1. (a) The portfolio variance σ_P^2 is given by

$$\sigma_P^2 = \alpha^2 \sigma_A^2 + (1 - \alpha)^2 \sigma_B^2 + 2\alpha(1 - \alpha)\rho \sigma_A \sigma_B.$$

Differentiating σ_P^2 with respect to α, we have

$$\frac{d\sigma_P^2}{d\alpha} = 2\alpha \sigma_A^2 - 2(1 - \alpha) \sigma_B^2 + (2 - 4\alpha)\rho \sigma_A \sigma_B.$$

Setting $\frac{d\sigma_P^2}{d\alpha} = 0$, we obtain

$$\alpha = \frac{\sigma_B^2 - \rho \sigma_A \sigma_B}{\sigma_A^2 + \sigma_B^2 - 2\rho \sigma_A \sigma_B} = 0.8261.$$

(b) Substituting $\alpha = 0.8261$ into σ_P^2, the portfolio variance of the optimal portfolio is

$$\sigma_P^2 = \alpha^2 \sigma_A^2 + (1 - \alpha)^2 \sigma_B^2 + 2\alpha(1 - \alpha)\rho \sigma_A \sigma_B = 0.01937$$

so that $\sigma_P = 0.1392$.

(c) The expected rate of return of the optimal portfolio:

$$\mu_P = \alpha \mu_A + (1 - \alpha) \mu_B = 0.1139.$$

2. (a) The expected rate of return is given by

$$E[r] = \frac{0.5 \times 3 	imes 10^6 + 0.5 \times u}{10^6 + 0.5u} - 1.$$

(b) It is seen that buying 3 million units of insurance eliminates all uncertainty regarding the return, resulting in zero variance. The corresponding expected rate of return is

$$E[r] = \frac{0.5 \times 3 \times 10^6 + 0.5 \times 3 \times 10^6}{10^6 + 0.5 \times 3 \times 10^6} - 1 = \frac{3}{2.5} - 1 = 0.2.$$

3. (a)

Diagram:

![Minimum Variance Point Diagram](image-url)
The expected portfolio rate of return always remains to be \(r \). The set of minimum variance portfolio (also called the efficient set) reduces to one portfolio, which is represented by the minimum variance point in the above \(\sigma_P - \mu_P \) diagram.

(b) The minimum variance point is the global minimum variance portfolio. Recall

\[
\mathbf{w}_g = \frac{\Omega^{-1}\mathbf{1}}{1^T \Omega^{-1} \mathbf{1}}, \quad \text{where} \quad \Omega = \begin{pmatrix}
\sigma_1^2 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_n^2
\end{pmatrix}.
\]

Note that

\[
\Omega^{-1} \mathbf{1} = \begin{pmatrix}
1/\sigma_1^2 \\
1/\sigma_2^2 \\
\vdots \\
1/\sigma_n^2
\end{pmatrix} \quad \text{and} \quad 1^T \Omega^{-1} \mathbf{1} = \sum_{i=1}^{n} \frac{1}{\sigma_i^2}.
\]

The minimum variance is given by

\[
\sigma_P^2 = \frac{1}{1^T \Omega^{-1} \mathbf{1}} = \frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}} = \overline{\sigma}^2.
\]

Note that \(\overline{\sigma}^2 \) is the harmonic mean of \(\sigma_i^2, i = 1, 2, \cdots, n \). Hence, the minimum variance point is \((\overline{\sigma}, \overline{r})\).

4. (a) Solve for \(\mathbf{v}_g \) such that

\[
\Omega \mathbf{v}_g = \mathbf{1} \quad \text{or} \quad \begin{pmatrix}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
v_1^g \\
v_2^g \\
v_3^g
\end{pmatrix} = \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}.
\]

We obtain

\[
\mathbf{v}_g = \begin{pmatrix}
0.5 \\
0.5 \\
0.5
\end{pmatrix}.
\]

It happens that the sum of components in \(\mathbf{v}_g \) is already equal to 1. So, the optimal weight vector corresponding to the global minimum variance portfolio is \(\mathbf{w}_g = (0.5 \ 0 \ 0.5)^T \).

