
Mathematics and Social Choice Theory

Topic 1 – Voting systems and power indexes

1.1 Weighted voting systems and yes-no voting systems

1.2 Power indexes: Shapley-Shubik index and Banzhaf index

1.3 Case studies of power indexes calculations

1.4 Probabilistic characterizations of power indexes
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1.1 Weighted voting systems and yes-no systems

Voting procedure: “support” or “object” a given motion/bill (no “ab-

stain”).

Weighted voting system – individuals/political bodies can cast more bal-

lots than others. For example, voting by stockholders in a corporation,

more votes being held by countries with stronger economic powers in the

International Monetary Authority.

Question: How to define voting power in a weighted voting system?

• Power is not a trivial function of one’s strength as measured by his

number of votes.

• Voters with pivotal though small number of votes may have higher

influential power per each vote held.
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Define two indices that indicate the real distribution of influence.

• Useful in evaluating some of the existing democratic institutions in

terms of fairness, concealed biases, etc.

Remark

No mathematical theory will suffice to reveal all of the behind-the-scene

nuances - influences of party loyalty, persuasion, lobbying, fractionalism,

bribes, gratuities, campaign financing, etc.

A new field called GOVERNMETRICS
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Weighted majority voting game is characterized by a voting vector

[q;w1, w2, · · · , wn]

where there are n voters, wi is the voting weight of player i; N =

{1,2, · · · , n} be the set of all n voters; q is the quota (minimum num-

ber of votes required to pass a bill).

Let S be a typical coalition, which is a subset of N . A coalition wins a

bill (called winning) whenever ∑
i∈S

wi ≥ q.

It is natural to observe “complement of a winning coalition should be

losing”. As a result, we require the quota to observe q >
1

2

∑
i∈N

wi in order

to avoid two disjoint coalitions that are both winning.
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Examples

1. [51; 28,24,24,24]; the first voter is much stronger than the last 3

since he needs only one other to pass an issue, while the other three

must all combine in order to win.

2. [51; 26,26,26,22], the last player seems powerless since any winning

coalition containing him can just as well win without him (a dummy).

3. In the game [q; 1,1, · · · ,1], each player has equal power. This is called

a pure bargaining game.

4. [51; 40,30,20,10] and [51; 30,25,25,20] seem identical in terms of

voting influence, since the same set of coalitions are winning in both

voting vectors.
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5. Games such as [3; 2,2,1], [8; 7,5,3] and [51; 49,48,3] are identical to

[2; 1,1,1] in terms of power, since they give rise to the same collection

of winning coalitions.

6. If we add to the game [3; 2,1,1] the rule that player 2 can cast an

additional vote in the case of 2 to 2 tie, then it is effectively [3; 2,2,1].

If player 1 can cast the tie breaker, then it becomes [3; 3,1,1] and he

is the dictator. He forms a winning coalition by himself.

7. In the game [50(n − 1) + 1; 100,100, · · · ,100,1], the last player has

the same power as the others when n is odd; the game is similar to

one in which all players have the same weights. For example, when

n = 5, we have [201; 100,100,100,100,1]. Any 3 of the 5 players can

form a winning coalition.
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Dummy players

Any winning coalition that contains such an impotent voter could win

just as well without him.

Examples

• Player 4 in [51; 26,26,26,22].

• Player n in [50(n − 1) + 1; 100; 100, · · · ,100,1] is a dummy when n

is even. For example, take n = 4, we have [151; 100,100,100,1].

Obviously, the last player is a dummy.

• In [10; 5,5,5,2,1,1], the 4th player with 2 votes is a dummy. The

5th and 6th players with only one vote are sure to be dummies. The

collection of dummies remains to be a dummy collection. This is

because one cannot turn a losing coalition into a winning coalition by

adding a dummy one at a time.
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Example

Consider [16; 12,6,6,4,3], player 5 with 3 votes is a dummy since no

subset of the numbers 12,6,6,4 sums to 13,14 or 15. Therefore, player

5 could never be pivotal in the sense that by adding his vote a coalition

would just reach or surpass the quota of 16.

