
MATH4321 – Game Theory

Topic Four – Coalitions and bargaining

4.1 Power indexes in coalitions

• Weighted voting games

• Shapley-Shubik index and Banzhaf index

• Probabilistic characterization of power indexes

4.2 Bargaining games

• Pareto-optimal boundary and status quo payoff point

• Nash model with security point

• Threat strategies

• Sequential bargaining
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4.1 Power indexes in coalitions

Weighted majority voting game is characterized by a voting vector

[q;w1, w2, · · · , wn]

where there are n voters, wi is the voting weight of player i; N =

{1,2, · · · , n} be the set of all n voters; q is the quota (minimum num-

ber of votes required to pass a bill).

Let S be a typical coalition of players, which is a subset of N . A coalition

wins a bill (called winning) whenever∑
i∈S

wi ≥ q.

It is natural to require the quota to observe q >
1

2

∑
i∈N

wi so that “comple-

ment of a winning coalition would be losing”. As a result, there will be

no occurrence that two disjoint coalitions are both winning.
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The power of a player in a coalition game examines his ability to form

winning coalitions with other players.

Examples

1. [51; 28,24,24,24]; the first voter is much stronger than the last 3

since he needs only one other to pass an issue, while the other three

must all combine in order to win.

2. [51; 26,26,26,22], the last player seems powerless since any winning

coalition containing him can just as well win without him (a dummy).

3. In the equal-vote game [q; 1,1, · · · ,1], each player has equal power.

4. [51; 40,30,20,10] and [51; 30,25,25,20] are identical in terms of vot-

ing power, since the same set of coalitions are winning in both voting

vectors. Similarly, voting vectors [3; 2,2,1], [8; 7,5,3] and [51; 49,48,3]

are identical to [2; 1,1,1] in terms of voting power, since they give

rise to the same collection of winning coalitions (any two players can

form a winning coalition in all these weighted voting vectors).
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5. If we add to the game [3; 2,1,1] the rule that player 2 can cast an

additional vote in the case of 2 to 2 tie, then it is effectively [3; 2,2,1].

Player 3 gets a free ride since [3; 2,1,1] is equivalent to [2; 1,1,1],

which gives equal power to all players.

If player 1 can cast the tie breaker, then it becomes [3; 3,1,1] and he

is the dictator. He forms a winning coalition by himself.

6. In the game [50(n − 1) + 1; 100,100, · · · ,100,1], the last player has

the same power as the others when n is odd; the game is similar to

one in which all players have the same weights. For example, when

n = 5, we have [201; 100,100,100,100,1]. Any 3 of the 5 players can

form a winning coalition.
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Dummy players

Any winning coalition that contains such an impotent voter could win

just as well without him.

Examples

• Player 4 in [51; 26,26,26,22].

• Player n in [50(n − 1) + 1; 100; 100, · · · ,100,1] is a dummy when n

is even. For example, take n = 4, we have [151; 100,100,100,1].

Obviously, the last player is a dummy.

• In [10; 5,5,5,2,1,1], the 4th player with 2 votes is a dummy. The

5th and 6th players with only one vote are sure to be dummies. The

collection of dummies remains to be a dummy collection. This is

because one cannot turn a losing coalition into a winning coalition by

adding a dummy one at a time.
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Example

Consider [16; 12,6,6,4,3], player 5 with 3 votes is a dummy since no

subset of the numbers 12,6,6,4 sums to 13,14 or 15. Therefore, player

5 could never be pivotal in the sense that by adding his vote a coalition

would just reach or surpass the quota of 16.

Example

If we add the 8th player with one vote into [15; 5,5,5,5,2,1,1] so that

the new game becomes [15; 5,5,5,5,2,1,1,1], the 5th player in the new

voting game is not a dummy since sum of votes of some coalition may

assume the value of 13.
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Notion of power

• The index should indicate one’s relative influence, in some numerical

way, to bring about the passage or defeat of some bill.

• The index depends critically on the number of players involved, on

one’s fraction of the total weight, and upon how the remainder of the

weight is distributed.

• A winning coalition is said to be minimal winning if no proper subset

of it is winning. Technically, the one who is the ‘last’ to join a minimal

winning coalition is particularly influential.

• A voter i is a dummy if every winning coalition that contains him

is also winning without him, that is, he is in no minimal winning

coalition. A dummy has ZERO power.
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Veto power and dictator

A player or coalition is said to have veto power if no coalition is able

to win a ballot without his or their consent. A subset S of voters is a

blocking coalition or has veto power if and only if its complement N − S
is not winning.

A player i is a dictator if he forms a winning coalition {i} by himself.

• If the dictator says “yes”, then the bill is passed. If the dictator says

“no”, then the bill is not passed (any coalition without the dictator

is losing).

• If a dictator exists, then all other players are dummies.

If a coalition (may has only one player) has veto power and it is winning,

then it is a dictating coalition.
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Example

Player 1 has veto power in [51; 50,49,1] and [3; 2,1,1] but not a dictator.

In the last case, if he is the chairman with additional power to break ties,

then the game becomes [3; 3,1,1] and now he becomes a dictator.

Example

The ability of an individual to break tie votes in the equal-vote game
[
n
2 + 1; 1,1, · · · ,1

]
when n is even

[
n+1

2 ; 1,1, · · · ,1
]

when n is odd

adds power when n is even and adds nothing when n is odd. Actually,

when n is odd, tie votes will not occur.
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Properties on dummies

A collection of dummies can never turn a losing coalition into a winning

coalition.

In other words, it is not possible that S∪{D1, · · · , Dm} is winning but S is

losing. If otherwise, since the dummies can be successively deleted while

the coalition remains to be winning, this gives S to be winning. This

leads to a contradiction.

Corollary

If both “d” and “`” are dummies, then the coalition {d, `] is dummy.
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Theorem

In a weighted voting game, let “d” and “`” be two voters with votes xd
and x`, respectively. Suppose “d” is a dummy and x` ≤ xd, then “`” is

also a dummy.

Proof

Assume the contrary. Suppose “`” is not a dummy, then there exists a

coalition S that does not contain the dummy “d” such that S is losing

but S ∪ {`} is winning. Now, n(S) < q while n(S ∪ {`}) ≥ q. Since x` ≤ xd,
so n(S ∪ {d}) ≥ q, contradicting that “d” is a dummy.

Corollary

If the coalition {d, `} is dummy, then both “d” and “`” are dummies. This

is obvious since n({d, `}) > max(xd, x`).
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Shapley-Shubik power index

1. One looks at all possible orderings of the n players, and consider this

as all of the potential ways of building up toward a winning coalition.

For each one of these permutations, some unique player joins and

thereby turns a losing coalition into a winning one, and this voter is

called the pivot.

2. In the sequence of players x1, x2, · · · , xi−1, xi, · · · , xn, {x1, x2, · · · , xi} is

a winning coalition but {x1, x2, · · · , xi−1} is losing, then xi is in the

pivotal position.

3. The expected frequency with which a voter is the pivot, over all

possible orderings of the voters, is taken to be a good indication of

his voting power.
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Example – 4-player weighted voting game

The 24 permutations of the four players 1,2,3 and 4 in the weighted

majority game [51; 40,30,20,10] are listed below. The “*” indicates

which player is pivotal in the corresponding ordering.

1 2∗3 4 2 1∗3 4 3 1∗2 4 4 1 2∗3

1 2∗4 3 2 1∗4 3 3 1∗4 2 4 1 3∗2

1 3∗2 4
�



�
	2 3 1∗4

�



�
	3 2 1∗4

�



�
	4 2 1∗3

1 3∗4 2 2 3 4∗ 1 3 2 4∗ 1 4 2 3∗1

1 4 2∗ 3
�



�
	2 4 1∗ 3

�



�
	3 4 1∗ 2

�



�
	4 3 1∗ 2

1 4 3∗ 2 2 4 3∗ 1 3 4 2∗ 1 4 3 2∗ 1

For Player 1 winning coalitions consisting of 2 players.

�� �� winning coalitions consisting of 3 players.
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Shapley-Shubik power index for the ith player is

φi =
number of sequences in which player i is a pivot

n!

and we write φ = (φ1, · · · , φn).

Here, we assume that each of the n! alignments is equiprobable.

The power index can be expressed as

φi =
∑ (s− 1)!(n− s)!

n!

with
∑
i∈N

φi = 1


where s = |S| = number of voters in set S. The summation is taken over

all winning coalitions S for which S − {i} is losing.
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Counting permutations for which a player is pivotal in achieving winning

coalitions

• Player 1 is pivotal in three 3-player coalitions (namely {1,2,3}, {1,2,4},
{1,3,4} and s = 3) and in two 2-player coalitions (namely {1,2}, {1,3}
and s = 2). We have

φ1 = 3
(3− 1)!(4− 3)!

4!
+ 2

(2− 1)!(4− 2)!

4!
=

10

24
.

Note that player 1 is pivotal in {1,2,3} while {1,2,3} is not a mini-

mal winning coalition. This is because player 3 can be deleted from

{1,2,3} and {1,2} remains to be winning.

• For player 2, she is pivotal in two 3-player coalitions {2,3,4} and

{1,2,4} and one 2-player coalition {1,2}. Therefore, we obtain

φ2 = 2
(3− 1)!(4− 3)!

4!
+

(2− 1)!(4− 2)!

4!
=

6

24
.

• It is easy to check that player 3 and player 2 have equal power. There

are only 2 coalitions where player 4 is pivotal. The Shapley-Shubik

indexes are found to be φ =
(10,6,6,2)

24
.
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Banzhaf index

• Consider all significant combinations of “yes” or “no” votes, rather

than permutations of the players as in the Shapley-Shubik index.

• A player is said to be marginal, or a swing or critical, in a given

combination of “yes” and “no” if he can change the outcome.

• Let bi be the number of voting combinations in which voter i is

marginal; then βi =
bi∑
bi

.
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Assuming that all voting combinations are equally probable.

The game is [51; 40,30,20,10]. For the second case, if Player 1 changes

from Y to N , then the outcome changes from “Pass” to “Fail”.

Computation of the Banzhaf Index

Players Pass/Fail Marginal

1 2 3 4 P F 1 2 3 4

Y Y Y Y P

Y Y Y N P X

Y Y N Y P X X

Y N Y Y P X X

N Y Y Y P X X X

Y Y N N P X X

Y N Y N P X X
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N Y Y N F X X

Y N N Y F X X

N Y N Y F X X

N N Y Y F X X

Y N N N F X X

N Y N N F X

N N Y N F X

N N N Y F

N N N N F

24× β = (10,6,6,2)

Looking at Y Y NN (pass) and NY NN (fail), Player 1 can serve as the

defector who gives the swing from Pass to Fail in the first case and Fail to

Pass in the second case. We expect that the number of swings of winning

into losing effected by a particular player is the same as the number of

swings of effecting losing into winning by the same player.
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Example

Players with the same number of votes are considered alike. Such sym-

metry can save us writing out all n! orderings. For example, consider the

weighted majority game

[5; 3,2,1,1,1,1].

