other before making their decisions?

If promises are not biding, though the two prisoners might agree to
Deny, they would Confess anyway when the time came to choose
actions. Since (Deny, Deny) is not a Nash equilibrium, when one
player chooses Deny, the other player is better off by deviating from
playing Deny.
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Mafia punishment

Suppose there is a mafia punishment, which subtracts z units of
payoff for each player who confesses.

Column

Deny Confess

Deny −1, −1 −10, −z
Row

Confess −z, −10 −8− z, −8− z

If z is larger than 2, then “deny” becomes the strictly dominant
strategy for both players, so (deny, deny) is a strictly dominant
strategy equilibrium and strong Nash equilibrium as well.

This example illustrates existence of an institutional design that
results in both players becoming better off compared to those out-
comes without the design.
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Arm race as Prisoner’s dilemma

Two players: US & USSR

Possible strategies: armed or disarmed

Rank the four possibilities (most preferred to least preferred)

1. Highly positive (payoff = 3)
Self-armed and other’s unilaterally disarmed (military superiori-
ty)

2. Moderately positive (payoff = 1)
Mutual disarmament (parity without economic hardship)

3. Moderately negative (payoff = − 1)
An arm race (parity but with economic hardship)

4. Highly negative (payoff = − 3)
Self-disarmed and other’s unilaterally armed (military inferiority)
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Ordinal payoffs rather than cardinal payoffs: The payoff values re-
flect only the order of preference as opposed to the absolute mag-
nitude of one’s preference.

Both Soviet and US have dominant strategies leading to “arm-arm”
outcome that is strictly worse (for both players) than the “disarm-
disarm” outcome via mutual operation.

Remark
For analyzing pure strategies, ordinal (only order matters) payoffs
representing the order of preference are sufficient. For mixed s-
trategies, it is necessary to have cardinal (precise value) payoffs
since the probabilities of playing various strategies depend on the
actual values of outcomes.
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Pareto dominance and Pareto efficiency

Outcome X is said to be (weakly) Pareto-dominating outcome Y

if all players have higher (at least the same or higher) payoff under
outcome X.

An outcome is Pareto efficient (optimal) if there is no other outcome
where some players can increase their payoffs without decreasing the
payoff of other players.

In the Prisoner’s Dilemma, (confess, confess) = (−8,−8) should be
considered as a very likely outcome, assuming players are aware of
the dominant strategy. However, it is Pareto dominated by (deny,
deny) = (−1,−1), so (confess, confess) is not Pareto-optimal. Note
that (deny, deny), (deny, confess) and (confess, deny) are all Pareto
efficient outcomes since no other profile dominates any of them.
Though (confess, confess) is a dominant strategy equilibrium, it
does not Pareto-dominates all other strategy profiles.

13



Modified Prisoner’s Dilemma

Consider the modified Prisoner’s Dilemma where the payoff to (De-
ny, Deny) is (0, 0) instead of (−1, − 1), assuming that the police
does not have enough evidence to convict the prisoners of even a
minor offense if the prisoner remains silent.

• It does not have a strictly dominant strategy equilibrium.
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• It does have a weak dominant strategy equilibrium since Confess
is still a weakly dominant strategy for each player.

• Note that Deny is a weakly dominated strategy of both players,
and it is eliminated in the iterative process. The remaining
single strategy is Confess for both players. (Confess, Confess) is
said to be an iterated elimination equilibrium (formal definition
and examples are given in more details later). Note that an
iterated elimination equilibrium is not the same as a dominant
strategy equilibrium (which requires the equilibrium strategies of
all players are dominant strategies). Also, it is a strong Nash
equilibrium.

• However, (Deny, Deny) is a Nash equilibrium. Its outcome is
Pareto-superior since the payoffs to both players under (Deny,
Deny) are at least as good or better than those in other out-
comes.
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Choices for equilibrium refinement

(Confess, Confess) is a strong Nash equilibrium but it is Pareto-
dominated by another (not strong) Nash equilibrium (Deny, Deny).

1. Insist on a strong Nash equilibrium only, so rule out the other
Nash equilibrium (Deny, Deny).

2. Rule out Nash equilibriums that are Pareto-dominated by other
Nash equilibriums, and end up with (Deny, Deny).

Lemma
Suppose a strategy profile s weakly Pareto-dominating all other
strategy profiles (payoffs in the outcome are higher or at least the
same when compared with payoffs in all other outcomes), then it
must be a Nash equilibrium.

Proof
Given that s weakly Pareto-dominates all other strategy profiles,
any player i cannot benefit from deviating unilaterally. If otherwise,
this violates the weakly Pareto-dominating property. Hence, s must
be a Nash equilibrium.
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In summary, the relations between Nash equilibrium, weakly domi-
nant strategy equilibrium and weakly Pareto-dominating profile are
summarized in the following diagram:
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Examples

1. Unique Nash equilibrium

(A, A) is a Nash equilibrium since neither player would gain by
unilaterally changing his strategy of A while the other player
remains playing A.

Note that A is a dominant strategy for Rose but not for Colin,
so (A, A) is not a dominant strategy equilibrium. Also, (A, A) is
strongly Pareto-dominating (B, A) and (B, B). Note that (A, A)
is Pareto non-dominated by any other outcome since we cannot
increase the payoff of one player without lowering the payoff of
the other player. Therefore, (A, A) is Pareto efficient. Similarly,
(A, B) is Pareto efficient.
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2. Absence of Nash equilibrium

There is no Nash equilibrium. None of the outcomes is Pareto-
dominating all other outcomes. For example, (2,4) Pareto-
dominates (1,0), weakly Pareto-dominates (0,4) but does not
Pareto-dominate (3,1). Also, none of the strategies is dominant
or being dominated.

Suppose the outcome in (B, A) is changed to (1,1), then (A,
A) becomes a weakly Pareto-dominating profile, so it is a Nash
equilibrium.
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3. Multiple Nash equilibriums

Both (5, 2) and (2, 5) are Nash equilibriums. They are also
Pareto efficient (optimal). Both (1, 1) and (−1, −1) are Pare-
to dominated by (5, 2) and (2, 5), so they cannot be Pareto
optimal. However, none of the strategies is dominant, so there
is no dominant strategy equilibrium.
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Coordination game

If the players can coordinate and hunt, then they can both do better.
Gathering alone is preferred to gather together, but hunting along is
much worse than gathering alone. If a player hunts alone, the payoff
is zero due to loss of cooperation. The other player enjoys higher
payoff on gathering due to avoidance of sharing of fruits gathered.

hunt gather
hunt (5,5) (0,4)

gather (4,0) (2,2)

Note that (hunt, hunt) strongly Pareto-dominates all other strategy
profiles, but it is not a dominant strategy equilibrium.
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Note that (hunt, hunt) is a Nash equilibrium in pure strategies s-
ince it is Pareto-dominating, while (gather, gather) is also a Nash
equilibrium in pure strategies.