Example

If we add the 8th player with one vote into [15; 5,5,5,5,2,1,1] so that

the new game becomes [15; 5,5,5,5,2,1,1,1], the 4th player in the new

voting game is not a dummy since sum of votes of some coalition may

assume the value of 13.
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Notion of Power

• The index should indicate one’s relative influence, in some numerical

way, to bring about the passage or defeat of some bill.

• The index should depend upon the number of players involved, on

one’s fraction of the total weight, and upon how the remainder of

the weight is distributed (a critical swing-man that causes a desired

outcome).

• A winning coalition is said to be minimal winning if no proper subset

of it is winning. A coalition that is not winning is called losing. Tech-

nically, the one who is the ‘last’ to join a minimal winning coalition is

particularly influential.

• A voter i is a dummy if every winning coalition that contains him

is also winning without him, that is, he is in no minimal winning

coalition. A dummy has ZERO power.
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Example

Party Leader No. of seats
Liberals Pierre E. Trudeau 109
Tories Robert L. Stanfield 107
New Democrats David Lewis 31
Others 17

• Though Liberals has the largest number of seats, none of the parties

has the majority. Any two of the three leading parties can form a

coalition and obtain the majority, so the first three parties had equal

power. Other small parties are all dummies.
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Veto Power and Dictators

A player or coalition is said to have veto power if no coalition is able

to win a ballot without his or their consent. A subset S of voters is a

blocking coalition or has veto power if and only if its complement N − S

is not winning. We also require that S itself is losing in order to be a

blocking coalition, otherwise S is a dictatorial coalition (see “dictator”

below).

Given that q > 50% of total votes, a player i is a dictator if he forms a

winning coalition {i} by himself.

• If the dictator says “yes”, then the bill is passed. If the dictator says

“no”, then the bill is not passed (veto power).

• If a dictator exists, then all other players are dummies.
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Example

Player 1 has veto power in [51; 50,49,1] and [3; 2,1,1]. In the last case,

if he is the chairman with additional power to break ties, then the game

becomes [3; 3,1,1] and now he becomes a dictator.

Example

The ability of an individual to break tie votes in the pure bargaining game
[
n
2 +1;1,1, · · · ,1

]
when n is even

[
n+1
2 ; 1,1, · · · ,1

]
when n is odd

adds power when n is even and adds nothing when n is odd. Actually,

when n is odd, tie votes will not occur.
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Properties on dummies

A collection of dummies can never turn a losing coalition into a winning

coalition.

In other words, it is not possible that S∪{D1, · · · , Dm} is winning but S is

losing since the dummies can be successively deleted while the coalition

remains to be winning.

Corollary

If both “d” and “ℓ” are dummies, then the coalition {d, ℓ] is dummy.
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Theorem

In a weighted voting game, let “d” and “ℓ” be two voters with votes xd
and xℓ, respectively. Suppose “d” is a dummy and xℓ ≤ xd, then “ℓ” is

also a dummy.

Proof

Assume the contrary. Suppose “ℓ” is not a dummy, then there exists a

coalition S that does not contain the dummy “d” such that S is losing

but S ∪ {ℓ} is winning. As a remark, we just require S not to contain

“d” while S may contain dummies other than “d”. Now, n(S) < q while

n(S ∪ {ℓ}) ≥ q. Since xℓ ≤ xd, so n(S ∪ {d}) ≥ q, contradicting that “d” is

a dummy.

Corollary

If the coalition {d, ℓ} is dummy, then both “d” and “ℓ” are dummies. This

is obvious since n({d, ℓ}) ≥ max(xd, xℓ).
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Yes-no voting system

A yes–no voting system is simply a set of rules that specify exactly which

collections of “yes” votes yield passage of a bill.

Under what condition that a yes–no voting system is a weighted system

(with weights assigned for the voters and quota)?

Example

Bill to be passed: Grades of this course are based on “absolute grading”.

Set of players, N = {professor, tutor, Chan, Lee, Cheung, Wong, Ho}.