(b) The other efficient portfolio is obtained by first solving for

\[
\Omega \mathbf{v}_d = \overline{r}
\]

and normalize the components so that the sum of components equals 1. Consider

\[
\begin{pmatrix}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
v_1^d \\
v_2^d \\
v_3^d
\end{pmatrix} = \begin{pmatrix}
0.4 \\
0.8 \\
0.8
\end{pmatrix},
\]

we obtain

\[
\mathbf{v}_d = (0.1 \ 0.2 \ 0.3)^T.
\]

Upon normalization, we obtain the weight vector of another efficient portfolio to be

\[
\mathbf{w}_d = \left(\frac{1}{6} \ \frac{1}{3} \ \frac{1}{2} \right)^T.
\]
(c) With the inclusion of the riskfree asset, we solve for
\[\Omega\mathbf{v} = \mathbf{r} - r_f \mathbf{1} \]
and normalize the components so that the condition on target expected rate of return of the portfolio is met. It is seen that
\[\mathbf{v} = \mathbf{v}_g - r_f \mathbf{v}_d = (0.1 \ 0.2 \ 0.3)^T - 0.2(0.5 \ 0 \ 0.5)^T = (0 \ 0.2 \ 0.2)^T. \]
The optimal weight vector \(\mathbf{w}^* = \lambda \mathbf{v} \), where \(\lambda \) is determined by enforcing
\[\lambda \sum_{j=1}^{3} (\mathbf{r}_j - r_f) v_j = \mu_P - r_f, \quad \text{where} \quad \mu_P = 0.4. \]
We then obtain
\[\lambda(0.6 \times 0.2 + 0.6 \times 0.2) = 0.4 - 0.2 = 0.2 \]
so that \(\lambda = \frac{1}{1.7} \). The weights of the risky assets are
\[w_1 = 0, \quad w_2 = \frac{2}{1.2} = \frac{1}{6} \quad \text{and} \quad w_3 = \frac{2}{1.2} = \frac{1}{6}. \]
The weight of the risk free asset is \(1 - \frac{1}{6} - \frac{1}{6} = \frac{2}{3} \).

5. Consider the betting wheel which has \(n \) segments. Let \(Y \) be the random variable of the outcome, where \(Y = i \) if the outcome of the wheel is \(i \). The payoff of a $1 bet on the segment \(i \) is given by \(A_i I_{\{Y=i\}} \), where the indicator function \(I_{\{Y=i\}} = \begin{cases} 1, & \text{if} \ Y = i \\ 0, & \text{otherwise} \end{cases} \).

By using the strategy stated in the question, the payoff is
\[\sum_{i=1}^{n} \frac{1}{A_i} A_i I_{\{Y=i\}} = 1, \]
which is independent of the outcome of the wheel. Following this strategy, the initial total amount betted is \(\sum_{i=1}^{n} \frac{1}{A_i} \) and the final payoff is always 1 (risk free). Therefore, the corresponding deterministic rate of return is given by
\[\frac{1}{\sum_{i=1}^{n} \frac{1}{A_i}} - 1. \]
For example, suppose the wheel has 4 segments with \(A_1 = 3, A_2 = 4, A_3 = 5, A_6 = 6 \). The betting strategy is to bet \(\frac{1}{3} \) on segment 1, \(\frac{1}{4} \) on segment 2, \(\frac{1}{5} \) on segment 3, and \(\frac{1}{6} \) on segment 4. The riskfree return is
\[\frac{1}{\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}} - 1 = \frac{1}{\frac{57}{60}} - 1 = \frac{3}{57}. \]
Consider the variance of the difference of \(r - r_M \)

\[
\text{var}(r - r_M) = \text{var}(r) + \text{var}(r_M) - 2\text{cov}(r, r_M)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \sigma_{ij} + \sigma_M^2 - 2 \sum_{i=1}^{n} \alpha_i \sigma_{iM}, \quad \text{where } \sigma_{iM} = \text{cov}(r_i, r_M).
\]

To minimize \(\text{var}(r - r_M) \) subject to \(\sum_{i=1}^{n} \alpha_i = 1 \), we set up the Lagrangian

\[
L = \frac{1}{2} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \sigma_{ij} + \sigma_M^2 - 2 \sum_{i=1}^{n} \alpha_i \sigma_{iM} \right] - \lambda \left(\sum_{i=1}^{n} \alpha_i - 1 \right).
\]