• The Nash equilibrium (hunt, hunt) is payoff dominant.

• The Nash equilibrium (gather, gather) risk dominates (hunt,
hunt). If either player is not absolutely certain that the other
player will join the hunt, then the player who was going to hunt
sees that he can minimize the risk of getting zero by gathering.
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Battle of the Sexes — Compromise and cooperation

Two Nash equilibriums in pure strategies

1. Strategy profile (Prize Fight, Prize Fight)
Given that the man chooses Prize Fight, so does the woman.
Given that the woman chooses Prize Fight, so does the man.

2. Strategy Profile (Ballet, Ballet)
Both Nash equilibriums are Pareto-efficient, where no player
gains without another player losing. Comparing (2,1) and (1,2),
when man’s payoff increases from 1 to 2, woman’s payoff de-
creases from 2 to 1, and vice versa.

23



Nature of the game: Failure to cooperate creates lower payoff to
both players. However, any cooperative agreement results in un-
equal distribution of payoff (lower payoff for the player who com-
promises).

Who moves first is important — first mover advantage. The woman
receives a higher payoff if both attend the same event (best response
to man’s action), then the man would choose to buy the fight ticket
if he is allowed to be the first mover.

If they do not communicate beforehand, and they choose to com-
promise where the man might go to the ballet and the woman to
the fight, each mistaken about the other’s beliefs. Repeating the
game night after night, eventually they settle on one of the Nash
equilibriums with the given distribution (see the discussion of mixed
strategy Nash equilibrium later).

Economic analogy : Choice of an industry-wide standard when both
firms have different preferences but both want a common standard
to encourage consumers to buy the product.
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Iterated elimination equilibrium: Battle of the Bismarck Sea

General Imamura has been ordered to transport Japanese troops
across the Bismarck Sea to New Guinea in the South Pacific in
1943.

General Kenney wants to bomb the troop transports.

Imamura must choose between a shorter northern route or a longer
southern route to New Guinea. Since the southern route is longer,
the potential number of days of bombing is larger than that of the
northern route counterpart.

Kenney must decide where to send his planes to look for the Japanese.
If Kenney sends his plane to the wrong route, he can recall them
but the number of days of bombing is reduced by one.

Players: Kenney and Imamura; action set = {North, South}.
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Payoffs to Kenney in the two-person zero sum game

Neither player has a dominant strategy.

• Kenney would choose North if he thought Imamura would choose
North, but South if he thought Imamura would choose South.

• Imamura would choose North if he thought Kenney would choose
South and he would be indifferent between actions if he thought
Kenney would choose North.
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An iterated elimination equilibrium is a strategy profile found by
deleting a weakly dominated strategy from the strategy set of one
of the players, recalculating to find which remaining strategies are
weakly dominated, deleting one of them, and continuing the pro-
cess until one strategy remains for each player. Note that iterated
elimination equilibrium may not exist. Most likely such equilibrium
is unique, except in the unlikely scenario where two or more strate-
gy profiles left after all iterated elimination steps happen to be the
same payoff. They are all iterated elimination equilibriums.

• Using the iterated elimination equilibrium concept, Kenney e-
liminates “Imamura chooses South” from consideration since
South is a weakly dominated strategy for Imamura.

• Having deleted one column of the payoff table, Kenney has a
strongly dominant strategy: he chooses North, which achieves
payoff strictly greater than South.

• The strategy profile (North, North) is an iterated elimination
equilibrium, and indeed (North, North) was the outcome in 1943.
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Sequential moves – order of play

Once Kenney has chosen North, Imamura is indifferent between
North and South. The outcomes are dependent on which player
moves first. This is unlike a dominant strategy equilibrium, where
the equilibrium outcome is irrelevant to the sequence of moves.

1. If Kenney moved first, (North, North) would remain an iterated
dominance equilibrium, but (North, South) would also become
one.
Though the payoffs would be the same for both equilibriums,
but the strategy profiles are different.

2. If Imamura moved first, (North, North) would be the only iter-
ated dominance equilibrium.
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Example

Consider the following two-player nonzero sum game:

A quick observation reveals that there is no strictly dominant strat-
egy, neither for player 1 nor for player 2. Also note that there is
no strictly dominated strategy for player 1. There is, however, a
strictly dominated strategy for player 2: the strategy C is strictly
dominated by R because 2 > 1 (row U), 6 > 4 (row M), and 8 > 6
(row D).
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Both players know that the strategy C is eliminated from player 2’s
strategy set, which results in the following reduced game:
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In this reduced game, both M and D are strictly dominated by U

for player 1, allowing us to perform a second round of eliminating
strategies, this time for player 1.

Eliminating these two strategies yields the following trivial game,
where player 2 has a strictly dominated strategy of playing R.

Finally, the iterated elimination of strictly dominated strategies lead
to the strategy profile (U,L). This is called the iterated elimination
equilibrium. As a check, (U,L) is a Nash equilibrium.

Suppose the outcome in (U,R) is changed to (4,3), all iterated
elimination steps remain the same. Both (U,L) and (U,R) are iter-
ated elimination equilibriums. This represents the unlikely scenarios
where iterated elimination equilibrium is not unique.
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Relations between Nash equilibrium and iterated elimination
equilibrium

1. Every iterated elimination equilibrium is a Nash equilibrium.

We prove by contradiction. Suppose that an iterated elimination
equilibrium s∗ is not a Nash equilibrium, due to violation of the
best response property in a Nash equilibrium, then there exists
s′i of some player i such that

πi(s
′
i, s
∗
−i) > πi(s

∗
i , s
∗
−i),

where s∗−i represents the exclusion of player i’s equilibrium s-
trategy s∗i from the iterated elimination equilibrium s∗. In this
case, s∗i is seen to be dominated by s′i, so it should have been
eliminated in the iterated elimination procedure before arriving
at (s∗i , s

∗
−i). Hence, s∗ cannot be an iterated elimination equilib-

rium. This leads to a contradiction.

Indeed, an iterated elimination of dominated strategy equilibrium
are made up of strategies that are not dominated. If otherwise,
such profile cannot survive under all iterated elimination steps.
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2. Not every Nash equilibrium can be generated by iterated elimi-
nation.

Consider the following two-person nonzero-sum game

I
II

II1 II2

I1 (3,3) (-1,-1)
I2 (-1,-1) (1,1)

Note that (1,1) is a Nash equilibrium. Note that I1 and I2 do
not weakly dominate each other, so do II1 and II2. Therefore,
(1,1) would NOT be generated by iterated dominance.
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Coordination games — coordinate on one of the multiple Nash
equilibriums

Unlike the Battle of the Sexes where the compromiser always has a
lower payoff than that of his opponent, the payoffs to the two players
are the same when they coordinate, one of the Nash equilibriums
is Pareto-superior. One can use the size of the payoffs to choose
between Nash equilibriums, where the Pareto-superior equilibrium is
more preferred?