Since the “1” players are all alike, we need to write out only 6·5 = 6!/4! =

30 distinct orderings (instead of 6! = 720):

321111 231111 213111 211311 211131 211113

312111 132111 123111 121311 121131 121113

311211 131211 113211 112311 112131 112113

311121 131121 113121 111321 111231 111213

311112 131112 113112 111312 111132 111123
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Notice that the 1’s pivot 12/30 of the time, but since there are four of

them, each 1 pivots only 3/30 of the time. We get

Shapley-Shubik index = φ =
(

12

30
,

6

30
,

3

30
,

3

30
,

3

30
,

3

30

)
= (0.4,0.2,0.1,0.1,0.1,0.1).

Power as measured by the Shapley-Shubik index in a weighted voting

game is not proportional to the number of votes cast. For instance, the

first player with 3/9 = 33
1

3
% of the votes has 40% of the power.
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Use the same game [5; 3,2,1,1,1,1] for the computation of the Banzhaf

index

Types of winning Number of ways Number of swings for

coalitions with this can occur 3 2 1

5 votes: 32 1 1 1

311 6 = 4C2 6 12

2111 4 = 4C3 4 12

6 votes: 321 4 = 4C1 4 4

3111 4 = 4C3 4

21111 1 = 4C4 1

7 votes: 3211 6 = 4C2 6

31111 1 = 4C4 1

22 10 24

We do not need to include those winning coalitions of 8 or 9 votes, since

not even the player with 3 votes can be marginal to them.
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β =
(

22

56
,
10

56
,

6

56
,

6

56
,

6

56
,

6

56

)
≈ (0.392,0.178,0.107,0.107,0.107,0.107).

Remark

It suffices to consider the swings only in winning coalitions in the calcu-

lation of the Banzhaf index. A defector that turns a winning coalition

into a losing coalition also gives the symmetric swing that turns a losing

coalition into a winning coalition.

The numbers in the second column are derived from the theory of com-

binations. For instance, the number of ways that you could choose 311

from 321111 is 4C2 = 6. In other words, there are 6 ways of choosing 2

players with one vote from 4 players with one vote.

Comparing this with φ, we see that the two indices turn out to be quite

close in this case, with β giving slightly less power to the two large players

and slightly more to the small players.
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United Nations Security Council: power indexes calculations of

“big” and “small” countries

1. Big “five” – permanent member each has veto power; ten “small”

countries whose (non-permanent) membership rotates.

2. It takes 9 votes, the “big five” plus at least 4 others to carry an issue.

For simplicity, we assume no “abstain” votes. The game is [39; 7,7,7,7,

7,1,1, · · · ,1]. Why? Let x be the weight of any of the permanent

member and q be the quota. Then

4x+ 10 < q and q = 5x+ 4

so that 4x + 10 < 5x + 4 giving x > 6. Taking x = 7, we then have

q = 39.
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3. A “small” country i can be pivotal in a winning coalition if and only

if S contains exactly 9 countries including the big “five”. There are

9C3 such different S that contain i since the remaining 3 “small”

countries are chosen from 9 “small” countries (other than country i

itself). For each such S, the corresponding coefficient in the Shapley-

Shubik formula for this 15-person game is
(9− 1)!(15− 9)!

15!
. Hence,

φs = 9C3×
8!6!

15!
≈ 0.001863. Since sum of the Shapley-Shubik indexes

of all 15 countries is one, any “big-five” has index φb =
1− 10φS

5
=

0.1963.

4. Old Security Council before 1963, which was

[27; 5,5,5,5,5,1,1,1,1,1,1].

What is the corresponding yes-no voting system?

Answer for φ : φb =
1

5
·

76

77
;φS =

1

6
·

1

77
.

24



Remark – Direct computation of the power index of the big countries

To compute φb directly, we observe that a particular big country (say,

China) can be pivotal in 9-player coalitions, 10-player coalitions, . . ., 15-

player coalitions since she is holding the veto power. For example, in a

9-player coalition, 4 big countries and 4 out of 10 small countries are

ahead of the pivotal position held by China, leaving 6 small countries

behind. Repeating the same argument for 10-player coalitions,. . .,15-

player coalitions, we then have

φb = 10C4
(9− 1)!(15− 9)!

15!
+ 10C5

(10− 1)!(15− 10)!

15!

+ 10C6
(11− 1)!(15− 11)!

15!
+ 10C7

(12− 1)!(15− 12)!

15!

+ 10C8
(13− 1)!(15− 13)!

15!
+ 10C9

(14− 1)!(15− 14)!

15!

+
(15− 1)!0!

15!
.
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Canadian Constitutional Amendment

Investigate the voting powers exhibited in a 10-person game between

the provinces in Canada, and to compare the results with the provincial

populations.

The winning coalitions and those with veto power can be described as

follows. In order for passage, approval is required of

(a) any province that has (or ever had) more than 25% of the population,

(b) at least two of the four Atlantic provinces, and

(c) at least two of the four western provinces that currently contain to-

gether at least 50% of the total western population.
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Veto power

Recall that a blocking coalition (holding veto power) is a subset of players

whose complement is not winning and itself is not winning. Using the

current population figures, the veto power is held by

(i) Ontario (O)

(ii) Quebec (Q),

(iii) any three of the four Atlantic (A) provinces [New Brunswick (NB),

Nova Scotia (NS), Prince Edward Island (PEI), and Newfoundland

(N)],

(iv) British Columbia (BC) plus any one of the three prairie (P ) provinces

[Alberta (AL), Saskatchewan (S), and Manitoba (M)], or the three

prairie provinces taken together.
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We list all possible winning coalitions. Note that any of these winning

coalitions must contain Quebec and Ontario. The number of Atlantic

provinces can be 2, 3 or 4. When BC is included, the number of prairie

provinces can be 1, 2 or 3. Without BC, the number of prairie provinces

must be 3.

28



Ontario’s Shapley-Shubik index

ϕO =
18(5!4!) + 36(6!3!) + 25(7!2!) + 8(8!1!) + 1(9!0!)

10!
=

53

168

• There are 18 winning coalitions that contain 6 provinces. In order that

Ontario serves as the pivotal player, 5 provinces are in front of her and

4 provinces are behind her. This explains why there are altogether

18(5!4!) permutations in these 6-province winning coalitions.

• Ontario and Quebec are equivalent in terms of influential power (though

their populations are different).
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British Columbia

Listing of all winning coalitions that upon deleting British Columbia the

corresponding coalition becomes losing. These are the winning coalitions

that British Columbia can serve as the pivotal player.

Type          S s No. of such S

1 1P, 2A, BC, Q, O 6 3C1 × 4C2 =18

2 1P, 3A, BC, Q, O 7 3C1 × 4C3 =12

3 1P, 4A, BC, Q, O 8 3C1 × 4C4 =3

4 2P, 2A, BC, Q, O 7 3C2 × 4C2 =18

5 2P, 3A, BC, Q, O 8 3C2 × 4C3 =12

6 2P, 4A, BC, Q, O 9 3C2 × 4C4 =3

• Note that we exclude those coalitions with 3 prairie provinces since the

deletion of British Columbia does not cause the coalition to become

losing.

φBC =
18(5!4!) + 30(6!3!) + 15(7!2!) + 3(8!1!)

10!
.
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Atlantic provinces

We consider winning coalitions that contain a particular Atlantic province

and one of the three other Atlantic provinces.

Type S s No. of such S

1 Asp,1A,1P,BC,Q,O 6 3C1 × 3C1 = 9

2 Asp,1A,2P,BC,Q,O 7 3C1 × 3C2 = 9

3 Asp,1A,3P,BC,Q,O 8 3C1 = 3

4 Asp,1A,3P,Q,O 7 3C1 = 3

φAsp =
9(5!4!) + 12(6!3!) + 3(7!2!)

10!
.
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Prairie provinces

We consider winning coalitions that contain

(i) a particular prairie province and British Columbia

(ii) a particular prairie province and two other prairie provinces

Type          S s No. of such S

1 Psp, 2A, BC, Q, O 6 6

2 Psp, 3A, BC, Q, O 7 4

3 Psp, 4A, BC, Q, O 8 1

4 Psp, 2P, 2A, Q, O 7 6

5 Psp, 2P, 3A, Q, O 8 4

6 Psp, 2P, 4A, Q, O 9 1

φPsp =
6(5!4!) + 10(6!3!) + 5(7!2!) + 8!1!

10!
.
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Shapley-Shubik Index Provinces

Province (in %) % Population /Population

BC 12.50 9.38 1.334

AL 4.17 7.33 0.570

S 4.17 4.79 0.872

M 4.17 4.82 0.865

(4 Western) (25.01) (26.32) (0.952)

O 31.55 34.85 0.905

Q 31.55 28.94 1.092

NB 2.98 3.09 0.965

NS 2.98 3.79 0.786

PEI 2.98 0.54 5.53

N 2.98 2.47 1.208

(4 Atlantic) (11.92) (9.89) (1.206)

• British Columbia has a higher index value per capita compared to

other Western provinces.
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Probabilistic characterization of power indexes

What is the probability that my vote will make a difference, that is, that

a proposal will pass if I vote for it, but fail if I vote against it?

• The answers depend on both the decision rule of the voting game

and the probabilities that various members will vote for or against a

proposal.

• If we are interested in general theoretical questions of power, we can-

not reasonably assume particular knowledge about individual players

or proposals. We should only make assumptions about voting proba-

bilities which do not discriminate among the players.
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Homogeneity Assumption. Every proposal to come before the decision-

making body has a certain probability p of appealing to each member

of the body. The homogeneity is among members: they all have the

same probability p of voting for a given proposal. However, p varies

from proposal to proposal, giving rise to the random nature of voting

probability.

The homogeneity assumption does not assume that members will all

vote the same way, but it does say something about their similar criteria

for evaluating proposals. For instance, some bills that came before a

legislature seem to have a high probability of appealing to all members,

and pass by large margins: those have high p. Others are overwhelmingly

defeated (low p) or controversial (p near 1/2).

Remark For the Shapley-Shubik index, we further assume the common

p to be uniformly distributed between 0 and 1.
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Shapley-Shubik index focuses on the order in which a winning coalition

forms, and defines the power of a player to be proportional to the number

of orderings in which she is pivotal.

Theorem 1. The Shapley-Shubik index φ gives the probability that an

individual voter can make a difference under the homogeneity assump-

tion about voting probabilities (together with the assumption of uniform

distribution of all these random voting probabilities).

Remark Player i is pivotal if a coalition Si exists such that∑
j∈Si

wj < q and wi +
∑
j∈Si

wj ≥ q.

Note that Si is losing while Si∪{i} is winning. We write si = n(Si), where

n(Si) is the number of players in Si.
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Proof of Theorem 1

We randomize the probabilities p1, . . . , pN and invoke the conditional inde-

pendence assumption. Given the realization of pi = (p1, . . . , pi−1, pi+1, . . . , pN),

the conditional probability that player i’s vote will make a difference is

given by

πi(pi) =
∑
Si

∏
j∈Si

pj
∏
j 6∈Si

(1− pj),

where pj is the voting probability of player j. The sum is taken over

all such coalitions where player i is pivotal. Note that πi(pi) does not

involves pi since voter i says “yes” (steps in to make difference), and it

also depends on the voting probabilities of N −1 other voters. Under the

homogeneity assumption where all players share the same p, the expected

frequency where player i is pivotal is obtained by integrating over the

probability distribution:

E[πi(p)] =
∫ 1

0
πi(p)f(p) dp,

where f(p) is the density function of the common voting probability p.
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Density function fX(x) of a uniform distribution over [a, b] is given by

fX(x) =


1
b−a a < x < b

0 otherwise
.