Differentiating \(L \) with respect to \(\alpha_i \) and \(\lambda \), we obtain

\[
\sum_{j=1}^{n} \alpha_j \sigma_{ij} - \sigma_{iM} - \lambda = 0, \quad i = 1, 2, \ldots, n,
\]

\[
\sum_{i=1}^{n} \alpha_i = 1.
\]

In matrix form:

\[
\Omega \alpha - \sigma_M - \lambda \mathbf{1} = 0
\]

\[
\mathbf{1}^T \alpha = 1,
\]

where \(\sigma_M = (\sigma_{1M}, \sigma_{2M}, \ldots, \sigma_{nM})^T \). Assuming \(\Omega^{-1} \) exists, we have

\[
\alpha = \Omega^{-1} \sigma_M + \lambda \Omega^{-1} \mathbf{1}.
\]

Applying the constraint: \(\mathbf{1}^T \alpha = 1 \), we obtain

\[
\mathbf{1}^T \Omega^{-1} \sigma_M + \lambda \mathbf{1}^T \Omega^{-1} \mathbf{1} = 1
\]

so that

\[
\lambda = \frac{1 - \mathbf{1}^T \Omega^{-1} \sigma_M}{\mathbf{1}^T \Omega^{-1} \mathbf{1}}.
\]

Finally, we obtain

\[
\alpha = \Omega^{-1} \sigma_M + \frac{1 - \mathbf{1}^T \Omega^{-1} \sigma_M}{\mathbf{1}^T \Omega^{-1} \mathbf{1}} \Omega^{-1} \mathbf{1}.
\]

(b) The modified Lagrangian is given by

\[
L = \frac{1}{2} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \sigma_{ij} - 2 \sum_{i=1}^{n} \alpha_i \sigma_{iM} + \sigma_M^2 \right] - \lambda_1 \left(\sum_{i=1}^{n} \alpha_i - 1 \right) - \lambda_2 \left(\sum_{i=1}^{n} \alpha_i \bar{r}_i - m \right),
\]

where \(m \) is the target mean. Differentiating \(L \) with respect to \(\alpha_i, \lambda_1, \lambda_2 \), we obtain

\[
\sum_{j=1}^{n} \alpha_j \sigma_{ij} - \sigma_{iM} - \lambda_1 - \lambda_2 \bar{r}_i = 0, \quad i = 1, 2, \ldots, n,
\]

\[
\sum_{i=1}^{n} \alpha_i = 1
\]

\[
\sum_{i=1}^{n} \alpha_i \bar{r}_i = m.
\]
In matrix form:

$$\Omega \alpha - \sigma_M - \lambda_1 \mathbf{1} - \lambda_2 \mathbf{r} = 0 \quad (i)$$

$$\mathbf{1}^T \alpha = 1 \quad (ii)$$

$$\mathbf{r}^T \alpha = m \quad (iii)$$

We write

$$a = \mathbf{1}^T \Omega^{-1} \mathbf{1}, b = \mathbf{1}^T \Omega^{-1} \mathbf{r}, c = \mathbf{r}^T \Omega^{-1} \mathbf{r}, s_1 = \mathbf{1}^T \Omega^{-1} \sigma_M, s_2 = \mathbf{r}^T \Omega^{-1} \sigma_M.$$

Assuming \(\Omega^{-1} \) exists, eq. (i) can be expressed as

$$\alpha = \Omega^{-1} \sigma_M + \lambda_1 \Omega^{-1} \mathbf{1} + \lambda_2 \Omega^{-1} \mathbf{r}. \quad (iv)$$

Invoking conditions (ii) and (iii), we obtain the following pair of algebraic equations for \(\lambda_1 \) and \(\lambda_2 \):

$$1 = s_1 + \lambda_1 a + \lambda_2 b \quad m = s_2 + \lambda_1 b + \lambda_2 c.$$

Solving for \(\lambda_1 \) & \(\lambda_2 \):

$$\lambda_1 = \frac{1 - s_1}{m - s_2} \begin{vmatrix} a & b \\ b & c \end{vmatrix} = \frac{c(1 - s_1) - b(m - s_2)}{ac - b^2},$$

$$\lambda_2 = \frac{1 - s_1}{m - s_2} \begin{vmatrix} a & b \\ b & c \end{vmatrix} = \frac{a(m - s_2) - b(1 - s_1)}{ac - b^2}.$$

Both \(\lambda_1 \) and \(\lambda_2 \) are linear functions of \(m \). We are able to express \(\alpha \) in terms of \(m \) [see eq. (iv)].