Players Smith and Jones decide whether to design the computers
they sell to use large or small floppy disks.
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Assuming no pre-game communication, how to make the Pareto-
efficient equilibrium (Large, Large) be more plausible?

Though (2,2) Pareto-dominates all other strategy profiles. Howev-
er, “Large” is not a dominant strategy for both players, so it is not
a dominant strategy equilibrium.

Suppose we change the outcome of (Large, Small) from (−1,−1)
to (1.1,−1). Now, Small is a dominated strategy of Row, so it is
eliminated. Since Row always plays Large, then Column chooses to
play Large. The strategy profile (Large, Large) becomes an iterated
elimination equilibrium.

Though (Large, Large) is an iterated elimination equilibrium, it is
not a dominant strategy equilibrium. This is because Large is not
a dominant strategy for Column, though Large is a dominant s-
trategy for Row. A dominant strategy equilibrium requires that all
equilibrium strategies of all players are dominant strategies.

35



Dangerous coordination — extreme out-of-equilibrium payoff

The out-of-equilibrium payoff may affect which Nash equilibrium
would be played out.

Under this case, the Pareto-dominated Nash equilibrium (Smal-
l, Small) would be much more likely to occur than the Pareto-
dominating Nash equilibrium (Large, Large).

If Smith cannot trust Jones to be rational to pick the Pareto-
dominating (payoff dominant) Nash equilibrium, then Smith will be
reluctant to pick “Large” since his payoff if Jones pick “Small” is
then −1,000. Smith suffers greatly if the agreement of coordination
is not honored by Jones.
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Guessing two-thirds of the average – Beauty Context

Three persons are going to choose an integer from 1 to N . The
person who chooses closest to two-thirds of the average of all the
numbers chosen wins $1.

If two or more people choose the same number closest to two-thirds
of the average, they split $1. The payoff function is given by

πi(x1, x2, x3) =


1 if x1 6= x2 6= x3, and xi is closest to x̄;
1
2 if xi = xj for some j 6= i, and xi is closest to x̄;
1
3 if x1 = x2 = x3;
0 otherwise.

Here, x̄ = 2
3
x1+x2+x3

3 . The possible choices for xi are {1,2, ..., N}.

Claim: (x∗1, x
∗
2, x
∗
3) = (1,1,1) is a Nash equilibrium, independent of

N .

It suffices to show that

π1(1,1,1) ≥ π1(x1,1,1), x1 6= 1, x1 ∈ {2,3, ..., N}.
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Suppose Player 1 chooses x1 = k ≥ 2, then

2

3

(
1 + 1 + k

3

)
=

4

9
+

2

9
k

and the distance between two-thirds of the average and k is

|k −
4

9
−

2

9
k| =

7

9
k −

4

9
,

which is increasing with positive integer k.

If Player 1 had chosen x1 = 1, then |1 − 2
3| = 1

3. We cannot find
k > 1 such that

|
7

9
k −

4

9
| <

1

3
.

We can also show that none of the players can do better by switching
to another integer. Therefore, (1,1,1) is a Nash equilibrium.
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Keynes’ beauty contest

This game model is related to the famous Keynes’ beauty contest
where each participant is given 100 pictures of humans and chooses
6 pictures considered to be most attractive. The winner is the one
whose 6 chosen pictures match closest to the top 6 choices of all
participants. Here, the intelligences of the players are devoted to
anticipating what average opinion expects the average opinion to
be.

As an application in predicting stock price, Keynes postulated that
people pricing stock prices not based on what they think their funda-
mental value is, but rather on what they think everyone else thinks
their value is, or what everybody else would predict the average
assessment of value to be.

39



Rational thinking process

Suppose a player believes the average play will be X (including his
own integer). That player’s optimal strategy is to play the closest
integer to 2

3X. Take N = 100, then the optimal strategy of any
player has to be no more than 67. If X is no more than 67, then
the optimal strategy of any player has to be no more than 2

3 × 67.

Going further, it should be no more than (2
3)2 × 67. Iteratively, the

unique Nash equilibrium is for everyone to announce 1.

This is an example of iterated elimination. Players eliminate all
the strategies that are dominated, resulting in a “smaller” reduced
game that includes only strategies that can be a best response in
the original game.

The thinking process is based on common knowledge of rationality
of all players. An event E is said to be common knowledge if (i)
everyone knows E, (ii) everyone knows that everyone knows E.
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Empirical studies

With more than 10,000 players, in the first round of the play, the
mean is 34, mode is 50, median is 33. The winner is 23 since it is
closest to 2/3 of the mean. The next mode is 1 while good number
of players choose 100, 99, and 33 as well.

After learning the winner is 23, a subset of players were chosen to
play the game second time. The new mean is 6, mode is 1, median
is 2, while the winner is 4. The new outcomes are now close to the
Nash equilibrium.

With more rounds of play, the outcome converges to the Nash e-
quilibrium of “all players choose 1”.
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Subject pool Sample size Mean

Caltech board 73 49.4

80 year olds 33 37.0

High school students 52 32.5

Economics PhDs 16 27.4

Portfolio managers 26 24.3

Caltech students 24 21.5

Game theorists 136 19.1

Outcomes from various groups on the guessing two-thirds game
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Voter participation

Two candidates, A and B, compete in an election. Of the n citizens,
k support candidate A and m (= n− k) support candidate B. Each
citizen decides whether to vote, at a cost, for the candidate she
supports, or to abstain.

• A citizen who abstains receives the payoff of 2 if the candidate
she supports wins, 1 if this candidate ties for first place, and 0
if this candidate loses.

• A citizen who votes receives the payoffs 2 − c, 1 − c and −c in
these three cases, where the cost c satisfies 0 < c < 1.
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The payoff values to a player under win, tie or lose when he plays
“Vote” or “Abstain” are summarized as follows.

win tie lose
Vote 2− c 1− c −c

Abstain 2 1 0

(a) k = m = 1: Suppose player 1 supports A and player 2 supports
B.

• If both vote, there is a tie. The payoffs for both are 1− c.

• If player 1 votes while player 2 abstains, player 1 has payoff 2−
c while player 2 has zero payoff. Similar results are obtained
if they swap their role.

• If both abstain, there is a tie and no cost incurred, so the
payoffs for both are 1.
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The bi-matrix game is depicted as follows.

I
II

Vote Abstain

Vote (1− c,1− c) (2− c,0)
Abstain (0,2− c) (1,1)

Note that the Vote strategy of one player always changes “tie” to
“win” when the opponent chooses Abstain and changes “lose” to
“tie” when the opponent chooses Vote. Therefore, Vote always
guarantees a better payoff than Abstain, irrespective to the op-
ponent’s strategy. This game resembles the Prisoner’s Dilemma,
where Vote is the dominant strategy for both players.