Under the homogeneity assumption, a number p is selected from the

uniform distribution on [0,1] and pj is set equal to p for all j. In this case,

f(p) = 1 since a = 0 and b = 1 so that

E[πi(p)] =
∫ 1

0
πi(p) dp where πi(p) =

∑
Si

psi(1− p)N−si−1, si = n(Si).

Lastly, making use of the Beta integral:

si!(N − si − 1)!

N !
=
∫ 1

0
psi(1− p)N−si−1 dp,

we obtain

E[πi(p)] =
∑
Si

si!(N − si − 1)!

N !
= φi = Shapley-Shubik index for player i.
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The Beta integral links the probability of being pivotal under the homo-

geneity assumption of voting probabilities with the expected frequency

of being pivotal in various orderings of voters. As we count the occur-

rences of these orderings with equal probability, homogeneity of voting

probabilities is implicitly assumed.

Proof of the Beta integral formula

Im,n =
∫ 1

0
pm(1− p)n dp

=
[
−

m

n+ 1
pm−1(1− p)n+1

]1
0

+
m

n+ 1
Im−1,n+1

=
m(m− 1)

(n+ 1)(n+ 2)
Im−2,n+2 =

m!

(n+ 1)(n+ 2) . . . (n+m)
I0,n+m

=
m!n!

(m+ n+ 1)!
.
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Example

[3; 2,1,1]

A B C

• Each voter will vote for a proposal with probability p. What is the

probability that A’s vote will make a difference between approval and

rejection?

• If both B and C vote against the proposal, A’s vote will not make a

difference, since the proposal will fail regardless of what he does.

• If B or C or both vote for the proposal, A’s vote will decide between

approval and rejection.
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The conditional probability at given values of pB and pC that A’s vote

will make a difference is given by

Setting the homogeneity assumption, the conditional probability πA(pA, pB)

is simplified to

πA(p) = 2p− p2,

where p is the homogeneous voting probability among the two voters

other than A.

Similarly, B’s vote will make a difference only if A votes for, and C votes

against. If they both voted for, the proposal would pass regardless of

what B did.

B(p) = p(1 – p)           = p – p2.

A for, C against

By symmetry, we also have πC(p) = p− p2.
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• Shapley-Shubik index: voting probabilities are chosen by players from

a common uniform distribution on the unit interval.

We average the probability of making a difference πA(p) over all p between

0 and 1, where p is uniformly distributed in [0,1].

for A:
∫ 1

0
πA(p) dp =

∫ 1

0
(2p− p2) dp =

2

2
−

1

3
=

2

3
= φA

for B:
∫ 1

0
πB(p) dp =

∫ 1

0
(p− p2) dp =

1

2
−

1

3
=

1

6
= φB

for C:
∫ 1

0
πC(p) dp =

∫ 1

0
(p− p2) dp =

1

2
−

1

3
=

1

6
= φC
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Independence Assumption. Every proposal has a probability pi of ap-

pealing to the ith member. Each of the pi is chosen independently from

the interval [0,1]. Here how one member feels about the proposal has

nothing to do with how any other member feels.

Banzhaf index ignores the question of ordering and looks only at the final

coalition which forms in support of some proposal. The power of a player

is defined to be proportional to the number of such coalitions. If the

voters in some political situation behave completely independently, then

β is the most appropriate index.

Theorem 2.

The absolute Banzhaf index β′ gives the probability that an individual vot-

er can make a difference under the independence assumption (together

with mean value of voting probability equals 1/2) about voting probabili-

ties.
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The absolute Banzhaf index β′i can be interpreted as assuming that voting

probabilities are selected randomly and independently from a distribution

with mean 1/2 without regard for the forms of those distributions.

Each player can be thought of as having mean voting probability 1/2 for

any given proposal, so we can think of all coalitions to be equally likely

to form. For example, suppose there are 5 players where players 1, 3 and

5 say “yes” and players 2 and 4 say “no”. By independence of the voting

probabilities, the probability of forming such coalition is∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
p1(1− p2)p3(1− p4)p5 f1(p1) · · · f5(p5)dp1 · · ·dp5

=
∫ 1

0
p1f1(p1) dp1

∫ 1

0
(1− p2)f2(p2) dp2

∫ 1

0
p3f3(p3) dp3∫ 1

0
(1− p4)f4(p4) dp4

∫ 1

0
p5f5(p5) dp5 =

(
1

2

)5
.

Note that we assume the means of the voting probabilities to be 1
2, so∫ 1

0
p1f1(p1) dp1 =

1

2
,
∫ 1

0
(1− p2)f2(p2) dp2 =

1

2
, etc.
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Proof of Theorem 2

Under the independence assumption, the voting probabilities are selected

independently from distributions (not necessarily uniform) on [0,1] with

E[pj] = 1/2, j = 1,2, . . . , N . Since pj are independent, the joint density

of the voter’s random probabilities (other than voter i) is

fi(pi) =
∏
j 6=i

fj(pj)

where fj(pj) is the marginal density for pj. The probability that player i

can make a swing from losing to winning is given by

E[πi(pi)] =
∑
Si

∫ 1

0
· · ·

∫ 1

0

∏
j∈Si

pj
∏
j 6∈Si

(1− pj)
∏
j 6=i

fj(pj) dp1 · · · dpN ,

where we integrate the conditional probability πi(pi) over the underlying

joint density of the voting probabilities pi.
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Since pjfj(pj) or (1− pj)fj(pj), j = 1,2, . . . , N , j 6= i, are separable due to

independence assumption, we can write the (N − 1)−fold integral into a

product of one-dimensional integrals as follows:

E[πi(pi)] =
∑
Si

∏
j∈Si

∫ 1

0
pjfj(pj) dpj

∏
j 6∈Si

∫ 1

0
(1− pj)fj(pj) dpj

= πi

(
1

2
, . . . ,

1

2

)
=
∑
Si

1

2N−1
=

ηi
2N−1

= β′i

= absolute Banzhaf index for player i,

where ηi is the number of swings for player i. Note that we have used

the assumption that the mean of each of the voting probability is 1/2.

Apparently, we set all values of pj, j = 1,2, . . . , N , j 6= i, in πi(pi) to be
1

2
so that

πi

(
1

2
, . . . ,

1

2

)
=

ηi
2N−1

.

Since
N∑
i=1

ηi 6= 2N−1 in general, so the sum of the absolute Banzhaf indexes

for all players is not equal to 1.
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What is the probability that the group decision agrees with the player’s de-

cision on a proposal? The answer to player i’s question of individual-group

agreement, under the independence assumption about voting probabili-

ties, is given by (1 + β′i)/2.

Theorem 2 says that β′i gives the probability that player i’s vote will make

the difference between approval and rejection. Since his vote makes the

difference, in this situation the group decision always agrees with his.

With probability 1 − β′i, player i’s vote will not make a difference. In

these coalitions, the passage or failure of a bill depends on the votes of

other players. Under this case, player i has equal probability to say “yes”

or “no”, the group will still agree with him half the time. Hence, the

probability that the group decision agrees with player i’s voting choice is

(β′i)(1) + (1− β′i)
(

1

2

)
=

1 + β′i
2

.
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Example

Consider the weighted voting game: [51; 40,30,20,10]. We list all the

marginal cases where joining of a player changes losing to winning.

Players marginal (losing to winning)

1 2 3 4 1 2 3 4

N Y Y N × ×
Y N N Y × ×
N Y N Y × ×
N N Y Y × ×
Y N N N × ×
N Y N N ×
N N Y N ×

Note that η1 = 5, η2 = 3, η3 = 3, η4 = 1, so
4∑
i=1

ηi = 12.
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First step: For the given player i, determine all Si’s. Each Si is a losing

coalition without player i, but it becomes winning with player i joining.

For player 1, we have η1 = 5, where the 5 marginal coalitions are

S
(1)
1 = {2,3}, S(2)

1 = {2,4}, S(3)
1 = {3,4}, S(4)

1 = {2}, S(5)
1 = {3}.

The conditional probability that player 1 makes a difference:

π1(p2, p3, p4) = p2p3(1− p4) + p2(1− p3)p4 + (1− p2)p3p4

+ p2(1− p3)(1− p4) + (1− p2)p3(1− p4).

By setting p1 = p2 = p3 = p in π1(p1, p2, p3) and p is uniformly distributed,

the Shapley-Shubik index is given by

φ1 =
∫ 1

0
π1(p, p, p) dp

=
∫ 1

0
[3p2(1− p) + 2p(1− p)2] dp

= 3
2!

4!
+ 2

2!

4!
=

5

12
.
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Under the independence assumption and expected voting probabilities all

equal 1
2 , the absolute Banzhaf index of Player 1 is given by

E[π1(p2, p3, p4)] =
∫ 1

0
p2f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

+
∫ 1

0
p2f2(p2) dp2

∫ 1

0
(1− p3)f3(p3) dp3

∫ 1

0
p4f4(p4) dp4

+
∫ 1

0
(1− p2)f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
p4f4(p4) dp4

+
∫ 1

0
p2f2(p2) dp2

∫ 1

0
(1− p3)f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

+
∫ 1

0
(1− p2)f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

= π1(
1

2
,
1

2
,
1

2
) =

5

23
= β′1.

Similarly, we obtain β′2 = 3
8, β

′
3 = 3

8, β
′
4 = 1

8.

By normalizing the sum of the Banzhaf indexes to be one, the relative

Banzhaf index is

β = (
5

12

3

12

3

12

1

12
).
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Individual - group agreement for player 1

Out of 24 = 16 cases, there are 2η1 = 2× 5 = 10 cases where Player 1 is

marginal. In the remaining 6 cases (out of 16 cases), Player 1 does not

make a difference. In half of these 6 cases, player 1 and group agree.

players pass/fail

1 2 3 4

Y Y Y Y P
 with Y for players 2,3&4 gives “Pass” already,

player 1 has equal probability to say Y or NN Y Y Y P

Y N N Y F
 with N for players 2&3 gives “Fail” already,

player 1 has equal probability to say Y or NN N N Y F

Y N N N F
 with N for players 2,3&4 gives “Fail” already,

player 1 has equal probability to say Y or NN N N N F

We assume equal chance of getting Y Y Y Y and N Y Y Y , and similar

assumption for other pairs. Probability of player 1-group agreement =
1

2
× (1−

5

8
) + 1×

5

8
=

13

16
.

51



Example

Look again at
[3; 2, 1, 1]

A  B  C . What is the probability that, under the inde-

pendence assumption, the group decision will agree with A’s preference?

