
MATH 4321 - Game Theory

Mid-term Test Solution, 2018

1. (a) Observe that
v− = max

i
min
j
aij ≤ max

i
aij.

The above inequality is independent of j (holds for ∀ j), so it remains to be valid when
we take min

j
(max

i
aij), which is precisely v+. Hence v− ≤ v+.

(b) If a pure strategy saddle point exists, we have

aij∗ ≤ ai∗j∗ ≤ ai∗j,

for all rows and columns (∀ i, j). Then we have

v− = min
j

max
i
aij ≤ max

i
aij∗ ≤ ai∗j∗ ≤ min

j
ai∗j ≤ max

i
min
j
aij = v+,

which indicates that v− ≥ v+. Together with v− ≤ v+, we get v− = v+.

2. (a) Let Curly be the row player and the thief be the column player. We consider four
strategy profiles:

• (Home, Home): The thief will break into Curly’s home for sure and Curly will
lose his gold bar. −1 to Curly and +1 to the thief.

• (Home, Office) & (Office, Home): The thief has chosen a wrong place without
the gold bar and get caught. +1 to Curly and −1 to the thief.

• (Office, Office): The thief has chosen the right place in office with the gold bar
and has only 15% chance to break the safe and get the gold. The expected payoff
to Curly should be (+1)× 85% + (−1)× 15% = +0.7 and that to the thief should
be the inverse.

(b) Suppose the strategy for Curly is X = (x, 1 − x) and the strategy for the thief is
Y = (y, 1 − y). For the two pure strategies of the row player, we have two linear
functions

E(1, Y ) = −y + 1− y = −2y + 1,

E(2, Y ) = y + 0.7(1− y) = 0.3y + 0.7.

We plot the two lines:

y

E(i, Y )

E(1, Y )

E(2, Y )

y∗

( 3
23
, 17
23
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The intersection point is ( 3
23
, 17
23

), so y∗ = 3
23

, Y ∗ = ( 3
23
, 20
23

). The value of the game is
found to be v = 17

23
.

Similarly, we get the two linear functions for the two pure strategies of the column
player:

E(X, 1) = −x+ 1− x = −2x+ 1,

E(X, 2) = x+ 0.7(1− x) = 0.3x+ 0.7.

It is seen that the two functions E(X, 1) and E(X, 2) are actually the same as E(1, Y )
and E(2, Y ). Then we get the same result x∗ = 3

23
and X∗ = ( 3

23
, 20
23

).

3. (a) Let X∗ be the probability vector X maximizing the expected payoff E(X, Y 0). Then
max
X∈Sn

E(X, Y 0) = E(X∗, Y 0).

• We first show that E(X∗, Y 0) ≥ E(i, Y 0), ∀ 1 ≤ i ≤ n.
Since X∗ maximizes the value of E(X, Y 0), then E(X∗, Y 0) ≥ E(X, Y 0) should
hold for all mixed strategies X. Since pure strategy i for player I is also a special
case of mixed strategies (xi = 1 and xj = 0 for all j 6= i), we also have E(X∗, Y 0) ≥
E(i, Y 0), ∀ 1 ≤ i ≤ n.

• We then should that the equality E(X∗, Y 0) = E(i, Y 0) can be established for some
row i.
We prove by contradiction. Suppose the equality does not hold for all the row i.
Then we have strict inequality E(X∗, Y 0) > E(i, Y 0) for all i. On the other hand,
the maximized expected payoff is calculated by

E(X∗, Y 0) = max
X∈Sn

E(X, Y 0) = max
X∈Sn

n∑
i=1

xiE(i, Y 0) < E(X∗, Y 0),

where 0 ≤ xi ≤ 1. Then we get a contradiction. Therefore, we conclude that
equality E(X∗, Y 0) = E(i, Y 0) must hold for some row i.

Combined the above two results, we have max
X∈Sn

E(X, Y 0) = max
1≤i≤n

E(i, Y 0).

(b) From (a) we have got max
1≤i≤n

E(i, Y 0) = E(X∗, Y 0) and

E(X∗, Y 0) = max
X∈Sn

n∑
i=1

xiE(i, Y 0), 0 ≤ xi ≤ 1.

Therefore, if we have E(j, Y 0) < max
1≤i≤n

E(i, Y 0) for some j, we must have xj = 0.

Otherwise, max
X∈Sn

n∑
i=1

xiE(i, Y 0) < E(X∗, Y 0) and we have a contradiction.

According to the above argument, from E(i∗1, Y
0) = E(i∗2, Y

0) > E(i, Y 0), we guarantee
that xi = 0 (i 6= i∗1, i

∗
2) and xi∗1 , xi∗2 ≥ 0. One of the corresponding best response mixed

strategies can be

X∗ =
{

(x1, x2, · · · , xn)
∣∣xi∗1 = α, xi∗2 = 1− α, xi = 0,∀ i 6= i∗1, i

∗
2

}
, 0 ≤ α ≤ 1.

(c) Given that Y 0 = (1
3
, 1
3
, 1
3
), we want to find the best response strategy X∗ = (x1, x2, x3)

for the investor. The expected payoff of the investor for each of her pure strategy is
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calculated by

E(1, Y 0) = (15 + 10 + 4)× 1

3
=

29

3
,

E(2, Y 0) = (9 + 9 + 12)× 1

3
= 10,

E(3, Y 0) = (10 + 10 + 10)× 1

3
= 10.