The payoff (Abstain, Abstain) Pareto dominates (Vote, Vote).
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Consider the general case, where k +m > 2.

1. k = m > 1

When the number of supporting voters for both candidates are
the same, there is only one Nash equilibrium with strategy pro-
file: Vote for all voters.

To show that Vote for all voters is a Nash equilibrium, it suffices
to show that the best response of any player is Vote if all other
players choose Vote. This is because Abstain chosen by this
player leads to “lose” while Vote leads to tie, so Vote is the
best response.

In all other strategy profiles where some voters choose Abstain,
any of these strategy profiles cannot be a Nash equilibrium. It
suffices to show that some voters can be better off if he chooses
to deviate unilaterally.
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(a) tie
A voter who has chosen Abstain becomes better off if he changes
from Abstain to Vote. He turns “tie” into “win”.

(b) one candidate wins by one vote
A voter who did not vote for the losing candidate becomes better
off if he changes from Abstain to Vote. He turns “lose” into
“tie”.

(c) one candidate wins by two votes
A voter who votes for the winning candidate becomes better off
if he changes to Abstain and avoids the cost of voting. The
outcome of the voting is not changed.
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2. k < m

(a) With unequal number of supporting voters among the two
candidates, all Vote is not a Nash equilibrium any more. This
is because a supporter of the losing candidate can be better
off by changing Vote to Abstain since his candidate remains
losing. He saves the cost of voting.

(b) Those strategy profiles with some voters choosing Abstain
remain not to be a Nash equilibrium. Similar to the above
analysis, it can be shown that some voters can be better off
if he chooses to deviate unilaterally.
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Game of Chicken — Cuban Missile Crisis

In October 1962, the US and USSR came close to a nuclear con-
frontation. President Kennedy estimated the probability of a nuclear
war to be between 1

3 to 1
2. Political issues include:

• The USSR attempted to place offensive missile in Cuba.

• The US chose to respond to the Soviet missile emplacement
with a blockade of Cuba.

• The Soviet Union decided to withdraw the missile (chicken out).

We may treat the crisis as a contest between a challenger (USSR)
and a defender (US).
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• Is it worthwhile for the challenger (CH) to attempt to change
the status quo (SQ)? In the actual historical event, the Soviet
was embarassed to withdraw missiles in Cuba. She might be
better off not to challenge (changing the status quo).

• How did the other side (defender D) respond to the challenge
with a threat? If D does not resist, then the game closes (C).

• Why did one side or the other back down (BD) or the crisis
ended in a war (W)?
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To model the historical event, the bimatrix of the game should take
the following form:

• The challenger (Soviet) did not receive the highest payoff of 4
under the status quo (4,3), so she had the temptation to move
into military conflict (1,4).

• (4,3) is not a Nash equilibrium.

• After several sequential moves from the starting position is
(4,3), both players come to settle at (4,3).
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• The starting position is (4,3).

• When it comes to the Soviet to choose to move or stay, she
chose to move to (1,4) in order to receive higher payoff of 4.
However, US responded by moving to (2,1), then followed by
the Soviet to move to (3,2). This ends up at lower payoff of
2 instead of 3 for the Soviet. If the Soviet were smart enough,
they should not choose to move from (4,3) to (1,4).

• At the very end, US relaxed the blockade of Cuba and came
back to the payoff of 4 (status quo).

• When it comes to the turn that US makes the move, US should
not choose to change the status quo (4,3) to avoid the military
expense of placing blockade in Cuba.
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Six Day War (Yom Kippur War) (1973)

• Israel fought against Egypt and Syria and gained upper hand
within a few days.

• Soviet Union seriously considered intervening on behalf of Egypt
and Syria, but they were aware of the US option of intervention.
However, the US was faced with the Watergate scandal at home.

How did USSR and US rank the different outcomes, and was each
aware of the other’s preferences?
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Payoff values as viewed by the Soviets

Frustrated by the Watergate scandal, Soviets thought that the US
would rank the payoff to herself of outcome (C, N) to be ahead of
that of outcome (N, N).

• Strategy N is a dominant strategy for the Soviets but US has
no dominant strategy. Here, (C, N) is a Nash equilibrium.

54



Nixon’s immediate goal is to convince the Soviets that the correct
model is the Prisoner’s Dilemma. If we assume simultaneous moves
of the two players, then strategy N is a dominant strategy for both
US and Soviets.

Payoff to US of outcome (N, N) is ahead of that of (C, N). Now,
(N, N) is a Nash equilibrium. The game resembles the Prisoner’s
dilemma.

“Deliberate overreaction” by the US — placed the US forces on
worldwide alert.
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History told us that the two Great Powers ended up at the (3, 3)
outcome. This is not a Nash equilibrium, but this is the starting
position taken up by both countries since the game should begin with
(C, C). The question is whether or not either side should change its
status quo of C (cooperation) to N (non-cooperation).

The optimal strategies would change if the two players do not have
to choose simultaneously.

• Both players make an initial simultaneous choice of C (initial
position of the game).

• Allowing Row to move first, Row has the choice of staying or
changing his strategy.

• Column has the same choices as did Row in Step 2.

Remark: Analysis is analogous if Column moves first.
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Both players choose to stay at (3,3). An initial move from (3,3)
to (4,1) for the Row player leads to (2,2) eventually. A similar
argument can be applied to the Column player when he starts at
(3,3).
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2.2 Two-person nonzero sum games under mixed strategies

In a two-person nonzero sum game, each player has his own payoff
matrix:

A =


a11 ... a1m
. .
. .
. .
an1 ... anm

 and B =


b11 ... b1m
. .
. .
. .
bn1 ... bnm

 .

A mixed strategy for Player I is X = (x1, ..., xn) ∈ Sn with xi ≥ 0
representing the probability that Player I uses row i, and x1 + x2 +
... + xn = 1. Similar definition for Y = (y1, ..., ym) ∈ Sm for a mixed
strategy for Player II, and y1 + y2 + ...+ ym = 1.

The expected payoffs are

EI(X, Y ) = XAY T for Player I,

EII(X, Y ) = XBY T = Y BTXT for Player II.
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Definition - Nash equilibrium

A pair of mixed strategies (X∗ ∈ Sn, Y ∗ ∈ Sm) is a Nash equilibrium
if the following pair of conditions on best respenses both hold:

EI(X, Y
∗) ≤ EI(X

∗, Y ∗) for every mixed X ∈ Sn,
EII(X

∗, Y ) ≤ EII(X
∗, Y ∗) for every mixed Y ∈ Sm.

We write vI = EI(X
∗, Y ∗) and vII = EII(X

∗, Y ∗) as the expected
payoff to each player under the mixed Nash equilibrium (X∗, Y ∗).

Neither player can gain any expected payoff if either one chooses
to deviate unilaterally from playing his part of the Nash equilibrium,
assuming that the other player is implementing his part of the Nash
equilibrium.