Yes–no rule requires professor, at least one from “tutor and Chan” and

number of students must be at least 3. Each of the following player/coalition,

“professor” and “tutor and Chan”, has veto power.
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United States federal system

• 537 voters in this system: 435 House of Representatives, 100 Senate

members, Vice-President and President.

• Vice President plays the role of tie breaker in the Senate

• President has veto power that can be overridden by a two-thirds vote

of both the House and the Senate.

To pass a bill, it must be supported by either one of the following three

sets of votes

1. 218 or more representatives and 51 or more senators and President

2. 218 or more representatives and 50 senators and both Vice President

and President

3. 290 or more representatives and 67 or more senators.
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System to amend the Canadian constitution (since 1982)

• In addition to the House of Commons and the Senate, approval by

two-thirds majority of provincial legislatures, that is, at least 7 of

the 10 Canadian provinces subject to the proviso that the approving

provinces have among them at least half of Canada’s population.

• Based on 1961 census

Prince Edward Island (1%)
Newfoundland (3%)
New Brunswick (3%)
Nova Scotia (4%)
Manitoba (5%)
Saskatchewan (5%)
Alberta (7%)
British Columbia (9%)
Quebec (29%)
Ontario (34%)
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Swap robustness and trade robustness

Definition (swap robust)

A yes–no voting system is said to be swap robust if a “swap” of one

player for one between two winning coalitions leaves at least one of the

two coalitions winning.

• Start with two arbitrary winning coalitions X and Y

– arbitrary player x in X (not in Y ) and arbitrary player y in Y (not

in X)

– let X ′ and Y ′ be the result of exchanging x and y

– either X ′ or Y ′ is winning for swap robustness
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Proposition

Every weighted voting system is swap robust.

Proof

1. If x and y have the same weight, then both X ′ and Y ′ are winning.

2. If x is heavier than y, then Y ′ weighs strictly more than Y . The weight

of Y ′ certainly exceeds the quota, and thus Y ′ is winning.

3. If y is heavier than x, then a similar argument as in (2) holds.

To show a voting system to be not swap robust, we produce two winning

coalitions X and Y and a trade between them that renders both losing.

Intuitively, X and Y should both be “almost losing” and make both actu-

ally losing by a one-for-one trade. We seek for the appropriate coalitions

X and Y among the minimal winning coalitions.
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Proposition

The US federal system is not swap robust.

Proof

X = {President, 51 shortest senators and 218 shortest House Representatives}

Y = {President, 51 tallest senators and 218 tallest House Representatives}

Let x be shortest senator and y be the tallest House Representative.

Both X and Y are winning coalitions; x ∈ X but x ̸∈ Y ; y ∈ Y but y ̸∈ X.

After swapping, X ′ is a losing coalition since it has only 50 senators and

Y ′ is a losing coalition because it has only 217 Representatives.

Corollary The US federal system is not a weighted voting system.
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Proposition

The procedure to amend the Canadian Constitution is swap robust (later

shown to be not weighted).

Proof

Suppose X and Y are winning coalitions, x ∈ X, x ̸∈ Y while y ∈ Y but

y ̸∈ X. We must show that at least one of X ′ and Y ′ is still a winning

coalition. That is, at least one of X ′ and Y ′ still satisfies both conditions:

(i) It contains at least 7 provinces.

(ii) The provinces represent at least half of the Canadian population.

The first condition is obvious. If x has more population than y, then Y ′

is a winning coalition. Similar argument when x has a smaller population

than y.
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Definition (trade robust)

A yes–no voting system is said to be trade robust if an arbitrary exchange

of players (a series of trades involving groups of players) among several

winning coalitions leaves at least one of the coalitions winning.

1. The exchanges of players are not necessarily one-for-one as they are

in swap robustness.

2. The trades may involve more than two coalitions.

For example, consider 3 winning coalitions X, Y and Z.

(i) 3 players are exchanged out from X, 2 to Y and 1 to Z;

(ii) 4 players are exchanged out from Y , 1 to X and 3 to Z;

(iii) 3 players are exchanged out from Z, 2 to X and 1 to Z;
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Proposition

Every weighted voting system is trade robust.