Independence assumption

Assume that all players vote with mean probability of 1/2 for or against a

proposal. Recall πA(p) = 2p− p2, πB(p) = πC(p) = p− p2 (see p.41). We

obtain the absolute Banzhaf indexes as follow:

πA

(
1

2

)
= 2

(
1

2

)
−
(

1

2

)2
=

3

4
= β′A

πB

(
1

2

)
= πC

(
1

2

)
=

1

4
= β′B = β′C,

Finally, the relative Banzhaf indexes are βA =
3

5
, βB =

1

5
, βC =

1

5
.

52



• With probability 1/2, A will support a proposal. It will then pass unless

B and C both oppose it, which will happen with probability 1/4.

If A opposes the proposal (probability 1/2), it will always fail.

The probability of agreement with A is thus

1

2

(
1−

1

4

)
+

1

2
(1) =

7

8
=

1 + 3
4

2
=

1 + β′A
2

.

• Similarly, if B supports a proposal (probability 1/2), it will pass if and

only if A supports it (probability 1/2).

• If B opposes the proposal (probability 1/2), it will fail unless both A

and C support it (probability 1/4):

1

2

(
1

2

)
+

1

2

(
1−

1

4

)
=

5

8
=

1 + 1
4

2
=

1 + β′B
2

.
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Example

Consider
[5; 3, 2, 1, 1]

A  B  C D . Let ρi(p) be the probability that the group decision

agrees with player i’s decision, given that all players (including i) vote for

a proposal with probability p. Note that A has veto power.

Remark

In the calculation procedure, it is convenient to set pA = pB = pC = pD =

p. This is because under the independence assumption and common mean

of probabilities of 1/2, we may set p = 1/2 apparently in the calculation

of E[ρi(pA, pB, pC, pD)].

We consider the two separate scenarios: “yes” or “no” for a particular

voter, and examine the probability of forming coalition that the individu-

al’s choice agrees with the outcome of the coalition.
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(a) It can be shown easily that

A(p) = p [p + (1 – p) p2]       +     (1 – p)(1)  = 1 – p + p2 + p3 – p4.

A yes B yes B no, C + D yes A no

B(p) = p (p)     + (1 – p) (1 – p3 ) = 1 – p + p2 – p3 + p4

B yes A yes B no, not all of

A, C, D yes

C(p) = p [p (p +   (1 – p ) p)]    + (1 – p ) [(1 – p ) + p [(1 – p )]

C yes A yes B yes B no, D yes C no A no A yes, B no

= 1 – p – p2 + 3p3 – p4.

(b) Now calculate ρA(1/2), ρB(1/2), and ρC(1/2) and show that these are

(1 + β′A)/2, (1 + β′B)/2, and (1 + β′C)/2, thus verifying Theorem 3 for

this case.
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Example – combination of homogeneity and independence

Consider the majority-minority voting system with 7 voters, where 5 of

them are in the majority group and the remaining 2 voters are in the

minority group. The passage of a bill requires at least 4 votes from

all voters and at least 1 vote from the minority group. Suppose the 5

members in the majority group vote as a homogeneous group and the

2 members in the minority group vote as another homogeneous group.

The two groups vote independently.

(a) Compute the probability that a majority player’s vote decides the

passage of a bill.

(b) Compute the probability that a minority player’s vote decides the

passage of a bill.
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Solution

Under the homogeneity assumption, we let p and q denote the homoge-

neous voting probability of the majority group and minority group, re-

spectively.

(a) Consider a particular majority member, her vote can decide the pas-

sage of a bill if

(i) 1 minority member and 2 other majority members say “yes” and

other members say “no”;

(ii) 2 minority members and 1 other majority member say “yes” and

other members say “no”.
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P [majority player’s vote can decide the passage|p, q]
= C2

1C
4
2q(1− q)p2(1− p)2 + C4

1q
2p(1− p)3

= 12q(1− q)p2(1− p)2 + 4q2p(1− p)3.

Assuming independence of the random probabilities p and q, and both of

them follow the uniform distribution under homogeneity assumption, we

obtain

P [majority player’s vote can decide the passage]

=
∫ 1

0

∫ 1

0

[
12q(1− q)p2(1− p)2 + 4q2p(1− p)3

]
dpdq

= 12
∫ 1

0
p2(1− p)2 dp

∫ 1

0
q(1− q) dq + 4

∫ 1

0
p(1− p)3 dp

∫ 1

0
q2 dq

= 12
2!2!

5!

1

3!
+ 4

1!3!

5!

1

3
=

1

5
.
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(b) Consider a particular minority member, her vote can decide the pas-

sage of a bill if

(i) 3 or more majority members say “yes” and other members say

“no”;

(ii) 2 majority members and the other minority member say “yes” and

other members say “no”.

Using similar assumptions on p and q, we obtain

P [minority player’s vote can decide the passage]

=
∫ 1

0

∫ 1

0

 5∑
k=3

C5
kp
k(1− p)5−k(1− q) + C5

2p
2(1− p)3q

 dpdq
= 10

[∫ 1

0
p3(1− p)2 dp

∫ 1

0
(1− q) dq +

∫ 1

0
p2(1− p)3 dp

∫ 1

0
q dq

]

+ 5
∫ 1

0
p4(1− p) dp

∫ 1

0
(1− q) dq +

∫ 1

0
p5 dp

∫ 1

0
(1− q) dq

= 10
(

3!2!

6!
·

1

2
+

2!3!

6!
·

1

2

)
+ 5

4!

6!
·

1

2
+

1

6
·

1

2
=

1

3
.
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Example

Consider the voting game: [2; 1,1,1].

Let pA, pB and pC be the probabilities that A,B and C will vote for a

proposal. Assuming independence of the random voting probabilities, we

calculate the probabilities of a player’s vote making a difference:

πA = pB(1− pC) + (1− pB)pC,

πB = pA(1− pC) + (1− pA)pC,

πC = pA(1− pB) + (1− pA)pB.

• If the pis are all independent with mean 1/2 (β′) or all equal (φ) as

they vary between 0 and 1, then the players have equal power.
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Suppose B and C are homogeneous (pB = pC), but A is independent.

Then the answers to the question of individual effect are

for A:
∫ 1

0
2pB(1− pB) dpB =

1

3
= β′A

for B or C:

(∫ 1

0
pAfA(pA) dpA

)(∫ 1

0
(1− pB)fB(pB) dpB

)

+

(∫ 1

0
(1− pA)fA(pA) dpA

)(∫ 1

0
pBfB(pB) dpB

)

=
1

2
·

1

2
+

1

2
·

1

2
=

1

2
= β′B = β′C.

With the pair sharing homogeneity in voting probabilities, B and C both

have more power than A. In particular, we could normalize (1/3,1/2,1/2)

to (1/4,3/8,3/8) and compare that to (1/3,1/3,1/3).
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Canadian Constitutional Amendment Scheme revisited

B1 ⊗ B2 ⊗ M4,2 ⊗ [3; 2,1,1,1]
Quebec Ontario Atlantic British Columbia and Central.

Intersection of 4 weighted voting systems.
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Observations

• British Columbia enjoys higher power relative to her population due

to the designed voting system.

• As the Shapley-Shubik index calculations are based on homogeneity of

the voters, the scheme “produces a distribution of power that matches

the distribution of population surprisingly well”.

• Based on the Banzhaf analysis, the scheme would seriously under-

represent Ontario and Quebec (both with veto power) and seriously

over-represent British Columbia and the Atlantic provinces.

• It is disquieting that the two power indexes actually give different

orders for the power of the players. φ says the Central Provinces are

more powerful than the Atlantic provinces, and β says the opposite.
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Which index is more applicable?

• Use φ if we believe there is a certain kind of homogeneity among the

provinces.

• Use β if we believe there are more likely to act independently of each

other.

Actual behavior

• Quebec and British Columbia would likely to behave independently.

• The four Atlantic provinces would more likely to satisfy the homo-

geneity assumption.

Hybrid approach

If a group of provinces is homogeneous, assign the members of that group

the same p, which varies between 0 and 1 (independent of the p assigned

to other provinces or groups of provinces).
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The conditional probability that Quebec’s vote will make a difference is

given by

πQ(pO, pA, pB, pC) = pO[6p2
A(1− pA)2 + 4p3

A(1− pA) + p4
A]

O yes 2 or more A’s yes

·{pB[3pC(1− pC)2 + 3p2
C(1− pC) + p3

C] + (1− pB)p3
C}

B yes 1 or 2C’s yes or 3C’s yes

We now compute the expectation of πQ as pO, pA, pB, and pC vary inde-

pendently between 0 and 1. Note that the joint density function of pC,

pB, pA and pD reduces to 1 since it is the product of the marginal func-

tions of pC, pB, pA and pD (due to independence assumption) and each

of these marginal density functions equals 1 since they are uniform den-

sity functions over [0,1]. Technically, that involves a “fourfold multiple

integral.”

E[πQ] =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
πQfC(pC)fB(pB)fA(pA)fO(pO) dpC dpB dpA dpO.
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We obtain

E[πQ] = E[πO] = 24/160, E[πC] = 8/160, E[πB] = 12/160, E[πA] = 5/160.

There are 3C’s and 4A’s, the π’s sum to 104/160, so we normalize by mul-

tiplying the factor 160/104. The final power indexes under this scenarios

are tabulated below under “As homogeneous and Cs homogeneous”.

The power indexes computed under various hybrid homogeneity-independence

assumptions must lie between the corresponding Shapley-Shubik and Banzhaf

indexes.
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Quebec as independent

Quebec seems often to consider itself an island of French culture in the

sea of English Canada. Treat all 9 other provinces as homogeneous

among themselves, and Quebec as independent.

Quebec: 38.69 British Columbia: 11.61
Ontario: 25.84 Central provinces: 3.87

Atlantic provinces: 3.07

Quebec’s veto gives it considerable power. Alternatively, by staying ho-

mogeneous with other provinces, Ontario loses her power when compared

to Quebec.

British Columbia’s possible homogeneity with the Central provinces

Such homogeneity gives Quebec and Ontario more power (jump from

23.08 to 26.09). A higher level of homogeneity of other players gives

more influential power to the province with veto power.
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4.2 Bargaining games

Characterization of non-cooperative payoff set

Consider the two-player nonzero sum game

II1 II2
I1 (2,1) (−1,−1)
I2 (−1,−1) (1,2)

The payoff matrices of I and II are

A =

(
2 −1
−1 1

)
and B =

(
1 −1
−1 2

)
.

Suppose I and II play their respective mixed strategies:

X =
(
x 1− x

)
and Y =

(
y 1− y

)
,

their expected payoffs are

EI(x, y) = (x 1− x)A

(
y

1− y

)
, EII(x, y) = (x 1− x)B

(
y

1− y

)
.
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We would like to generate all possible pairs of payoffs under non-cooperation

between the two players using the following Maple commands. That is,

they choose X and Y without prior agreement on their combination of

strategies.

The horizontal axis (abscissa) is the payoff to player I, and the vertical

axis (ordinate) is the payoff to player II. Any point in the parabolic region

is achievable for some 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
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When the two players happen to choose x = y (not under cooperation

though), the resulting payoff point (E1, E2) lies on the parabola. To verify

that, we consider

EI(x) = (x 1− x)

(
2 −1
−1 1

)(
x

1− x

)
,

EII(x, x) = (x 1− x)

(
1 −1
−1 2

)(
x

1− x

)
,

EI(x, x)− EII(x, x) = (x 1− x)

(
1 0
0 −1

)(
x

1− x

)
= 2x− 1,

EI(x, x) + EII(x, x) = (x 1− x)

(
3 −2
−2 3

)(
x

1− x

)
= 10x2 − 10x+ 3.