Each strategy in a Nash equilibrium is a best response strategy
against the opponent’s Nash strategy. Nash equilibrium corresponds
to a “social norm” (if every one adheres to it, no individual wishes
to deviate from it).
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Nash’s Existence Theorem

Any n-player game with finite strategy sets Ai for all players has a
Nash equilibrium in mixed strategies.

• In games for which players have opposing interests, like the Sum
of Fingers game, there will be no pure-strategy Nash equilibrium
but a mixed strategy Nash equilibrium always exists.

• Allowing for mixed strategies enriches both what players can
choose and what they can believe about the choices of other
players.
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Best response strategy

A mixed strategy X̂ ∈ Sn is a best response strategy to a given
mixed strategy Y 0 ∈ Sm for Player II if

EI(X̂, Y
0) = max

X∈Sn
EI(X, Y

0).

In a Nash equilibrium (X∗, Y ∗), X∗ maximizes EI(X, Y
∗) over all

X ∈ Sn and Y ∗ maximizes EII(X
∗, Y ) over all Y ∈ Sm. In other

words, X∗ is a best response to Y ∗ and Y ∗ is a best response to X∗.

In a game model, unlike a standard procedure of maximizing a func-
tion, a Nash equilibrium does not maximize the individual payoff. A
typical example is the Prisoner’s dilemma. One player can achieve
the maximum payoff provided that the other player agrees to play
that strategy accordingly (compromising her right to achieve higher
payoff). It is unlikely that the maximization of Player I’s payoff oc-
curs at X when Player II agrees to play Y ; while at the same time
this pair (X,Y ) also maximizes Player II’s payoff.
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Remarks

1. If B = −A, a bi-matrix game is a zero sum two-person game.
A Nash equilibrium is the same as a saddle point in mixed s-
trategies. To see this, (X∗, Y ∗) is a Nash equilibrium for both
players if and only if

X∗AY ∗T ≥ XAY ∗T , ∀X ∈ Sn;

X∗(−A)Y ∗T ≥ X∗(−A)Y T , ∀Y ∈ Sm

⇔ E(X, Y ∗) ≤ E(X∗, Y ∗) ≤ E(X∗, Y ), ∀X ∈ Sn and Y ∈ Sm.

The last pair of inequalities is equivalent to (X∗, Y ∗) being a
saddle point of the zero sum game.

2. A Nash equilibrium in pure strategies will be a row i∗ and column
j∗ satisfying

aij∗ ≤ ai∗j∗ and bi∗j ≤ bi∗j∗, i = 1,2, ..., n and j = 1,2, ...,m.

That is, ai∗j∗ is the largest in column j∗ and bi∗j∗ is the largest
in row i∗ simultaneously.
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• The payoff of a player in taking any pure strategy cannot be
greater than the payoff obtained from the mixed strategy in
the Nash equilibrium when the other player stays with the Nash
equilibrium strategy. This is easily seen since maximization over
all i (pure strategies) should give lower payoff or at most the
same payoff when compared with the maximization over all X ∈
Sm (mixed strategies). That is, EI(k, Y

∗) ≤ EI(X
∗, Y ∗), for all

k.

• If a particular pure strategy has a payoff that is lower than that
of the mixed strategy Nash equilibrium, then it should be ruled
out in the mixed strategy. That is, EI(k, Y

∗) < EI(X
∗, Y ∗), then

xk = 0. Equivalently, xk > 0 implies EI(k, Y
∗) = EI(X

∗, Y ∗).

• All pure strategies used in the mixed strategy Nash equilibrium
should have the same payoff in order that payoff of the mixed
strategy and any weighted average of the payoffs of the pure
strategies in the mixed strategy Nash equilibrium would be the
same. This is essentially the statement of the Equality of Payoff
Theorem.
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Theorem – Equality of Payoff

Let X∗ = (x1, ..., xn) and Y ∗ = (y1, ..., ym) be a mixed Nash equi-
librium. Suppose xk > 0 for some k, then EI(k, Y

∗) = EI(X
∗, Y ∗).

Proof

(i) Since Player I cannot be better off by deviating from X∗, obvi-
ously, EI(i, Y

∗) ≤ EI(X
∗, Y ∗) = vI, for any i.

(ii) We prove by contradiction. Suppose xk > 0 and EI(k, Y ) < vI,
then

xivI ≥ xiEI(i, Y
∗), i 6= k and xkvI > xkEI(k, Y

∗).

We then have
n∑
i=1

xivI = vI >
n∑
i=1

xiEI(i, Y
∗) = EI(X

∗, Y ∗) = vI which is simply vI.

A contradiction is encountered.
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Suppose there exists EI(l, Y
∗) < EI(X

∗, Y ∗), where the lth strategy
of Row is an under performer, then we must have xl = 0, otherwise
we will encounter the above contradiction. In other words, the pure
strategy corresponds to l must be ruled out in the mixed strategy
Nash equilibrium.
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Battle of Sexes (cooperation with compromise) revisited

We explore whether a mixed Nash equilibrium exists in the game of
“Battle of Sexes”. Note that (Boxing, Boxing) and (Ballet, Ballet)
are Pareto-efficient pure Nash equilibriums.

Under the mixed strategy (p, q), where X = (p,1−p) and Y = (q,1−
q), the expected value of the husband is given by π1(p, q) = XAY T :

π1(p, q) = pEI(1, Y ) + (1− p)EI(2, Y )

= p[3q + (1− q)] + (1− p)[2(1− q)]

= p(2q + 1) + (1− p)(2− 2q)

while that of the wife is

π2(p, q) = q(2p) + (1− q)[p+ 3(1− p)] = q(2p) + (1− q)(3− 2p).
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Husband’s best response function

• If q > 1
4, consider the husband’s payoffs: expected payoff of

Boxing = EI(1, Y ) = 3q + 1 − q = 2q + 1 is higher than that
of Ballet = EI(2, Y ) = 2(1 − q) since 2q + 1 > 2 − 2q ⇔ q > 1

4.
Since EI(1, Y ) > EI(2, Y ), so husband’s unique best response is
X = (1,0), that is, p = 1.

• If q < 1
4, then EI(1, Y ) < EI(2, Y ). The husband’s unique best

response is X = (0,1), that is, p = 0.

• If q = 1
4, then EI(1, Y ) = EI(2, Y ). All mixed strategies played by

the husband yield the same expected payoff, that is, 0 ≤ p ≤ 1.

In this case, π1(p, q) is independent of p. As a check,
dπ1

dp
= 4q−1

and setting it be zero gives q =
1

4
.

Husband’s best response function is

B1(q) =


p = 0 if q < 1

4,

p ∈ [0,1] if q = 1
4,

p = 1 if q > 1
4.
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Wife’s best response function

In a similar manner, we can show that

wife’s expected payoff of Boxing > wife’s expected payoff of Ballet
⇔ 2p = EII(X,1) > EII(X,2) = p+3(1−p) = 3−2p
⇔ p > 3

4.