7. (a) Recall \(\mathbf{w}_0 = \frac{\Omega^{-1} \mathbf{1}}{\mathbf{1}^T \Omega^{-1} \mathbf{1}}, \sigma_0^2 = \mathbf{w}_0^T \Omega \mathbf{w}_0 = \frac{1}{\mathbf{1}^T \Omega^{-1} \mathbf{1}}, \) so that

$$\text{cov}(r_0, r_1) = \mathbf{w}_0^T \Omega \mathbf{w}_1 = \frac{1}{\mathbf{1}^T \Omega^{-1} \mathbf{1}} \frac{1}{\mathbf{1}^T \Omega^{-1} \mathbf{1}} = \sigma_0^2$$

giving \(A = 1 \). Consider the variance \(\sigma_0^2 \)

$$\sigma_0^2 = \text{cov}((1 - \alpha)r_0 + \alpha r_1, (1 - \alpha)r_0 + \alpha r_1)$$

$$= (1 - \alpha)^2 \sigma_0^2 + 2(1 - \alpha)\text{cov}(r_0, r_1) + \alpha^2 \sigma_1^2$$

$$= (1 - \alpha)^2 \sigma_0^2 + 2(1 - \alpha)\sigma_0^2 + \alpha^2 \sigma_1^2$$

$$= \sigma_0^2 + \alpha^2(\sigma_1^2 - \sigma_0^2).$$

The result agrees with the intuition that variations of the variance of the given portfolio around \(\alpha = 0 \) should be second order in \(\alpha \).

(b) Writing \(\mathbf{r} = (r_1 \cdots r_N)^T \), consider

$$\text{cov}(r_1, r_2) = \text{cov}(\mathbf{w}_1^T \mathbf{r}, [(1 - \alpha)\mathbf{w}_0 + \alpha \mathbf{w}_1]^T \mathbf{r})$$

$$= \text{cov}(\mathbf{w}_1^T \mathbf{r}, (1 - \alpha)\mathbf{w}_0^T \mathbf{r} + \alpha \mathbf{w}_1^T \mathbf{r})$$

$$= \text{cov}(\mathbf{w}_1^T \mathbf{r}, (1 - \alpha)\mathbf{w}_0^T \mathbf{r}) + \text{cov}(\mathbf{w}_1^T \mathbf{r}, \alpha \mathbf{w}_1^T \mathbf{r})$$

$$= (1 - \alpha)\sigma_0^2 + \alpha \sigma_1^2.$$
Setting \(\text{cov}(r_1, r_z) = 0 \), we obtain

\[
0 = (1 - \alpha)\sigma_0^2 + \alpha\sigma_1^2
\]

giving

\[
\alpha = -\frac{\sigma_0^2}{\sigma_1^2 - \sigma_0^2} < 0.
\]

(c) We have

\[
\bar{r}_z = (1 - \alpha)\bar{r}_0 + \alpha\bar{r}_1 = \bar{r}_0 + \alpha(\bar{r}_1 - \bar{r}_0)
\]

so that \(\bar{r}_z < \bar{r}_0 \) (since \(\alpha < 0 \) and \(\bar{r}_1 - \bar{r}_0 > 0 \)). Now,

\[
\sigma_z^2 = \text{var}(r_z) = (1 - \alpha)^2\sigma_0^2 + \alpha^2\sigma_1^2 + 2\alpha(1 - \alpha)\text{cov}(r_0, r_1)
\]

\[
= (1 - \alpha)^2\sigma_0^2 + 2\alpha(1 - \alpha)\sigma_0^2 + \alpha^2\sigma_1^2 = \frac{\sigma_0^2\sigma_1^2}{\sigma_1^2 - \sigma_0^2}.
\]

Note that Portfolio \(z \) is a minimum variance portfolio but it is not efficient.