Eliminating x, we obtain the relation:

5(E1 − E2)2 − 2(E1 + E2) + 1 = 0.
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The non-cooperative payoff set is bounded by

(i) line joining (−1,−1) and (1,2); (I plays I2 purely and II plays mixed)

(ii) line joining (−1,−1) and (2,1); (I plays I1 purely and II plays mixed)

(iii) parabola: 5(E1 − E2)2 − 2(E1 + E2) + 1 = 0.
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In order to achieve payoffs beyond the bounding parabola, the players

have to come to an agreement as to which combination of strategies

each player will use and the proportion of time that the strategies will be

used.

The triangle is the convex hull of (smallest convex set containing) the

pure payoff pairs. We cannot achieve payoff pair that lies outside the

convex hull.

The line segment joining (1,2) and (2,1) is the Pareto-optimal boundary

of the feasible region (convex hull) since no player can improve his payoff

without lowering the payoff of the other player.

Definition of convex set and convex hull

A point set is said to be convex if for any pair of points chosen in the set

line segment joining the pair lies completely inside the set. The convex

hull of a given set A is the smallest convex set that contains A.
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The payoff points beyond the parabola can be achieved by some linear

combination of pure strategies: (−1,−1), (1,2) and (2,1).
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1. To achieve the payoff point (E1, E2) = (1.5,1.5), the players cooper-

ate to choose

• 50% of time playing (x = 0, y = 0)

• 50% of time playing (x = 1, y = 1)

Note that x = 0 and y = 0 is the agreed combination of strategies,

not interpreted as I happens to adopt x = 0 and II happens to adopt

y = 0.

2. The point P divides the line segment joining (1.5,1.5) and (−1,−1)

into (δ,1 − δ) portion. To achieve the payoff point P , both players

cooperate to play

• δ portion of the time of 50% on (x = 0, y = 0) and 50% on (x = 1,

y = 1), equivalent to δ/2 portion of time on (x = 0, y = 0) and

another δ/2 portion of time on (x = 1, y = 1).

• 1− δ portion of time on (x = 0, y = 1) or (x = 1, y = 0).
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Bargaining games are cooperative games in which the players bargain to

improve both of their payoffs.

Example

II1 II2 II3
I1 (1,4) (−2,1) (1,2)
I2 (0,−2) (3,1) (1

2,
1
2)

The vertices of the polygon on p.77 are the pure payoffs directly from

the matrix. The solid lines connect the pure payoffs. The top dotted line

joining (1,4) and (3,1) extends the region of payoffs to those payoffs that

could be achieved if both players cooperate. These payoffs on the dotted

line are obtained by agreeing to play (1,4) and (3,1), each of them with

varying fixed proportions of time.
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Suppose that player I always chooses row 2 as the pure strategy and player

II plays the mixed strategy Y = (y1, y2, y3), where yi ≥ 0, y1 +y2 +y3 = 1.

The expected payoff to I is then

E1(2, Y ) = 0y1 + 3y2 +
1

2
y3,

and the expected payoff to II is

E2(2, Y ) = −2y1 + 1y2 +
1

2
y3.

Hence, the players’ payoffs are

(E1, E2) = y1(0,−2) + y2(3,1) + y3(
1

2
,
1

2
),

as a linear combination of the 3 points (0,−2), (3,1) and (1
2,

1
2).
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Convex hull formed by the pure payoff points

• The feasible set is the convex hull of all the payoff points correspond-

ing to pure strategies of the players.

The triangle bounded by the lower dotted line in the figure and the lines

connecting (0,−2) with (1
2,

1
2) and (1

2,
1
2) with (3,1) is the convex hull of

these three points.

Any point in the convex hull of all the payoff points is achievable if the

players agree to cooperate. The entire four-sided region is called the

feasible set for the game problem.
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The objective of player I is to obtain a payoff as far to the right as possible

in the figure, and the objective of player II is to obtain a payoff as far up

as possible in the same figure.

Player I’s ideal payoff is at the point (3,1), but that is attainable only if

II agrees to play II2. Why would he do that? Similarly, II would do best

at (1,4), which will happen only if I plays I1, and why would she do that?

There is an incentive for the players to reach a compromise agreement

in which they would agree to play in such a way so as to obtain a payoff

along the line connecting (1,4) and (3,1).
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Pareto-optimal boundary

That portion of the boundary is known as the Pareto-optimal boundary

because it is the edge of the feasible set and has the property that if

either player tries to do better (say, player I tries to move further right),

then the other player will do worse (player II must move down to remain

feasible).

The Pareto-optimal boundary of the feasible set is the set of payoff points

in which no player can improve his payoff without the other player de-

creasing her payoff.

There is an incentive for the players to cooperate and try to reach an

agreement that will benefit both players. The result will always be a

payoff pair occurring on the Pareto-optimal boundary of the feasible set

(see Nash’s Theorem later).
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Status quo payoff point

In any bargaining problem, there is always the possibility that negotiations

will fail. Hence, each player must know what the possible worst payoff

would be if there were no bargaining.

The status quo payoff point, or safety point, or security point in a two-

person game is the pair of payoffs (u∗, v∗) that each player can achieve if

there is no cooperation between the players.
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Determination of the security point for each player

We take the security point to be the values that each player can guarantee

receiving no matter what. This means that we take it to be the value of

the zero sum game for each player.

Consider the payoff matrix for player I:

A =

(
1 − 2 1
0 3 1

2

)
.

Recall value(A) = max
X∈Sn

min
Y ∈Sm

XAY T . We find that v(A) = 1
2 and the

corresponding strategies are Y = (5
6,

1
6,0) for player II and X = (1

2,
1
2) for

player I.

Next, we consider the payoff matrix B for player II and want to find the

value of the game from player II’s perspective. We need to work with BT ,

where

value(BT ) = max
Y ∈Sm

min
X∈Sn

Y BTXT .
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Now

BT =

4 − 2
1 1
2 1

2

 .

For this matrix v(BT ) = 1, it happens that we have a saddle point at row

2 and column 2 of BT . Note that v(BT ) = max (min(4,−2),min(1,1),

min(2, 1
2)
)

= max(−2,1, 1
2) = 1.

The status quo point for this game is (E1, E2) = (1
2,1) since that is the

guaranteed payoff to each player without cooperation or negotiation. Any

bargaining must begin with the guaranteed payoff pair (1
2,1). This cuts

off the feasible set as shown in the figure.

The new feasible set consists of the points in the figure and to the right

of the lines emanating from the security point (1
2,1).
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The Pareto-optimal boundary is the line connecting (1,4) and (3,1) be-

cause no player can get a higher payoff on this line without forcing the

other player to get a smaller payoff.

A point in the set cannot go to the right and stay in the set without also

going down; a point in the set cannot go up and stay in the set without

also going to the left.

Finding the cooperative, negotiated best payoff for each player

How does cooperation help?

If they agree to play 50% of (1,4) and 50% of (3,1), they will get
1
2(1,4) + 1

2(3,1) = (2, 5
2). So player I obtains 2 > 1

2 and player II obtains
5
2 > 1, an improvement for each player over individual safety level. Hence,

they have good incentive to cooperate.
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Example

The bimatrix is

II1 II2
I1 (2,17) (−10,−22)
I2 (−19,−7) (17,2)

Recall that the safety levels are the guaranteed amounts each player can

obtain by using their individual maximin strategies. The safety level is

given by the point

(value(A), value(BT )) = (−
13

4
,−

5

2
),

and the strategies that will give these values are XA = (3
4,

1
4), YA =

( 9
16,

7
16), and XB = (1

2,
1
2), YB( 3

16,
13
16).

Negotiations start from the safety point. The next figure shows the safety

point and the associated feasible payoff pairs above and to the right of

the dark lines.
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The 4-sided polygon in the figure is the convex hull of the pure payoffs,

namely, the feasible set, and is the set of all possible negotiated payoffs.

The region of dot points is the set of noncooperative payoff pairs if we

consider the use of all possible mixed strategies.

It appears that a negotiated set of payoffs will benefit both players and

will be on the line farthest to the right, which is the Pareto-optimal

boundary. Player I would desire to get (17,2), while player II would love

to get (2,17). That probably will not occur but they could negotiate

a point along the line connecting these two points and compromise on

obtaining, say, the midpoint

1

2
(2,17) +

1

2
(17,2) = (9.5,9.5).

So they could negotiate to get 9.5 each if they agree that each player

would use the pure strategies X = (1,0) = Y half the time and play pure

strategies X = (0,1) = Y exactly half the time. They have an incentive

to cooperate.
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Threat possibilities

Now suppose that player II threatens player I by saying that she will always

play strategy II1 unless I cooperates. Player II’s goal is to get the 17 if

and when I plays I1, so I would receive 2. Of course, I does not have to

play I1, but if he doesn’t, then I will get −19 (highly negative payoff),

and II will get −7.

So, if I does not cooperate and II carries out her threat, they will both

lose, but I will lose much more than II. Therefore, II is in a stronger

position than I in this game and can essentially force I to cooperate.

This also seems to imply that maybe player II should expect to get more

than 9.5 to reflect her stronger bargaining position from the start.

This example indicates that there may be a more realistic choice for a

safety level than the values of the associated games, taking into account

various threat possibilities.
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Nash model with security point

We start with the security status quo point (u∗, v∗) for a two-player co-

operative game with matrices A and B. This leads to a feasible set

of possible negotiated outcomes depending on the choice of the point

(u∗, v∗).

One convenient choice may be u∗ = value(A) and v∗ = value(BT ). Given

(u∗, v∗) and feasible set S, we seek for a negotiated outcome, call it (ū, v̄).

Since this point will depend on (u∗, v∗) and the set S, so we may write

(ū, v̄) = f(S, u∗, v∗).

The question is how to determine the point (ū, v̄) and an appropriate

choice of f(S, u∗, v∗). John Nash proposed the following requirements for

the point to be a negotiated solution:
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• Axiom 1. We must have ū ≥ u∗ and v̄ ≥ v∗. Each player must get at

least the status quo point.

• Axiom 2. The point (ū, v̄) ∈ S, that is, it must be a feasible point.

• Axiom 3. (u, v) Pareto-optimality. There is no other point in S, where

both players receive more.

• Axiom 4. If (ū, v̄) ∈ T ⊂ S and (ū, v̄) = f(T, u∗, v∗) is the solution to

the bargaining problem with feasible set T , then for the larger feasible

set S, either (ū, v̄) = f(S, u∗, v∗) is the bargaining solution for S, or

the actual bargaining solution for S is in S−T . We are assuming that

the security point is the same for T and S. If we enlarge the set of

alternatives from T to S, the new negotiated position cannot be one

of the old possibilities in T other than (ū, v̄).

As an one-dimensional analogy, this is similar to finding the maximum

value of a function f(x) over different intervals.