Wife’s best response function is

B2(p) =


q = 0 if p < 3

4,

q ∈ [0,1] if p = 3
4,

q = 1 if p > 3
4.

Suppose the husband chooses the mixed strategy as characterized
by the probability vector (3

4,
1
4) of choosing Boxing and Ballet while

the wife chooses the probability vector (1
4,

3
4) in her mixed strategy,

then each mixed strategy is in the respective player’s best response
function. Hence,

{
(3

4,
1
4), (1

4,
3
4)
}

is a mixed strategy Nash equilibri-
um.
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Husband’s best response correspendence Wife’s best response correspondence

The pure and mixed Nash equilibriums can be found by the intersec-
tion points of the best response correspondences of the two players.
The two best response correspondences intersect at 3 points in the
p-q diagram:

(i) (0,0) that corresponds to the outcome (Ballet, Ballet);

(ii) (3
4,

1
4) that corresponds to 75−25 chance of (Boxing, Ballet) for

the husband and 25−75 chance of (Boxing, Ballet) for the wife,
a reasonable result since (Boxing, Ballet) has higher outcome
than that of (Baller, Boxing);

(iii) (1,1) that corresponds to the outcome (Boxing, Boxing).
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Finding all Nash equilibriums for a two-person 2× 2 nonzero
sum game

Let X = (x,1− x) and Y = (y,1− y), we write

f(x, y) = EI(X, Y ) = XAY T = (x,1− x)

(
a11 a12
a21 a22

)(
y

1− y

)
= xEI(1, Y ) + (1− x)EI(2, Y ),

g(x, y) = EII(X, Y ) = XBY T = (x,1− x)

(
b11 b12
b21 b22

)(
y

1− y

)
= yEII(X,1) + (1− y)EII(X,2).

Note that EI(X,Y ) is a weighted average (according to different

choices of x) of EI(1, Y ) and EI(2, Y ). Also,
∂f

∂x
= 0 ⇔ EI(1, Y ) =

EI(2, Y ), which means that Player I is indifferent to different choices
of X = (x,1− x).

Write RI and RII as the best response correspondence of Player I
and Player II, respectively.
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• A point (x∗, y) ∈ RI means that x∗ is the point in [0,1] where
f(x, y) is maximized at x∗ for y fixed. That is, X∗ = (x∗,1− x∗)
is a best response to Y = (y,1− y).

• A point (x∗, y∗) in both RI and RII means that X∗ = (x∗,1− x∗)
and Y ∗ = (y∗,1−y∗), as best responses to each other, is a Nash
equilibrium. Note that x∗ = B1(y∗) and y∗ = B2(x∗).

Recall f(x, y) = xEI(1, Y ) + (1− x)EI(2, Y ) so that

max
0≤x≤1

f(x, y) = max
0≤x≤1

x[EI(1, Y )− EI(2, Y )] + EI(2, Y )

=


EI(2, Y ) at x = 0 if EI(1, Y ) < EI(2, Y );
EI(1, Y ) at x = 1 if EI(1, Y ) > EI(2, Y );
EI(2, Y ) at any 0 ≤ x ≤ 1 if EI(1, Y ) = EI(2, Y ).

There are 3 possible cases:

(i) x = 0 if EI(1, Y ) < EI(2, Y );

(ii) x = 1 if EI(1, Y ) > EI(2, Y );

(iii) x takes any values in [0,1] if EI(1, Y ) = EI(2, Y ).
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That is, player I does not play strategy 1 if EI(1, Y ) < EI(2, Y ).
These results are consistent with the equality of payoff theorem.

The sign of EI(1, Y )−EI(2, Y ) depends on Y = (y,1− y). When y

is chosen such that EI(1, Y ) = EI(2, Y ), then f(x, y) is independent

of x so that
∂f

∂x
= 0. Solving EI(1, Y ) = EI(2, Y ), we obtain

(a11, a12)

(
y

1− y

)
= (a21, a22)

(
y

1− y

)
⇔ a11y + a12(1− y) = a21y + a22(1− y)

giving

y∗ =
a22 − a12

a11 − a12 − a21 + a22
.

When Player II plays Y ∗ = (y∗,1 − y∗), Player I obtains the same
payoff from each of his pure strategies.
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Best response correspondence of Player I

The best response correspondences of Player I can take two different
forms, depending on the relative magnitude of EI(1, y) and EI(2, y)
at a given Y = (y,1 − y), y 6= y∗. In the left figure, we have
EI(1, y) < EI(2, y) for y < y∗. Therefore, the best response of Player
I to this value of y is x∗ = 0.
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Best response correspondence of Player II

Recall that x∗ is determined by EII(X,1) = EII(X,2). This gives

x∗ =
b22 − b21

b11 − b12 − b21 + b22
.

In the left figure, we have EII(x,1) < EII(x,2) for x < x∗. Therefore,
the best response of Player II to this value of x is y∗ = 0.
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It may occur that x∗ ≤ 0 or x∗ ≥ 1. This gives rise to the degener-
ated case of pure strategy y∗ = 1 or y∗ = 0 for Player II.

For x∗ ≤ 0, we have the following cases:

When EII(X,1) > EII(X,2) When EII(X,1) < EII(X,2)

and x∗ ≤ 0, y∗ = 1 for all x ∈ [0,1] and x∗ ≤ 0, y∗ = 0 for all x ∈ [0,1].
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Four possible cases of intersection of the best response corre-
spondences of the two players under 0 < x∗ < 1 and 0 < y∗ < 1

(0,0), (1,1), (x∗, y∗): two
pure Nash equilibriums and
one mixed Nash equilibrium

(x∗, y∗): one mixed Nash e-
quilibrium
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(x∗, y∗): one mixed Nash e-
quilibrium

(0,1), (1,0), (x∗, y∗): two
pure Nash equilibriums and
one mixed Nash equilibrium
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Welfare Game

The Welfare Game models a government that wishes to aid a pauper
if he searches for work (see the left arrow), and a pauper who
searches for work only if he cannot depend on government aid (see
the bottom arrow). The payoff to Government under (No Aid,
Work) is −1 since this reflects failure of public policy.

Neither player has a dominant strategy and no pure strategy Nash
equilibrium exists. For example, (Aid, Work) is not a Nash equilib-
rium since the pauper would respond with Loaf if the government
picked Aid.
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(Aid, Work) does not Pareto-dominate all other outcomes. Sup-
pose (Aid, Work)’s outcome is changed to (3,4), then (Aid, Work)
Pareto-dominates all other outcomes, and thus it is a Nash equilib-
rium.