Proof

• A series of trades among several winning coalitions leaves the total

weight of all these coalitions added together unchanged. Hence, the

average weight of these coalitions is unchanged.

• Suppose we start with several winning coalitions in a weighted voting

system, then their average weight at least meets quota. After the

trades, the average weight of the coalitions is unchanged and at least

meets quota. Hence, at least one of the coalitions must meet quota

(at least one of the resulting coalitions is winning).
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Proposition The procedure to amend the Canadian Constitution is not

trade robust.

Proof

X Y
Prince Edward Island (1%) New Brunswick (3%)
Newfoundland (3%) Nova Scotia (4%)
Manitoba (5%) Manitoba (5%)
Saskatchewan (5%) Saskatchewan (5%)
Alberta (7%) Alberta (7%)
British Columbia (9%) British Columbia (9%)
Quebec (29%) Ontario (34%)

• Let X ′ and Y ′ be obtained by trading Prince Edward Island and New-

foundland for Ontario.

• X ′ is a losing coalition because it has too few provinces (having given

up two provinces in exchange for one).

• Y ′ is a losing coalition because the eight provinces in Y ′ represent less

than half of Canada’s population.
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Corollary

The procedure to amend the Canadian Constitution is not a weighted

voting system.

Theorem (proof omitted)

A yes–no voting system is weighted if and only if it is trade robust.

Minority veto

For example, we have a majority group of 5 voters and a minority group

of 3 voters. The passage requires not only approval of at least 5 out of

the 8 voters, but also approval of at least 2 of the 3 minority voters. This

system is swap robust but not trade robust.

Hint Consider how to make one coalition to have more total number

of voters but do not have enough minority voters while the other

coalition has less total number of voters but more minority voters

after the trades.
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Illustration

Majority group of 5 voters minority group of 3 voters

To form a winning coalition, we must have

• at least 5 out of 8 total voters
• at least 2 out of 3 minority voters

X = {M1,M2,M3,m1,m2} Both X&Y are winning coalitions
Y = {M3,M4,M5,m2,m3}
X ′ = {M1,M2,M3,M4,M5,m2} Both X ′&Y ′ are losing coalitons
Y ′ = {M3,m1,m2,m3}

Hence, the system is NOT trade robust since X ′ does not satisfy the mi-

nority requirement and Y ′ does not satisfy the “total votes” requirement.

Swap robustness is easily seen since the requirement of 5 votes out of 8

voters is satisfied under one-for-one trade and the minority requirement is

always satisfied by at least one of the coalitions after one-for-one trade.
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Intersection of weighted voting systems and dimension theory

The procedure to amend the Canadian Constitution can be constructed

by “putting together” two weighted systems.

• W1 = collection of coalitions with 7 or more provinces

• W2 = collection of coalitions representing at least half of Canada’s

population

A coalition is winning if and only if it is winning in both System I and

System II.

W = W1 ∩W2.

Question How to construct a non-weighted system in terms of intersection

of weighted ones?
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Dimension of a yes-no voting system

A yes–no voting system is said to be dimension k if and only if it can be

represented as the intersection of exactly k weighted voting systems, but

not as the intersection of k − 1 weighted voting systems.

For example, the procedure to amend the Canadian Constitution is of

dimension 2 since the passage requires two separate weighted voting sys-

tems with regard to “population” and “provinces”.
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Proposition

The US federal system has dimension 2.

System I: quota = 67 System II: quota = 290

weight 0 to House Representative weight 1 to House Representative
weight 1 to Senator weight 0 to Senator
weight 0.5 to Vice President weight 0 to Vice President
weight 16.5 to President weight 72 to President

System I is meant for the Senate (veto power of the President and tie

breaker role of the Vice President; sum of weights of P & VP = 17,

weight of P ≥ 16 and weight of VP > 0). System II is meant for the

House, with veto power of the President.

29



Let X be a minimal winning coalition. Then X is one of the following 3

kinds of coalitions:

1. X consists of 218 House members, 51 Senators and the President

2. X consists of 218 House members, 50 Senators, the Vice President

and the President

3. X consists of 290 House members and 67 Senators.

All these 3 kinds of coalitions achieve quota in both Systems I and II.
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Conversely, how to find the minimal winning coalitions that satisfy both

weighted voting systems?