91



• Axiom 5. If T is an affine transformation of S, T = aS+ b = ϕ(S) and

(ū, v̄) = f(S, u∗, v∗) is the bargaining solution of S with security point

(u∗, v∗), then (aū+ b, av̄ + b) = f(T, au∗+ b, av∗+ b) is the bargaining

solution associated with T and security point (au∗+ b, av∗+ b). This

says that the solution will not depend on the scale or units used in

measuring payoffs.

• Axiom 6. If the game is symmetric with respect to the players, then

so is the bargaining solution. In other words, if (ū, v̄) = f(S, u∗, v∗) and

(i) u∗ = v∗, and (ii) (u, v) ∈ S ⇒ (v, u) ∈ S, then ū = v̄. If the players

are essentially interchangeable, they should get the same negotiated

payoff.
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Theorem

Let the set of feasible points for a bargaining game be nonempty and

convex, and let (u∗, v∗) ∈ S be the security point. Consider the nonlinear

programming problem

Maximize g(u, v) = (u− u∗)(v − v∗)
subject to (u, v) ∈ S, u ≥ u∗, v ≥ v∗.

Assume that there is at least one point (u, v) ∈ S with u > u∗, v > v∗.
Then there exists one and only one point (ū, v̄) ∈ S that solves this

problem, and this point is the unique solution of the bargaining problem

(ū, v̄) = f(S, u∗, v∗) that satisfies Axioms 1-6. If, in addition, the game

satisfies the symmetry assumption, then the conclusion of Axiom 6 tells

us that ū = v̄.
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Uniqueness

We prove by contradiction. Suppose the maximum of g occurs at two

points: (u′, v′) and (u′′, v′′), where

g(u′, v′) = g(u′′, v′′) = M > 0.

(i) If u′ = u′′, then obviously v′ = v′′ since we can cancel the common

factor u′−u∗ = u′′−u∗ in both g(u′, v′) and g(u′′, v′′) and obtain v′ = v′′.

(ii) Consider the case u′ < u′′, then v′ > v′′. Let u = u′+u′′
2 and v = v′+v′′

2 .

Obviously, (u, v) ∈ S since S is convex and u > u∗ and v > v∗. Consider

g(u, v) = (
u′+ u′′

2
− u∗)(

v′+ v′′

2
− v∗)

= M +
(u′ − u′′)(v′′ − v′)

4
> M since u′′ > u′ and v′ > v′′.

This contradicts the fact that (u′, v′) provides a maximum for g.
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Pareto optimality

We prove by contradiction. Suppose there exists another feasible point

(u′, v′) ∈ S for which u′ > ū and v′ ≥ v̄ or v′ > v̄ and u′ ≥ ū. Let us consider

the first possibility. It is obvious that

g(u′, v′) = (u′ − u∗)(v′ − v∗) > (ū− u∗)(v̄ − v∗) = g(ū, v̄).

This contradicts the fact that (ū, v̄) maximizes g over the feasible set.

Hence, (ū, v̄) is Pareto-optimal.
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Example

We consider the game with bimatrix

II1 II2
I1 (2,17) (−10,−22)
I2 (−19,−7) (17,2)

The safety levels are u∗ = value(A) = −13
4 , v∗ = value(BT ) = −5

2. The

safety point and the associated feasible payoff pairs are above and to the

right.

Next, we find the equation of the lines forming the Pareto-optimal bound-

ary. In this example, it is simply v = −u+ 19, which is the line with neg-

ative slope to the right of the safety point. Along this line, both players

cannot simultaneously improve their payoffs. If player I moves right and

in order to stay in the feasible set, player II must go down.
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To find the bargaining solution for this problem, we solve the nonlinear

programming problem:

Maximize (u+
13

4
)(v +

5

2
)

subject to u ≥ −
13

4
, v ≥ −

5

2
, v ≤ −u+ 19.

This gives the optimal bargained payoff pair (ū = 73
8 = 9.125, v̄ = 79

8 =

9.875). The maximum of g is g(ū, v̄) = 153.14.

The bargained payoff to player I is ū = 9.125 and the bargained payoff to

player II is v̄ = 9.875.

We do not get the point we expected, namely (9.5,9.5); that is due to

the fact that the security point is not symmetric. Player II has a small

advantage.
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The solution of the problem occurs just where the level curves, or contours

of g are tangent to the boundary of the feasible set. Since the function g

has concave up contours and the feasible set is convex, this must occur

at exactly one point.

Finally, knowing that the optimal point must occur on the Pareto-optimal

boundary means we could solve the nonlinear programming problem by

calculus. We want to maximize

f(u) = g(u,−u+ 19) = (u+
13

4
)(−u+ 19 +

5

2
),

on the interval 2 ≤ u ≤ 17. This is an elementary calculus maximization

problem. Note that the first order condition gives

f ′(u) = −u+ 19 +
5

2
− u−

13

2
= 0.

This gives u = 9.125.
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The hyperbolic curves are the level curves:
(
u+

13

4

)(
v +

5

2

)
= k, for

some constant value of k.
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Example

Consider the following bimatrix:

II1 II2
I1 (1,3) (−4,−2)
I2 (−1,−3) (2,1)

1. Find the security point. For the associated matrices

A =

(
1 − 4
−1 2

)
, BT =

(
3 − 3
−2 1

)
.

Recall that value (A) is the value of the zero-sum game with payoff

matrix A that provides the guaranteed floor value for player I. We

obtain value(A) = −1
4, value(BT ) = −1

3. Hence, the security point is

(−1
4,−

1
3).

2. Find the feasible set. The feasible set, taking into account the security

point, is

S∗ =
{

(u, v)|u ≥ −
1

4
, v ≥ −

1

3
, 0 ≤ 10 + 5u− 5v, 0 ≤ 10 + u+ 3v,

0 ≤ 5− 4u+ 3v, 0 ≤ 5− 2u− v} .
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3. Set up and solve the nonlinear programming problem.

Maximize g(u, v) ≡ (u+
1

4
)(v +

1

3
)

subject to (u, v) ∈ S∗.

Maple gives the solution ū = 29
24 = 1.208, v̄ = 31

12 = 2.583.

Looking at the figure for S∗, the Pareto-optimal boundary is the line

v = −2u+5, 1 ≤ u ≤ 2. The solution with the safety point given by the

values of the zero sum games is at point (ū, v̄) = (1.208,2.583). With

this security point, player I receives the negotiated solution ū = 1.208

and player II the amount v̄ = 2.583. It seems that player II has slight

advantage, where v̄ > ū. Looking at the payoffs to the two players

in the second row, can player I threaten to play I2 to improve his

negotiated solution?
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We know the line where the maximum occurs, and here is v = −2u + 5.

We may substitute into g and use calculus:

f(u) = g(u,−2u+ 5) = (u+
1

4
)(−2u+

16

3
)

⇒ f ′(u) = −4u+
29

6
= 0⇒ u =

29

24
.

This gives the same solution as that obtained by Maple.
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The feasible region is the collection of achievable payoff points with play-

ers’ cooperation. In this example, it is given by the convex formed by the

4 payoff points under pure strategies.
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4. Find the strategies giving the negotiated solution. How should the

players cooperate in order to achieve the bargained solutions?

The only points in the bimatrix that are of interest are the endpoints

of the Pareto-optimal boundary, namely, (1,3) and (2,1). So the

cooperation must be a linear combination of the strategies yielding

these payoffs, Solve

(
29

24
,
31

12
) = λ(1,3) + (1− λ)(2,1)

to get λ = 19
24. This says that (I, II) must agree to play the pure

strategy (row 1, column 1) with 19
24 of the time and another pure

strategy (row 2, column 2) 5
24 of the time.

This is different from playing individual mixed strategy by each player

(maximizing the player’s own expected payoff without cooperation).

Indeed, we cannot find X and Y such that

29

24
= EI(X,Y ) = XAY T and

31

12
= EII(X,Y ) = XBY T .
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Example - objective function other than product of (u− u∗)(v − v∗)

Suppose that two persons are given $1000, which they can split if they

can agree on how to split it. If they cannot agree they each get nothing.

One player is rich, so her payoff function is

u1(x, y) =
x

2
, 0 ≤ x+ y ≤ 1000.

The other player is poor, so his payoff function is

u2(x, y) = ln(y + 1), 0 ≤ x+ y ≤ 1000,

because small amounts of money mean a lot but the money has less and

less impact as he gets more but no more than $1000. Note that ln(y+ 1)

increases at high rate when y is small and the rate of increase slows down

when y is large.

We want to find the bargained solution. The safety points are taken as

(0,0) because that is what they get if they cannot agree on a split. The

feasible set is S = {(x, y)|0 ≤ x, y ≤ 1000, x+ y ≤ 1000}.
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Plot of the feasible set and the contours of the objective function
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The Nash bargaining solution is given by solving the non-linear program-

ming problem

Maximize (u1 − 0)(u2 − 0) = (
x

2
− 0)[ln(y + 1)− 0]

subject to

0 ≤ x ≤ 1000, 0 ≤ y ≤ 1000, x+ y ≤ 1000.

Since the solution lies on the line x+y = 1000, we substitute x = 1000−y.

If we take the derivative of f(y) = 1
2(1000− y)ln(y + 1) and set to zero,

we solve the equation

1000− y
y + 1

= ln(y + 1),

which is found to be y = 163.09.
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The maximum is achieved at x = 836.91 and y = 163.09, so the poor

man gets $163 while the rich woman gets $837. The utility (or value of

this money) to each player is u1 = 418.5 to the rich guy, and u2 = 5.10

to the poor guy.

The figure on P.107 shows the feasible set as well as the level curves of

f(x, y) =
x

2
ln(1 + y) = k, k is constant. The optimal solution is obtained

by increasing k until the curve is tangent to the Pareto-optimal boundary.

That occurs at the point (836.91,163.09).
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Threat strategies

A player may be able to force the opposing player to play a certain strategy

by threatening to use a strategy that will be very detrimental for the

opponent. The security levels (u∗, v∗) may be replaced by EI(Xt, Yt) and

EII(Xt, Yt) if both use their respective threat strategies Xt and Yt.

We reformulate the Nash model as follows:

Maximize g(u, v) := (u−XtAY Tt )(v −XtBY Tt )

subject to (u, v) ∈ S, u ≥ XtAY Tt , v ≥ XtBY Tt .

For each player, how to find the best threat strategy to be used? The

optimal bargaining solution on the Pareto-optimal boundary depends on

the threat security point: (XtAY Tt , XtBY
T
t ). The determination of Xt and

Yt becomes part of the solution procedure.
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Example

Consider the two-person game

II1 II2
I1 (2,4) (−3,−10)
I2 (−8,−2) (10,1)

The payoff matrices are

A =

(
2 −3
−8 10

)
BT =

(
4 −2
−10 1

)
.

The corresponding security point is given by

value(A) = −
4

23
, value(BT ) = −

16

17
.

The Pareto-optimal boundary is the line joining (2,4) and (10,1), and it

is found to be

v − 1

u− 10
=

1− 4

10− 2
= −

3

8
or v = −

3

8
u+

38

8
.