The government’s expected payoff

πgov = θaπgov(aid, Y ) + (1− θa)πgov(no aid, Y )

= θa(3,−1)

(
γw

1− γw

)
+ (1− θa)(−1,0)

(
γw

1− γw

)
= θa[3γw + (−1)(1− γw)] + (1− θa)[(−1)γw + 0(1− γw)]

= θa(5γw − 1)− γw.

In the mixed extension, the government’s action of θa lies in [0, 1],
the pure strategies correspond to the extreme values 0 and 1.

Based on the indifference principle, we find the mixed Nash equilib-
rium strategy of the pauper by computing the first order condition
for the government. This gives

0 =
dπgov

dθa
= 5γw − 1 so that γw = 0.2.
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The first order condition dictates that at γw = 0.2, the government
is indifferent between aid and no aid. Note that

Egov(aid, Y ) ≥ Egov(no aid, Y )

⇔ 3γw + (−1)(1− γw) ≥ (−1)γw + 0(1− γw)⇔ γw ≥ 0.2.

Depending on the pauper’s strategy, we consider the following 3
strategies that maximize the government’s payoff.

(i) When γw < 0.2 (pauper is less likely to work), then government
choose θa = 0 and πgov = −γw.

(ii) More likely to work so that γw > 0.2, then government chooses
θa = 1 and πgov = 5γw − 1.

(iii) On the border line of γw = 0.2, the government is indifferent
to any probability of aid. The expected payoff to government
is −0.2, independent on θa. This explains why dπgov

dθa
= 0 at

γw = 0.2.

The strategy played by the government depends on probability of
selecting Work by the pauper. God only saves those who want to
save themselves.
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To obtain the probability of the government choosing Aid, consider

πpauper = γwπpauper(X,work) + (1− γw)πpauper(X, loaf)

= γw(θa,1− θa)

(
2
1

)
+ (1− γw)(θa,1− θa)

(
3
0

)
= γw[2θa + (1− θa)] + (1− γw)[3θa + 0 · (1− θa)]

= −γw(2θa − 1) + 3θa.

The first order condition is

dπpauper

dγw
= −(2θa − 1) = 0 giving θa = 0.5.

Note that θa = 0.5 and γw = 0.2 is in the intersection point of the
players’ best response functions.

In the mixed strategy Nash equilibrium, the government selects Aid
with probability 0.5 and the pauper selects Work with probability
0.2. The probability of Work can be interpreted as the percentage
of a group of paupers that select Work.
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The intersection of the two best response functions gives the mixed
Nash equilibrium (0.5,0.2) for the Welfare game.
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Chicken Game

Payoff-equating method

This method is applicable only when solution of completely mixed
strategies exists; that is, θ ∈ (0,1). Assuming existence of com-
pletely mixed strategy equilibrium of the Column player, Jones, we
equate the expected payoffs to give

πJones(Swerve) = (θSmith) · (0) + (1− θSmith) · (1)

= πJones(Continue)

= (θSmith) · (−3) + (1− θSmith) · (2).

We obtain 1 − θSmith = 2 − 5θSmith so θSmith = 0.25. Under this
choice of θSmith, Jones is indifferent to choose either strategy.
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In the symmetric equilibrium, both players use the same probability,
so we replace θSmith by θ. The two players will survive when the
event that both choose continue does not occur and the probability
1− θ2 = 0.9375.

Suppose we change −3 to x, we obtain θ = 1
1−x. If x = −3, this

gives θ = 0.25 as before. If x = −9, it gives θ = 0.1 (making good
sense). Increasing the loss from crashes reduces the equilibrium
probability of continuing down the middle of the road.

If x = 0.5, then θ = 2. This does not make sense since probability
must be bounded above by one. There will be no completely mixed
strategy Nash equilibrium.

This absurdity of probability is a valuable aid to the fallible modeller.
With positive value of x, both drivers would choose to continue
down the road since crashes provide gain. Obviously, (Continue,
Continue) is a dominant strategy equilibrium.
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Civic Duty Game

A notorious example in social psychology: murder of Kitty Genovese
in New York City

“For more than half an hour, 38 respectable and law-abiding citizens
in Queens watched a killer stalk and stab a woman in three separate
attacks in Kew Gardens ... Twice the sound of their voices and the
sudden glow of their bedroom lights interrupted him and frightened
him off. Each time he returned, sought her out, and stabbed her
again. Not one person telephoned the police during the assault:
one witness called after the woman was dead.”

• Higher chance of complete “Ignore” when the number of spec-
tators increases. It is more likely that spectators speculate that
there would be somebody who would take the trouble to call
the police.
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The Civic Duty Game has two asymmetric pure strategy Nash equi-
librium (one of the citizens who is more Civic Duty minded calls)
and a symmetric mixed strategy Nash equilibrium (each one calls
with the same probability that is less than one).

If the players are drawn from a single homogeneous population and
there is no way for them to cooperate, then a symmetric equilibrium
(everyone uses the same mixed strategy) is more compelling.

86



N-player mixed strategy equilibrium

Recall that each would like someone to call the police and stopped
the crime (payoff = 10). However, neither wishes to make the call
himself since the effort subtracts 3.

We determine the Nash equilibrium strategy of other N − 1 players
(with common value of γ) using the equality of payoff of Smith
under the two pure strategies of Telephone and Ignore. We obtain

πSmith(Telephone) = 7 = πSmith(Ignore)

= γN−1(0) + (1− γN−1)(10),

where γN−1 is the probability that none of N − 1 players call. This

gives γN−1 = 0.3 or γ∗ = 0.3
1

N−1. When N = 2, we obtain γ∗ = 0.3
and the probability of Ignore by both is 0.32 = 0.09.

When N = 2 or N = 38, the expected payoff πSmith(Ignore) remains
the same since it is always equal to πSmith(Telephone) = 7. When
N = 38, γ∗ = 0.97 and (γ∗)38 = 0.29. The probability of Ignore by

all is given by (0.3)
N

N−1, which increases with N .
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Example - Expert diagnosis

Statement of the problem

I am relatively ill-informed about my car, computer or body stops
working properly. I consult an expert, who makes a diagnosis and
recommends an action.

• I am not sure whether the diagnosis is correct - the expert, after
all, has an interest in selling his services.

• Should I follow the expert’s advice or try to fix the problem
myself, put up with it, or consult another expert?

There are two types of problems: major and minor.

• The expert knows, on seeing a problem, whether it is major or
minor.

• The consumer knows only the probability of a major problem, r.
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Expert’s strategies and payoffs

An expert may recommend either a major or a minor repair (regard-
less of the true nature of the problem). A major repair fixes both a
major problem and a minor one.

• The expert obtains the same profit π > 0 from (i) selling a
minor repair with a minor problem (ii) selling a major repair
with a major problem. However, he obtains π′ (which is greater
than π) from selling a major repair to a minor problem.