It is seen that E(1, Y 0) < E(2, Y 0) = E(3, Y 0) = 10. According to the discussion in
(b), we have x1 = 0 and

X∗ = (0, α, 1− α), 0 ≤ α ≤ 1.

In conclusion, the investor should not allocate any budget into stock and should allocate
the $ 1000 into bond and deposit by any porportion.

4. (a) The two players are equal at shooting skills and have the same strategy sets S1 = S2 =
{10, 6, 2}. Therefore, the two players only switch their roles under two strategy profiles
(i, j) and (j, i) (i, j = 10, 6, or 2). The probability for one player to kill the other under
strategy profile (i, j) is equal to the probability for him be killed under strategy profile
(j, i). It further implies that the expected payoff for Burr at entry (i, j) is just the
inverse of that at entry (j, i), so A = −AT .

For entry (i, i) (diagonal entries), the two players decide to shoot at the same position.
Since they have equal skills for shooting, the probability to kill the other must be equal
to the probability to be killed, which implies the expected payoff for both players must
be zero.

(b) (2, 10):

x =(1)P [Hamilton misses at 10]P [Burr kills Hamilton at 2]

+ (−1)P [Burr is killed by Hamilton at 10]

=0.8× 1− 0.2 = 0.6.

(2,6):

y =(1)P [Hamilton misses at 6]P [Burr kills Hamilton at 2]

+ (−1)P [Burr is killed by Hamilton at 6]

=0.6× 1− 0.4 = 0.2.

(c) The game matrix is shown as following:

Hamilton
10 6 2

10 0 −0.12 −0.6 −0.6
Burr 6 0.12 0 −0.2 −0.2

2 0.6 0.2 0 0
0.6 0.2 0 v− = max min = 0

v+ = min max = 0

We then find the upper and lower values in the above matrix. It is seen that v− = v+ =
0. Then there exists a pure strategies saddle point at (2, 2) and the value of the game
is v(A) = 0.
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5. (a) Suppose player 1 supports A and player 2 supports B.

• If both vote, there is a tie. The payoffs for both are 1− c.
• If player 1 votes while player 2 abstains, player 1 has payoff 2 − c while player 2

has zero payoff. Similar results are obtained if they swap their role.

• If both abstain, there is a tie and no cost incurred, so the payoffs for both are 1.

The bi-matrix game is depicted as follows:

I
II

Vote Abstain

Vote (1− c, 1− c) (2− c, 0)
Abstain (0, 2− c) (1, 1)

Suppose Player I chooses the first row, then Player II will choose to vote since 1−c > 0.
Suppose Player I chooses the second row, then Player II will also choose to vote since
2− c > 1.
Suppose Player II chooses the first column, then Player I will choose to vote since
1− c > 0.
Suppose Player II chooses the second column, then Player II will also choose to vote
since 2− c > 1.
Therefore, we find that “Vote” is a dominant strategy for both players and (Vote, Vote)
is the unique pure strategy Nash equilibrium.

(b) k = m > 1.
Suppose everyone votes, then the candidates A and B tie. Each voter has a payoff of
1 − c. Now, if one voter chooses not to vote while all the other remain “Vote”, this
voter has a payoff zero (since the candidate he supported earlier will lose). The payoff
of this voter worsens under unilateral deviation. Hence, “everyone votes” is a Nash
equilibrium.

(c) k < m.
Suppose everyone votes. Since k < m and candidate A loses. A supporter of A will be
better off from saving the cost of casting vote if he changes from “Vote” to “Abstain”
since A remains losing. Hence, the action profile is not a Nash equilibrium.

6. (a) • “if” part (A strategy profile is a dominant-strategy equilibrium if it is a Nash
equilibrium).
False. consider the following game matrix as a counter-example:

Col1 Col2
Row1 (5,5) (1,1)
Row2 (3,4) (4,3)

Here, Strategy profile (Row1, Col1) is Pareto-dominant and is a Nash equilibrium.
However, it is not a dominant-strategy equilibrium since the row player will choose
Row2 if the column player chooses Col2. Then Row1 is not the dominant strategy
for the row player.

• “only if” part (If a strategy profile is a dominant-strategy equilibrium, then it is a
Nash equilibrium).
True. Proof by contradiction. Suppose a dominant-strategy equilibrium (s∗i , s

∗
−i)

is not a Nash equilibrium, then ∃ s′i, such that

πi(s
∗
i , s
∗
−i) < πi(s

′
i, s
∗
−i).
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Then strategy profile (s∗i , s
∗
−i) is not a dominant-strategy. There is a contradiction.

Therefore, a dominant-strategy equilibrium must be a Nash equilibrium.

(b) (i) Consider the following game matrix as an example:

Col1 Col2
Row1 (5,4) (5,3)
Row2 (3,5) (1,1)

In this case, Row1 and Col1 are dominant strategies for the row player and col-
umn player, respectively. Then (Row1, Col1) is a dominant-strategy equilibrium.
However, it does not Pareto-dominate all other strategy profiles because the payoff
to column player at (Row1, Col1) is not the largest among all the possible payoffs
of column player.

(ii) Consider the following game matrix as an example:

Col1 Col2
Row1 (5,5) (1,1)
Row2 (3,4) (4,3)

As is illustrated in (a), the strategy profile (Row1, Col1) Pareto-dominates all
other strategy profiles but is not a dominant-strategy equilibrium.
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