Hint (With the President)

In System I, weight of the President is 16.5, so the other members

of X must contribute at least weight 50.5 to the total System I. X

must contain either 51 (or more) senators or at least 50 senators

and the Vice President.

Looking at System II, which is at least 290 including the 72

contributed by the President. So X must also contain at least

290− 72 = 218 House Representatives.
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Proposition

Suppose S is a yes–no voting system for the set V of voters, and let

m be the number of losing coalitions in S. It is then possible to find

m weighted voting systems with the same set V of voters such that a

coalition is winning in S if and only if it is winning in every one of these

m weighted systems.

Proof

For each losing coalition L in S, we construct an associated weighted

voting system. Let |L| be the number of voters in L. Every voter in L

is given weight −1. Every voter not in L is given weight 1. Quota is

set at −|L| + 1. The possibility that a coalition is losing if and only if it

contains exactly all the voters in this particular losing coalition L. Then

every other coalition is a winning coalition in this weighted voting system

(including any proper subset of L).
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• If a coalition is winning in S, then it is winning in each of these

weighted systems.

• Conversely, if a coalition is winning in each of these weighted systems,

then it is a winning coalition in S (a losing coalition in S must lose in

one of these weighted voting systems).

Unfortunately, this procedure is enormously inefficient since there may be

too many losing coalitions.

Puzzle: Since we allow negative values for votes and quota, every proper

subset of the losing coalition L also wins in the weighted voting system

associated with L.
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Alternative proof

• Define a maximal losing coalition to be a losing coalition that becomes

winning with the addition of any one voter outside the losing coalition

(implicitly all dummies are included in any of these maximal losing

coalitions). Any subset of a maximal losing coalition is also losing.

• We identify all these distinct maximal losing coalitions as L1, . . . , Lm.

• For each maximal losing coalition Li, we construct a weighted voting

system. Let |Li| be the number of voters in Li. Every voter in Li

is assigned weight 1, while every voter not in Li is assigned weight

|Li| + 1. The quota is set at |Li| + 1. A subset of Li is losing under

the associated weighted system since the total weight is less than the

quota |Li|+1.

• Under the intersection of these weighted voting systems:

coalition C in S is losing (one of these Li’s or a subset of some Li)

⇔ coalition C is losing in at least one of these weighted voting system
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Example – Yes-no voting system to decide on grading policy

The professor, tutor and 33 students vote to decide whether “absolute

grading” should be applied in assigning the grades of this course.

Voting rule 1

1. The professor, tutor and a particular student A each has veto power.

2. To pass the proposal, the voting rule requires yes votes from the

professor, tutor, student A and at least 20 other students.

Note that all winning coalitions must contain the professor, tutor and

student A. Any arbitrary trades among the winning coalitions involve

only the remaining 32 students.
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To show trade robustness, since there are at least 20 other students in

the winning coalitions on average, this average remains unchanged after

any series of arbitrary trades. There must exist a coalition with at least

20 other students after the trades. This represents a winning coalition.

Hence, the yes-no voting system is trade robust, so it can be represented

as a weighted voting system. To find the weighted voting vector, we let

w represent the weight of each of the other students is one. The quota

q must observe

2w +32 < q and 3w +20 ≥ q

so that 3w +20 > 2w +32 ⇔ w > 12. Suppose we pick w = 13, then

59 = 3× 13+ 20 ≥ q > 2× 13+ 32 = 58 so that q = 59.

A possible representation of the weighted vector is [59; 13,13,13,1,1, . . . ,1,1].
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Voting rule 2

We modify voting rule 1 on setting “veto power”. Now the veto power is

held by the professor or “tutor and student A” together. That is, tutor

and student A each does not hold veto power individually. To pass the

proposal, the new rule requires yes votes from at least one of tutor and

student A, and 20 other students.