Two strategies of the expert

• Honest: recommend a minor (major) repair for a minor (major)
problem

• Dishonest: always recommend a major repair
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Customer’s strategies and payoffs

The customer pays E for a major repair and I < E for a minor one.

The cost he effectively bears if he chooses some other remedy is
E′ > E if his problem is major and I ′ > I if it is minor.

Furthermore, we assume E > I ′; otherwise, seeking for other remedy
for minor repair is irrelevant. Hence, we have E′ > E > I ′ > I.

Two strategies of the customer

• Accept: buy whatever repair the expert recommends

• Reject recommendation of a major repair: buy a minor repair
but seek some other remedy if a major repair is recommended
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Game matrix payoff

(H,A): With probability r, the consumer’s problem is major, so he pays
E. With probability 1−r, it is minor, so he pays I. The expected
payoff is −rE − (1− r)I.

(D,A): The customer’s problem is major with probability r, yielding the
expert π; otherwise, the expert receives π′. The customer always
pays E.
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(H,R): The expert earns a payoff of π only if the consumer’s problem
is minor. Hence, the expected payoff is (1 − r)π. The cost to
the customer is E′ if the problem is major since he rejects the
expert’s advice to get a major repair; otherwise, the cost is I

since he allows the expert to fix a minor problem. Therefore,
the expected payoff is −rE′ − (1− r)I.

(D,R): Since the dishonest expert always poses the problem as major,
so the customer never accepts the expert’s advice. The payoff
to the expert is always zero. On the other hand, the expected
customer’s payoff is −rE′ − (1 − r)I ′ since he always chooses
some other remedy to fix the problem.
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Expert’s best response function

• We determine the mixed Nash equilibrium strategy of the con-
sumer using the payoff equality property of the expert’s expected
payoffs. Given the consumer’s choice of q, the expert’s expected
payoff to H is qπ+(1−q)(1−r)π and that to D is q[rπ+(1−r)π′].
We find q such that the expert is indifferent. This gives

EI(1, Y ) = qπ + (1− q)(1− r)π = q[rπ + (1− r)π′] = EI(2, Y )

giving q∗ = π
π′. Interestingly, the profit parameters of the expert

determines the mixed Nash strategy of the customer.

• When q = 0 (the customer is always skeptical), EI(1, Y ) >

EI(2, Y ), the expert’s best response is obviously p = 1 (the ex-
pert is induced to be always honest). This best response persists
when 0 ≤ q < π

π′. Skepticism induces honesty.

• When q = 1 (the customer always accepts), the expert’s best
response is p = 0 (the credulous customer drives the expert to
become always dishonest) since rπ + (1 − r)π′ > π. This best
response persists when π

π′ < q ≤ 1.
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Consumer’s best response function

The crucial issue is to compare the cost of a major repair and the
expected cost of an alternative strategy. We consider the following
characterization:

(i) E < rE′ + (1 − r)I ′, the cost of a major repair by an expert is
less than the expected cost of an alternative remedy, then the
customer’s best response is q = 1 for any value of p.

(ii) E > rE′+ (1− r)I ′, then the customer is indifferent between A
and R if

EII(X,1) = −p[rE + (1− r)I]− (1− p)E

= −p[rE′+ (1− r)I]− (1− p)[rE′+ (1− r)I ′]
= EII(X,2),

giving

p =
E − [rE′+ (1− r)I ′]

(1− r)(E − I ′)
.

Note that the mixed Nash strategy of the expert is determined
by the cost parameters of the customer.
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In the left figure, when the cost of major repair is lower than the
expected cost of seeking for an alternative remedy, the customer
should always accept.

When E decreases in value, the vertical line in the consumer’s best
response function moves to the left until it hits the q-axis eventually.
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Summary of Nash equilibrium strategies

1. E < rE′+(1−r)I ′, (D,A) is the unique pure strategy Nash equi-
librium - the dismal outcome that the expert is always dishonest
and the customer always accepts his advice.

2. E > rE′+ (1− r)I ′, the unique mixed strategy Nash equilibrium
with (p∗, q∗) is given by

p∗ =
E − [rE′+ (1− r)I ′]

(1− r)(E − I ′)
and q∗ =

π

π′
.

Interpretation of mixed strategy Nash equilibrium in steady s-
tate: The fraction p∗ of experts is honest while the fraction
q∗ of consumers is credulous (accepting any recommendation).
Honest and dishonest experts obtain the same expected payoff,
as do credulous and wary consumers.
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Safety values

The amount that Player I can be guaranteed to receive is obtained
by assuming that Player II is always trying to minimize Player I’s
payoff. This is the maxmin strategy of Player I.

The value of the game with matrix A is the guaranteed amount for
Player I. Likewise, Player II can guarantee that he will receive the
value of the game with matrix BT . They are the safety values for
the two players.

Recall that suppose (XA, Y A) is a mixed strategy saddle point of a
zero sum game with game matrix A, then

v+ = min
Y ∈Sm

max
X∈Sn

XAY T = value(A) = max
X∈Sn

min
Y ∈Sm

XAY T = v−.

Note that (XA, Y A) is guaranteed to exist (may not be unique)
while v(A) is unique.
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• Suppose A has the saddle point (XA, Y A), then XA is given by
the maxmin strategy for Player I. Also, the safety value is given
by value(A), where

value(A) = max
X∈Sn

min
Y ∈Sm

XAY T .

For any strategy X played by Player I, Player II tries to achieve
min
Y ∈Sm

XAY T . The guaranteed floor payoff to Player I is max
X∈Sn

min
Y ∈Sm

XAY T .

• We interchange the role of the row player and column player
and observe XBY T = Y BTXT . Under BT , Player II becomes
the row player and adopts the maxmin strategy to achieve the
guaranteed floor value of v(BT ). Suppose BT has the saddle

point (XBT , Y B
T

), then XBT is the corresponding maxmin s-
trategy for Player II. The guaranteed payoff to Player II is the
safety value(BT ) as given by

value(BT ) = max
Y ∈Sm

min
X∈Sn

Y BTXT .

Note that when comparing value(A) and value(BT ), we swap
BT for A, X for Y and Y for X.
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Payoff at a Nash equilibrium is bounded below by the safety value

If (X∗, Y ∗) is a Nash equilibrium for the bi-matrix game (A, B),
then

EI(X
∗, Y ∗) = X∗AY ∗T = max

X∈Sn
XAY ∗T

≥ min
Y ∈Sm

max
X∈Sn

XAY T

= max
X∈Sn

min
Y ∈Sm

XAY T = value(A);

and similarly,

EII(X
∗, Y ∗) = X∗BY ∗T = Y ∗BTX∗T

= max
Y ∈Sm

Y BTX∗T ≥ min
X∈Sn

max
Y ∈Sm

Y BTXT

= max
Y ∈Sm

min
X∈Sn

Y BTXT = value(BT ).

If players use their mixed Nash equilibrium strategies, then their
expected payoffs are at least their safety levels.
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