111



With the security point
(
−

4

23
,−

16

17

)
, we solve the Nash bargaining prob-

lem

Maximize g(u, v) =
(
u+

4

23

)(
v +

16

17

)
subject to u ≥ −

4

23
, v ≥ −

16

17
, v ≥

11

13
u−

97

13
,

v ≤ −
3

8
u+

38

8
, v ≤

6

10
u+

28

10
.

We seek the bargaining solution along the Pareto-optimal line:

v = −
3

8
u+

38

8
.

We maximize
(
u+

4

23

)(
−

3

8
u+

38

8
+

16

17

)
. Calculus exercise gives the

solution ū = 7.501, v̄ = 1.937. This is achieved by I and II agreeing to

play the pure strategies (I1, II1) 31.2% of the time and pure (I2, II2) 68.8%

of the time.
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Player II may be in a stronger position than Player I. Why?

Player II can always threaten Player I with playing II1. Under this threat:

• Suppose Player I continues to play I2, his payoff becomes −8, which

is much lower than −2; here both players lose.

• When Player I plays I1, Player II gets 4 > 1.937 while Player I gets

2 < 7.501.

Is the threat posed by Player II credible?
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Suppose the threat strategies are Xt = (0,1) (player I plays I2) and

Yt = (1,0) (player II plays II1). The new safety point

u∗ = XT
t AYt = −8, v∗ = XtBY

T
t = −2.

Changing the security point increases the size of the feasible set and

changes the objective function to g(u, v) = (u+ 8)(v + 2).

The solution of the threat problem is

ū = 5 < 7.501 and v̄ = 2.875 > 1.937.

Player II gets more with the threat, which is credible.
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Lemma

If (u, v) is the solution of the Nash bargaining problem with any security

point (u0, v0) and the Pareto-optimal boundary through (u, v) is a straight

line with slope mp. Provided that (u, v) is not at an end point of a line

segment along the Pareto-optimal boundary so that (u, v) is an interior

maximum point, we then have

v − v0

u− u0
= −mp.

That is, the slope of the line through (u0, v0) and (u, v) must be the

negative of the slope of the Pareto-optimal boundary at the point (u, v).

Remark

The maximum of the objective function in the bargaining formulation

may end at the intersection of two line segments of the Pareto-optimal

boundary. Under this degenerate case, the above property of “negative

slope” fails.
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Why the line joining the threat point and the optimal bargain solution has

slope that is negative to the line segment of the Pareto-optimal boundary?

Along the Pareto-optimal boundary with slope mp, if we increase one unit

for Player I, we need to decrease −mp units of Player II, in the ratio of

1 : −mp. The same ratio is retained whey they negotiate the bargain

solution. When the ratio of increases of payoffs of I and II from the

security point (u0, v0) observes the same ratio 1 : −mp, the line thus has

slope −mp.

117



Proof

Suppose (u, v) is an interior maximum point (not an end point of the

Pareto-optimal boundary), by Nash’s theorem, (u, v) maximizes f(u) =

(u−u0)(mpu+ b−v0). Taking the derivative and setting to zero, the first

order condition gives

b− v0 +mpu+mp(u− u0) = 0

giving

u =
b− v0 −mpu0

−2mp
.

Therefore, for an arbitrary security point (u0, v0), the maximizing point

is given by

u =
−mpu0 + b− v0

−2mp
,

v = mpu+ b =
b+mpu0 + v0

2
.
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We calculate the slope of the line through (u0, v0) and (u, v):

v − v0

u− u0
=

b+mpu0+v0
2 − v0

−mpu0+b−v0
−2mp

− u0

= −mp
b+mpu0 − v0

mpu0 + b− v0
= −mp.

Note that b and mp < 0 are fixed while u0 and v0 are the control variables.

• Since u =
−mpu0−v0+b
−2mp

, so Player I maximizes u via maximization of

(−mpu0 − v0);

• Since v =
b+mpu0+v0

2 , so Player II maximizes v via minimization of

(−mpu0 − v0).

This is a game on the choices of u0 and v0, where u0 = XtAY
T
t and

v0 = XtBY
T
t . We find the optimal strategies of the zero sum game with

matrix −mpA−B since

−mpu0 − v0 = −mp(XtAY
T
t )−XtBY Tt = Xt(−mpA−B)Y Tt .
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Summary approach for bargaining with threat strategies

1. Identify the Pareto-optimal boundary of the feasible payoff set and

find the slope of that line, call it mp. This slope should be negative.

The equation of the Pareto-optimal boundary is v = mpu + b, where

b is the v-intercept.

2. Construct the new matrix for a zero sum game

−mpu
t − vt = −mp(XtAY

T
t )−XtBY Tt = Xt(−mpA−B)Y Tt

with matrix −mpA−B.
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3. Find the optimal strategies Xt and Yt for the above zero sum game

and compute ut = XtAY
T
t and vt = XtBY

T
t . This (ut, vt) is the threat

security point to be used to solve the bargaining problem.

4. Once we know the threat security point (ut, vt), we may use the fol-

lowing formulas to find (u, v):

u =
mput + vt − b

2mp
, v =

1

2
(mpu

t + vt + b).

The above formula for (u, v) is valid provided that (u, v) is an interior

maximum with the line segment with slope mp along the Pareto-

optimal boundary. Be aware that the Pareto-optimal boundary may

consist of several line segments.
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Different choices of security points under various threat strategies

The threat security point is (u0, v0), where u0 = XtAY
T
t and v0 = XtBY

T
t .
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In the earlier example, the Pareto-optimal line is v = −
3

8
u+

38

8
, so mp =

−
3

8
, b = 38

8 . The matrix for the zero-sum game associated with the threat

strategies is

3

8
A−B =

 −26
8

71
8

−1 22
8

 .
We find value(3

8A−B) = −1 since there is a saddle point at the second row

and first column, the optimal threat strategies are Xt = (0,1), Yt = (1,0).

Then ut = XtAY
T
t = −8, and vt = XtBY

T
t = −2.

The above calculations verify that (−8,−2) is indeed the optimal threat

security point. Once we know that, we can use the formulas above to

get

u =
−3

8(−8) + (−2)− 38
8

2(−3
8)

= 5,

v =
1

2

[
−

3

8
(−8) + (−2) +

38

8

]
= 2.875.

The line joining (ut, vt) = (−8,−2) and (u, v) = (5,2.875) has slope= 3
8.
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Multiple line segments in the Pareto-optimal boundary

When the threat point is within the cone, the threat solution lies at the

intersection of the two line segments of the Pareto-optimal boundary.
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Bargaining solution for threats when the threat point is in the cone

Consider the cooperative game with bimatrix

II1 II2
I1 (−1,−1) (1,1)
I2 (2,−2) (-2,2)

The individual matrices are as follows:

A =

(
−1 1
2 −2

)
, B =

(
−1 1
−2 2

)
.

It is easy to calculate that value(A) = 0, value(BT ) = 1 and so the status

quo security point for this game is at (u∗, v∗) = (0,1). The problem we

then need to solve is

Maximize u(v − 1) subject to (u, v) ∈ S∗, where

S∗ = {(u, v)|v ≤
(
−

1

3

)
u+

4

3
, v ≤ −3u+ 4, u ≥ 0, v ≥ 1}.
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Apparently, there are two line segments in the convex hull containing

the 4 pure strategy points that constitute the Pareto-optimal boundary.

However, the line segment, v = −3u+4, is outside the feasible region when

the security point is chosen to be (0,1). The solution of the bargaining

problem is at the unique point (u, v) = (1
2,

7
6).
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The solution of threat strategies is complicated by the fact that the

Pareto-optimal boundary may consist of two line segments: (i) mp = −1
3,

b = 4
3 and (ii) mp = −3, b = 4.

When one seeks the bargaining solution along v = −3u+ 4, we consider

3A−B =

(
−2 2
8 −8

)
with value(3A−B) = 0. The optimal threat strategies are

Xt =
(

1

2
,
1

2

)
= Yt;

giving

ut = XtAY
T
t = 0 and vt = XtBY

T
t = 0.

The new security point is (0,0).
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We seek the bargaining solution along v = −3u + 4, 1 ≤ u ≤ 2, that

maximizes the objective function uv. Along v = −3u+ 4, we consider

uv = u(−3u+ 4) = −3u2 + 4u

whose local maximum occurs at u = 2/3, which is outside [1,2]. The

maximum of uv along v = −3u + 4 is seen to occur at the end point

u = 1.

The bargaining solution lies at the intersection point of the two line

segments of the Pareto-optimal boundary. The security point (0,0) lies

inside the cone bounded by the two dotted line through the intersection

point (1,1).
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For the first case: mp = −1
3, b = 4

3, the associated matrix for the zero-sum

game for the threat strategies is given by

1

3
A−B =


2

3
−

2

3

8

3
−

8

3

 .

Since −2
3 happens to be row min and column max, so value(

1

3
A−B) = −

2

3
.

The optimal threat strategies: Xt = (1,0), Yt = (0,1).

The security threat points are as follows:

ut = XtAY
T
t = 1 and vt = XtBY

T
t = 1.
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This security threat point is exactly at a vertex of the feasible set.

Maximize (u− 1)(v − 1) subject to (u, v) ∈ St.

S∗ = {(u, v)|v ≤
(
−

1

3

)
u+

4

3
, v ≤ −3u+ 4, u ≥ 1, v ≥ 1}.

But this set has exactly one point and it is (1,1), so we immediately get

the solution (u = 1, v = 1). This is the same result as in the earlier case.

Under the threat strategies, Player I achieves u = 1 compared to u = 1/2

under the status quo security point.
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Example

Find the Nash bargaining solution and the threat solution to the game

with bimatrix [
(−3,−1) (0,5) (1, 19

4 )

(2, 7
2) (5

2,
3
2) (−1,−3)

]
.

Solution

The matrices are as follows:

A =

(
−3 0 1
2 5

2 −1

)
B =

(
−1 5 19

4
7
2

3
2 −3

)
.

We have value(A) = −1
7, value(BT ) = 19

8 . That is our safety point. The

Pareto-optimal boundary has three line segments:
1
4u+ v = 5, if 0 ≤ u ≤ 1;
5
4u+ v = 6, if 1 ≤ u ≤ 2;

2u+ 1
2v = 23

4 , if 2 ≤ u ≤ 5
2.
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The Nash bargaining problem is

Maximize
(
u+

1

7

)(
v −

19

8

)
subject to (u, v) ∈ S.

The part of the Pareto-optimal boundary for this problem is the line

segment 5
4u+ v = 6, 1 ≤ u ≤ 2. Using calculus, we find

u =
193

140
, v =

479

112
.

133



134



Next, we consider the threat solution. We have to find the threat strate-

gies for all three line segments of the Pareto-optimal boundary.

1. v = −1
4u+ 5, 0 ≤ u ≤ 1. Then mp = −1

4, b = 5, and

value
(

1

4
A−B

)
= −

487

236
, Xt =

(
17

59
,
42

59

)
, Yt =

(
33

59
,
26

59
,0
)
,

and

ut = XtAY
T
t = 1.097, vt = XtBY Tt = 2.34,⇒ u = 5.87, v = 3.53.

Since 5.87 /∈ [0,1], this is not an admissible threat solution.
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2. v = −5
4u+ 6, 1 ≤ u ≤ 2. Then mp = −5

4, b = 6, and

value
(

5

4
A−B

)
= −1, Xt = (0,1), Yt = (1,0,0).

