
MATH 4321 - Game Theory

Final Exam Solution, 2018

1. (a) We calculate the first-order partial derivatives of the payoff function for player i:

ui(si, s−i) = (1− c)si + s1 + · · ·+ si−1 + si+1 + · · ·+ sn

=⇒ ∂ui
∂si

(si, s−i) = 1− c, si ∈ [0, 5].

(i) When c < 1, ∂ui

∂si
(si, s−i) > 0. Then in order to maximize the payoff function

ui(si, s−i), player i should choose s∗i = 5. Since the players are symmetric, we
induce that all the players will choose the strategy s∗i = 5 (for all i). Then the
Nash equilibrium is all the players spending 5 hours on cleaning the apartment.

(ii) When c > 1, ∂ui

∂si
(si, s−i) < 0. Then in order to maximize the payoff function

ui(si, s−i), player i should choose s∗i = 0. Since the players are symmetric, we
induce that all the players will choose the strategy s∗i = 0 (for all i). Then
the Nash equilibrium is all the players not spending any time on cleaning the
apartment.

(b) When n = 5 and c = 2, we have the payoff function for player i is:

ui(si, s−i) = −2si +
5∑

j=1

sj, si ∈ [0, 5].

According to the discussion in (a), all the players will not spend any time on cleaning
the apartment under Nash equilibrium, corresponding to payoff 0 to each player. It is
obviously not a Pareto efficient outcome. For example, we can have si = 1 for all i and
the payoff to each player i is ui(1, 1, 1, 1, 1) = 3 > 0. Then the outcome is better off for
all the players in this case.

2. (a) The payoff for firm i is given by

ui(qi, q−i) = (P (Q)− c)qi = (a−
n∑

j=1

qi − c)qi.

We calculate the first-order partial derivatives of this payoff function and get

∂ui
∂qi

(qi, q−i) = −qi + a−
n∑

j=1

qi − c.

By setting ∂ui

∂qi
(qi, q−i) = 0, we get

qi =
a− c− q1 − · · · − qi−1 − qi+1 − · · · − qn

2

for each firm i. Observing that all the n firms are symmetric, we can see that the
players will adopt the same strategy and the final solution for the equations will be q∗

satisfying

q∗ =
a− c− (n− 1)q∗

2
,

which yields q∗ = a−c
1+n

. Then each firm will choose to produce quantity q∗ = a−c
1+n

under
Nash equilibrium.
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(b) First consider the total quantity in the Nash equilibrium as a function of n:

Q∗ = nq∗ =
n(a− c)
n+ 1

and the resulting limit price is

lim
n→∞

P (Q∗) = lim
n→∞

(
a− n(a− c)

n+ 1

)
= c.

This means that as the number of firms grow, the Nash equilibrium price will also fall
and will approach the marginal costs of the firms as the number of firms grows to infinity.
Those familiar with a standard economics class know that in perfect competition price
will equal marginal costs, which is what happens here when n approaches infinity.

3. Let max3 bk denote the third largest bid among all the bidders. We discuss different cases
for the bid bi of bidder i.

• When bi < vi:
The payoff to player i should be

ui(bi, b−i) =


vi −max3bk > 0 if max

k 6=i
bk < bi

0 if max
k 6=i

bk > bi

vibi

vi −max3bk > 0 zero zero

max
k 6=i

bk max
k 6=i

bk max
k 6=i

bk

• When bi > vi:
The payoff to player i should be

ui(bi, b−i) =



vi −max3bk > 0 if max
k 6=i

bk < vi

vi −max3bk > 0 if vi < max
k 6=i

bk < bi & max3bk < vi

vi −max3bk < 0 if vi < max
k 6=i

bk < bi & vi < max3bk < max
k 6=i

bk

0 if max
k 6=i

bk > bi

bivi

vi −max3bk > 0 vi −max3bk

{
> 0

< 0
zero

max
k 6=i

bk max
k 6=i

bk max
k 6=i

bk

• When bi = vi:
The payoff to player i should be

ui(bi, b−i) =


vi −max3bk > 0 if max

k 6=i
bk < bi = vi

0 if max
k 6=i

bk > bi = vi
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bi = vi

vi −max3bk > 0 zero

max
k 6=i

bk max
k 6=i

bk

Under this circumstance, we can see that strategy bi = vi still weakly dominates bi < vi
but does not dominate bi > vi since player i will get higher payoff under bi > vi when
vi < maxk 6=i bk < bi and max3bk < vi (vi −max3bk > 0 under bi > vi and 0 under bi = vi).