8. The Lagrangian is given by

\[
L = \tau(w^T\mu + w_0r) - \frac{w^T\Omega w}{2} + \lambda(w^T1 + w_0 - 1),
\]

and the first order conditions:

\[
\tau\mu - \Omega w + \lambda 1 = 0
\]

\[
\tau\tau + \lambda = 0
\]

\[
w^T1 + w_0 = 1.
\]
Using $\lambda = -\tau r$, we obtain
\[w = \tau \Omega^{-1}(\mu - r 1) \]
\[w_0 = 1 - \tau (1^T \Omega^{-1} \mu) + \tau r (1^T \Omega^{-1} 1) = 1 - b r + a r. \]

The portfolio’s expected rate of return is
\[\mu_P = r w_0 + \mu^T w \]
\[= \tau [r^2 a - br - r (1^T \Omega^{-1} \mu) + \mu^T \Omega^{-1} \mu] + r = \tau (ar^2 - 2br + c) + r. \]

Finally, the relation between μ_P and σ_P is found to be
\[\sigma_P^2 = w^T \Omega w \]
\[= \tau^2 [r^2 (1^T \Omega^{-1} 1) - 2r (1^T \Omega^{-1} \mu) + \mu^T \Omega^{-1} \mu] = \tau^2 (ar^2 - 2br + c) \]
\[= \tau (\mu_P - r). \]

9. In the asset-liability model, we want to maximize
\[\tau E[r_S] - \frac{\text{var}(r_S)}{2} \]
subject to $\sum_{i=1}^{N} w_i = 1$, where $r_S = r w - \frac{1}{f_0} r_L$. Since r_L is independent of w, it is equivalent to maximize
\[\tau \mu^T w - \frac{w^T \Omega w}{2} + \text{cov}(r w, \frac{r_L}{f_0}). \]

Now, $\text{cov}(r w, r_L) = \sum_{i=1}^{N} w^T \text{cov}(r_i, r_L) = \gamma^T w$, with $\gamma_i = \frac{1}{f_0} \text{cov}(r_i, r_L)$. Define the Lagrangian
\[L = \tau \mu^T w - \frac{w^T \Omega w}{2} + \gamma^T w - \lambda (1^T w - 1) \]
\[\frac{\partial L}{\partial w_i} = \tau \mu_i - \sum_{j=1}^{N} w_j \sigma_{ij} + \gamma_i - \lambda = 0, \quad i = 1, \ldots, N; \quad (1) \]
\[\frac{\partial L}{\partial \lambda} = 1^T w - 1 = 0. \quad (2) \]

From Eq. (1), we obtain
\[\tau \mu - \Omega w + \gamma - \lambda 1 = 0 \quad \Rightarrow \quad w = \tau \Omega^{-1} \mu + \Omega^{-1} \gamma - \lambda \Omega^{-1} 1. \]

From Eq. (2), we obtain
\[1 = 1^T w = \tau 1^T \Omega^{-1} \mu + 1^T \Omega^{-1} \gamma - \lambda 1^T \Omega^{-1} 1 \]
so that
\[\lambda = \frac{\tau 1^T \Omega^{-1} \mu + 1^T \Omega^{-1} \gamma - 1}{1^T \Omega^{-1} 1}. \]
Finally, we obtain

\[w = \tau \Omega^{-1} \mu + \Omega^{-1} \gamma - \frac{\tau^T \Omega^{-1} \mu}{\Omega^{-1} 1} \Omega^{-1} 1 - \frac{\tau^T \Omega^{-1} \gamma}{\Omega^{-1} 1} \Omega^{-1} 1 + \frac{1}{\Omega^{-1} 1} \Omega^{-1} 1 \]

\[= \frac{1}{\Omega^{-1} 1} \Omega^{-1} 1 + \Omega^{-1} \gamma - \frac{\tau^T \Omega^{-1} \gamma}{\Omega^{-1} 1} \Omega^{-1} 1 + \tau \left[\Omega^{-1} \mu - \frac{\Omega^{-1} \mu}{\Omega^{-1} 1} \Omega^{-1} 1 \right] \]

\[= x^{\min} + z^L + \tau z^\star, \]

where

\[x^{\min} = \frac{1}{\Omega^{-1} 1} \Omega^{-1} 1, \]

\[z^L = \Omega^{-1} \gamma - \frac{\Omega^{-1} \gamma}{\Omega^{-1} 1} \Omega^{-1} 1, \]

\[z^\star = \Omega^{-1} \mu - \frac{\Omega^{-1} \mu}{\Omega^{-1} 1} \Omega^{-1} 1. \]