The threat point is given by

ut = XtAY
T
t = 2, vt = XtBY Tt =

7

2
.

Along v = −5
4u+ 6, the objective function (u− 2)(v − 7

2) becomes

(u− 2)
(
−

5

4
u+ 6−

7

2

)
.

To find the maximum point, the first order condition gives(
−

5

4
u+

5

2

)
−

5

4
(u− 2) = 0⇒ u = 2.

This happens to be at the end of the range [1,2], we then obtain

u = 2 and v =
7

2
.
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3. v = −4u+ 23
2 , 2 ≤ u ≤ 5

2. In this case mp = −4, b = 23
2 , and

value(4A−B) = −
115

126
, Xt =

(
22

63
,
41

63

)
, Yt =

(
1

63
,0,

62

63

)
.

The safety point is then

ut = XtAY
T
t = −0.294, vt = −0.258⇒ u = 1.32, v = 6.206.

Since 1.32 /∈ [2, 5
2], this too is not the threat solution.

We conclude that the threat solution is u = 2, v = 7
2 and player 1

threatens to always play the second row; player 2 threatens to use the

first column.
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Sequential Bargaining

There are offers and counter-offers that can go several rounds until an

agreement is reached or negotiations break down.

Example

For any item, there is a reserve price. The seller offers the item for sale at

the ask price. Spread = asked − reserve, and the spread is the negotiating

range.

Let x be the fraction of the spread going to the buyer,

1− x be the fraction of the spread going to the seller; 0 ≤ x ≤ 1.

The final price will be: reserve + (1− x) spread.
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One-stage bargaining: Ultimatum game

In a one-shot bargaining, the payoffs for the players are

u1(x,1− x) = x and u2(x,1− x) = 1− x.

Let (d1, d2) be a safety point that determines the worth to each player if

no deal is made. The Nash bargaining problem consists of maximizing

g(x,1− x) = (x− d1)(1− x− d2) over 0 ≤ x ≤ 1.

The solution x∗ is

x∗ =
1 + d1 − d2

2
.

In order to have x∗ > d1, we require 1+d1−d2
2 > d1 ⇔ d1 + d2 < 1.

If d1 = d2, then the optimal split is 1
2, so the transaction takes place at

the midpoint of the spread.
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We extend one-stage bargaining to multi-stage bargaining. Delay impos-

es some loss on the player. In each round of bargaining, δ of the pie

disappears, where δ is called the discount factor. If this round fails to

reach an acceptance of the bargaining bid offered by player 1, then the

next round continues with the bargaining bid offered by player 2. This is

assumed to continue with either finite number of rounds or perpetually.

With discount factors δ1 and δ2 for player 1 and player 2, respectively,

the payoff functions for the players are

u1(xn,1− xn) = δn−1
1 xn and u2(xn,1− xn) = δn−1

2 (1− xn), n = 1,2.

140



Two-stage bargaining

By the backward induction procedure, we start at the end of the second

period, where player 1 makes the final decision. If δ1(1−y2) > 0, that is, if

y2 6= 1, then player 1 receives the larger payoff δ1(1− y2) when compared

with zero payoff if rejection is chosen. Naturally, player 2 will choose y2

extremely close to 1 since player 2 knows that any y2 < 1 will give player

1 a positive payoff. Thus, at the beginning of the last stage where player

2 offers y2 ≈ 1 but less than 1, player 2 gets ≈ δ2 and player 1 gets ≈ 0

(but positive).

At the start of the first stage, player 2 will compare 1− x1 with δ2y2. If

1 − x1 > δ2y2 ≈ δ2, player 2 will accept player 1’s first offer. Player 1’s

offer needs to satisfy x1 ≤ 1 − δ2, but as large as possible. That means

player 1 will play x1 = 1− δ2, and that should be the offer 1 makes at the

start of the game.
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Player 1 (player 2) proposes the offer in the first (second) stage. The

strategic space of the proposer is the split that lies between 0 and 1. The

strategy space of the counterparty is {accept, reject}.

Two-stage bargaining. Here, δ1 is the discount factor for player 1 in the

second stage.
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Summary

Player 1 begins the game by offering x1 = 1−δ2. Then, if player 2 accepts

the offer, the payoff to player 1 is 1 − δ2 and the payoff to player 2 is

δ2. If player 2 rejects and counter offers y2 ≈ 1, y2 < 1, then player 1

will accept the offer, receiving δ1(1 − y2) > 0. If player 2 counters with

y2 = 1, then player 1 is indifferent between acceptance or rejection (and

so will reject).

• At any fixed node, a player will choose to play according to a Nash

equilibrium no matter at which stage of the game (there is nothing

that can be done about the past). A good Nash equilibrium for a

player is one which is a Nash equilibrium for every subgame. This is

called the subgame perfect equilibrium.
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Perpetual game

First, we need to make a change in the three-stage game if the final offer

is rejected. Instead of (0,0) going to each player, let s denote the total

spread available and assume that when player 2 rejects player 1’s counter

at stage 3, the payoff to each player is (δ2s, δ2(1 − s)). Here, s is to be

determined later.

Player 2 in stage 3 will accept the counter of player 1, x3, if δ2(1− x3) ≥
δ2(1 − s), which is true if x3 ≤ s. Since player 1 gets δ2x3 if the offer is

accepted, player 1 makes the offer x3 as large as possible and so x∗3 = s.
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Working back to the second stage, player 2’s offer of y2 will be accepted

by player 1 if δ(1 − y2) ≥ δ2s, that is, if y2 ≤ 1 − δs. Since player 2

receives δy2, player 2 wants y2 to be as large as possible and hence offers

y2 = 1− δs in the second stage.

In the first stage, player 2 will accept player 1’s offer of x1 if 1 − x1 >

δy2 = δ(1 − δs). Simplifying, this requires x1 < 1 − δ(1 − δs), or, making

x1 as large as possible, player 1 should offer x1 = 1− δ + δ2s in the first

stage.
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We may summarize the subgame perfect equilibrium (every subgame is a

Nash equilibrium) by writing this down in reverse order

Player 1 Player 2
1. Offer player 2 x1 = 1− δ + δ2s. 1. Accept if x1 = 1− δ + δ2s.
2. If player 2 offers y2 = 1− δs, accept. 2. Offer y2 = 1− δs.
3. Offer x3 = s. 3. Accept if x3 = s.

What should s be?

If the bargaining goes on for three-stages and ends, s is 0 if no agreement

can be achieved. The way to choose s is to observe that when we are

in a three-stage game, at the third stage we are back to the original

conditions at the start of the game for both players except for the fact

that time has elapsed.

In other words, player 1 will now begin bargaining just as she did in the

beginning of the game. This implies that for the original three-stage

game, s should be chosen so that the offer at the first stage x1 is the

same as what she should offer at stage 3. This results in

1− δ + δ2s = s⇒ s =
1

1 + δ
.
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Remark

In sequential bargaining problems, we may view the discount factor not

as the time value of money but as the probability the bargaining problem

will end with a rejection of the latest offer.

This would make δ very subjective, which is often the case with bargaining.

In particular, when you are negotiating to buy a car or house, you have to

assess the chances that an offer will be rejected, and with no possibility

of revisiting the offer.

If player 1’s payoff is an increasing function of δ1, it may be beneficial to

signal “patience” to the counterparty that the discount factor δ1 is very

close to 1.
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Example - sale of a car

The sellers know that the car is worth at least $2000 and will not take a

penny under that. She advertises it for sale at $2800.

The buyer looks like he will give an offer but may not negotiate if the

offer is turned down. The buyer thinks the same of the seller but he

knows the car is worth at least $2000.

Let’s take δ = 0.5 to account for the uncertainty in the continuation of

bargaining. Assuming indefinite stages of bargaining, the buyer should

offer the sale price

x∗ = 2000 +
1

1 + δ
800 = 2000 +

2

3
800 = 2533.33.

The seller should accept this offer. There should be no delay for further

stages of bargaining.
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Proposition

There is a unique subgame perfect equilibrium in the perpetual sequential

bargaining game described as follows. We assume that player 1 is the

player who first makes an offer.

Whenever player 1 proposes, she suggests a split (x,1−x) with x = 1−δ2
1−δ1δ2

.

Player 2 accepts any division giving her at least 1− x.

Whenever player 2 proposes, she suggests a split (y,1 − y) with y =
δ1(1−δ2)
1−δ1δ2

. Player 1 accepts any division giving her at least y.

The bargaining ends immediately with a split (x,1− x).

Proof

It suffices to check that no player can make a profitable deviation from

her equilibrium strategy in one single period.
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Consider a period when player 1 offers. According to the equilibrium

strategies of x = 1−δ2
1−δ1δ2

and y = δ1(1−δ2)
1−δ1δ2

= δ1x, it suffices to show that

player 1 has no profitable deviation. She cannot make an acceptable offer

that will get her more than x. And if makes an offer that will be rejected,

she will get y = δ1x the next period, or δ2
1x in present terms, which is

worse than x.

Player 2 also has no profitable deviation. If she accepts, she gets 1 − x.

If she rejects, she will get 1 − y the next period, or in present terms

δ2(1− δ1x). Given x = 1−δ2
1−δ1δ2

, it is easy to check that 1− x = δ2 − δ1δ2x.

A similar argument applies to periods when player 2 offers.

150



Uniqueness of the equilibrium

We now show that the equilibrium is unique. To do this, let v1 and v̄1

denote the lowest and highest payoffs that player 1 could conceivably get

in any subgame perfect equilibrium starting at a date where he gets to

make an offer.

To begin, consider a date where player 2 makes an offer. Player 1 will

certainly accept any offer greater than δ1v̄1 and reject any offer less than

δ1v1. Thus, starting from a period in which she offers, player 2 can secure

at least 1− δ1v̄1 by proposing a split (δ1v̄1,1− δ1v̄1). On the other hand,

she can secure at most 1− δ1v1.
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Now, consider a period when player 1 makes an offer. To get player 2 to

accept, he must offer her at least δ2(1− δ1v̄1) to get an agreement, so

v̄1 ≤ 1− δ2(1− δ1v̄1).

At the same time, player 2 will certainly accept if offered more than

δ2(1− δ1v1), so

v1 ≥ 1− δ2(1− δ1v1).

Combining the inequalities, we obtain

v1 ≥
1− δ2

1− δ1δ2
≥ v̄1.

Since v̄1 ≥ v1 by definition, we know that in any subgame perfect equilib-

rium, player 1 receives v1 = 1−δ2
1−δ1δ2

. Making the same argument for player

2 completes the proof.
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Properties of the solution

1. Note that player 1’s payoff 1−δ2
1−δ1δ2

, is increasing in δ1 and decreasing

in δ2. Therefore, signaling “patience” helps player 1.

2. The first player to make an offer has an advantage. With identical

discount factors δ, the model predicts a split(
1

1 + δ
,

δ

1 + δ

)
which is better for player 1. However, as δ → 1, this first mover

advantage goes away. The limiting split is (1
2,

1
2).

3. There is no delay. Player 2 accepts player 1’s first offer.
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