4. (a) • When x > y, the Row player shoots first. If the Row player kills the Column player
with probability P1(x) in the first place, the payoff to the Column player is −1. On
the other hand, if the Row player misses the target with probability 1−P1(x), the
Column player will certainly win with payoff 1 since the he can wait until distance
0 to shoot. Then the expected payoff to the Column player under this case is given
by P1(x)(−1) + (1− P1(x))(1) = 1− 2P1(x).

• When x < y, the Column player shoots first. It is symmetric to the first case and
the expected payoff to the Column player will depend on P2(y) and is represented
by P2(y)(1) + (1− P2(y))(−1) = 2P2(y)− 1.

• When x = y, the two players shoot simultaneously. If the Row player hits the
target but the Column player does not, the payoff to the Column player should
be −1 and wise versa. Then the expected payoff payoff to the Column player is
represented by P1(x)(1− P2(x))(−1) + (1− P1(x))P2(x)(1) = P2(x)− P1(x).

(b) For silent duel game, even if the player who shoots first misses the target, the other
player will also stick to his own strategy since he will not know if the opponent has shot
or not. Then the player will not be guaranteed to lose given that he misses the target
in the first place. Based on this fact, the payoff function for the Column player can be
modified to (Suppose the Row player chooses to shoot at distance x and Column player
chooses to shoot at distance y)

S(x, y) =


P1(x)(−1) + (1− P1(x))P2(y)(1) = P2(y)− P1(x)− P1(x)P2(y) if x > y

P1(x)(1− P2(x))(−1) + (1− P1(x))P2(x)(1) = P2(x)− P1(x) if x = y

P2(y)(1) + (1− P2(y))P1(x)(−1) = P2(y)− P1(x) + P1(x)P2(y) if x < y

.

5. (a) (i) For the game [18; 6, 6, 6, 6, 2, 2], a winning coalition must contain at least 3 voters
with 6 votes. There are already 18 votes from the three voters with 6 votes, so a
winning coalition will always win the game with and without voters with 2 votes.
Therefore, the two voters with 2 votes are dummy in this game.

(ii) For the voters with 2 votes, he cannot be pivot or marginal in any coalition since
he is the dummy player. Then the Shapley-Shubik indices for them should be
φ5 = φ6 = 0 and the Banzhaf indices for them should also be β5 = β6 = 0.
Voters with 6 voters then have the same Shapley-Shubik and Banzhaf indices
calculated by

φ1 = φ2 = φ3 = φ4 =
1− 0

4
=

1

4
,

β1 = β2 = β3 = β4 =
1

4
.

(b) Proof by contradiction. Suppose there are n dummy players (represented by player
1 to player n, respectively) and the collection of dummies D = ∪ni=1{i} can turn a
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losing coalition S in to a winning coalition S ∪D. Then given that S ∪D is a winning
coalition and player 1 is dummy, we can deduce by the definition of dummy that
coalition S ∪ D \ {1} also wins the game. Furthermore, player 2 is also a dummy, so
coalition S ∪ D \ {1, 2} also wins the game. So on and so forth, we have coalition
S ∪D \ {1, · · · , n} = S also wins the game since all players from player 1 to player n
are dummies. Then we get a contradiction since the initial coalition S loses the game.
In conclusion, a collection of dummies can never turn a losing coalition into a winning
coalition.

(c) (i) We fist set the weight of voters in majority group as 2 and then let the weight of
the voters in minority group be x. According to the rule, we have

6 < q, 4 + x = q, and 2x < q,

so 4 + x > 6 and 2x < 4 + x giving 2 < x < 4. We take x = 3, then q = 7. The
game can be represented by

[7; 3, 3, 2, 2, 2].

(ii) For Voter 3 in the majority group, she is marginal in 5 coalitions:

{1, 2, 3}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}.

The conditional probability that player 3 makes a difference should be

π3(p1, p2, p4, p5) =p1p2(1− p4)(1− p5) + p1(1− p2)p4(1− p5)
+ p1(1− p2)(1− p4)p5 + (1− p1)p2p4(1− p5)
+ (1− p1)p2(1− p4)p5.

Given that the 3 voters in the majority group is with homogeneous voting prob-
ability p and the 2 voters in the minority group are independent with voting
probabilities, q1 and q2, we can modify the above equation to

π3(q1, q2, p) = q1q2(1− p)2 + 2q1(1− q2)p(1− p) + 2(1− q1)q2p(1− p).

Then the probability that Voter 3 will make a difference is calculated by∫ 1

0

∫ 1

0

∫ 1

0

π3(q1, q2, p)f1(q1)f2(q2)f(p) dq1 dq2 dp

=

∫ 1

0

∫ 1

0

∫ 1

0

[q1q2(1− p)2 + 2q1(1− q2)p(1− p)+

2(1− q1)q2p(1− p)]f1(q1)f2(q2)f(p) dq1 dq2 dp

=

∫ 1

0

q1f1(q1) dq1

∫ 1

0

q2f2(q2) dq2

∫ 1

0

(1− p)2f(p) dp+

2

∫ 1

0

q1f1(q1) dq1

∫ 1

0

(1− q2)f2(q2) dq2

∫ 1

0

p(1− p)f(p) dp+

2

∫ 1

0

(1− q1)f1(q1) dq1

∫ 1

0

q2f2(q2) dq2

∫ 1

0

p(1− p)f(p) dp.

6. (a) Proof by contradiction. Without loss of generality, we only consider the case where we
suppose there is another feasible point (u′, v′) ∈ S such that u′ > u and v′ ≥ v. Since
g(u, v) = (u− u∗)(v − v∗), we must have

g(u′, v′) = (u′ − u∗)(v′ − v∗) > (u− u∗)(v − v∗) = g(u, v).

It is a contradiction to the fact that (u, v) maximizes the function g(u, v). Therefore,
(u, v) is Pareto-optimal.
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(b) (i) We find v+ and v− for game matrices A and BT separately:

A :

4 2 2
−1 2 −1
4 2 v− = max min = 2

v+ = min max = 2

BT :

2 2 2
−1 4 −1
2 4 v− = max min = 2

v+ = min max = 2

We find that the upper value and lower value for A and BT are the same. There-
fore, value(A) = value(BT ) = 2.

(ii) The feasible set, taking into account the security point, is

S∗ = {(u, v)|v ≤ −u+ 6, u ≥ 2, v ≥ 2}.

We plot the feasible set as following:

(−1, 2)

(2, 4)

(4, 2)

(2,−1)

(2, 2)

The two players only negotiate in the top right region of the security point (2, 2).
From the figure, we can find that the Pareto-optimal boundary is given by the
line segment on the top right:

u+ v = 6, 2 ≤ u ≤ 4, 2 ≤ v ≤ 4.

We then set ip the nonlinear programming problem:

Maximize g(u, v) = (u− 2)(v − 2)

subject to (u, v) ∈ S∗.

Given that the optimal point (u, v) occurs on the Pareto-optimal boundary v =
−u+ 6, 2 ≤ u ≤ v, we then maximize the function

g(u, v) = f(u) = (u− 2)(−u+ 6− 2) = −u2 + 6u− 8.

The first-order derivatives is given by

f ′(u) = −2u+ 6 = 0 =⇒ u = 3 =⇒ v = 3

which yields g(3, 3) = 1. We further check the second-order derivatives

f ′′(u)|u=3 = −2 < 0.
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Then we guarantee that function g(u, v) is maximized at point (u, v) = (3, 3). The
cooperation must be a linear combination of the strategies yielding the payoffs
under pure strategies, so we solve

(3, 3) = λ(2, 4) + λ(4, 2)

to get λ = 1
2
. This says that the two players must agree to play the pure strategy

(Row2, Col2) and (Row1, Col1) with equal probability 1
2
.

(iii) We have threat strategies for the two players as Xt = (1, 0) and Yt = (1, 0). Then
the new security point of the game changes to (ut, vt) = (4, 2). We solve the new
nonlinear programming problem:

Maximize g(u, v) = (u− 4)(v − 2)

subject to (u, v) ∈ S ′,

where
S ′ = {(u, v)|v ≤ −u+ 6, u ≥ 4, v ≥ 2}.

(−1, 2)

(2, 4)

(4, 2)

(2,−1)

We can see the new feasible set in this case is one single point (4, 2). We then
get the bargaining outcome (u, v) = (4, 2). For further check, we may use the
formula:

u =
mpu

t + vt − b
2mp

=
−1× 4 + 2− 6

2× (−1)
= 4,

v =
1

2
(mpu

t + vt + b) =
1

2
(−1× 4 + 2 + 6) = 2.

We can also get the final outcome (u, v) = (4, 2). Under the given threat strategies,
the two players will finally play (Row1, Col1) as a bargaining solution.
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