It is easily seen that the new voting rule is NOT swap robust. To show

the claim, we consider the following pair of winning coalitions:

X1 = {P, T, S1, S2, . . . , S20} and X2 = {P,A, S13, S14, . . . , S32}.

Suppose we transfer S1 from X1 to X2 and A from X2 to X1, the two

remaining coalitions are both losing. Therefore, this yes-no system is not

a weighted voting system.
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However, it can be represented as the intersection of 3 weighted voting

systems.

System W1 System W2 System W3

q1 = 1 q2 = 1 q3 = 20
wP = 1, wT = wA = 0 wP = 0, wT = wA = 1 wP = wT = wA = 0

wS1
= wS2

= . . . = wS32
= 0 wS1

= wS2
= . . . = wS32

= 0 wS1
= wS2

= . . . = wS32
= 1

W = W1 ∩W2 ∩W3
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1.2 Power indexes

Shapley-Shubik power index

1. One looks at all possible orderings of the n players, and consider this

as all of the potential ways of building up toward a winning coalition.

For each one of these permutations, some unique player joins and

thereby turns a losing coalition into a winning one, and this voter is

called the pivot.

2. In the sequence of player x1, x2, · · · , xi−1, xi, · · · , xn, {x1, x2, · · · , xi} is a

winning coalition but {x1, x2, · · · , xi−1} is losing, then i is in the pivotal

position.

3. What is the probability that a particular voter is the pivot? The

expected frequency with which a voter is the pivot, over all possible

orderings of the voters, is taken to be a good indication of his voting

power.
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Example – 4-player weighted voting game

The 24 permutations of the four players 1,2,3 and 4 in the weighted

majority game [51; 40,30,20,10] are listed below. The “*” indicates

which player is pivotal in the corresponding ordering.

1 2∗3 4 2 1∗3 4 3 1∗2 4 4 1 2∗3

1 2∗4 3 2 1∗4 3 3 1∗4 2 4 1 3∗2

1 3∗2 4
�



�
	2 3 1∗4

�



�
	3 2 1∗4

�



�
	4 2 1∗3

1 3∗4 2 2 3 4∗ 1 3 2∗4 1 4 2∗3 1

1 4 2∗ 3
�



�
	2 4 1∗ 3

�



�
	3 4 1∗ 2

�



�
	4 3 1∗ 2

1 4 3∗ 2 2 4 3∗ 1 3 4 2∗ 1 4 3 2∗ 1

For Player 1 winning coalitions consisting of 2 players.

�� �� winning coalitions consisting of 3 players.
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Shapley-Shubik power index for the ith player is

ϕi =
number of sequences in which player i is a pivot

n!

and we write ϕ = (ϕ1, · · · , ϕn).

Here, we assume that each of the n! alignments is equiprobable.

The power index can be expressed as

ϕi =
∑ (s− 1)!(n− s)!

n!

with
∑
i∈N

ϕi = 1


where s = |S| = number of voters in set S. The summation is taken over

all winning coalitions S for which S − {i} is losing.
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Counting permutations for which a player is pivotal in achieving minimal

winning coalitions

• Player 1 is pivotal in 3 coalitions (namely {1,2,3}, {1,2,4}, {1,3,4})
consisting of 3 players and in 2 coalitions (namely {1,2}, {1,3}) con-

sisting of two players.

ϕ1 = 3
(3− 1)!(4− 3)!

4!
+ 2

(2− 1)!(4− 2)!

4!
=

10

24
.

• For player 2, she is pivotal in {1,2,3} and {1,2,4} with 3 players and

{1,2} with 2 players. Therefore

ϕ2 = 2
(3− 1)!(4− 3)!

4!
+

(2− 1)!(4− 2)!

4!
=

6

24
.

We have

ϕ =
(10,6,6,2)

24
.
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Example – A bloc versus singles

Suppose we have n players and that a single block of size b forms. Consider

the resulting weighted voting system: [q; b,1,1, · · · ,1︸ ︷︷ ︸
n− b of these

].

• n− b+ 1 is just the number of distinct orderings. The b bloc will be

pivotal precisely when the initial sequence of ones is of length at least

q − b but not more than q − 1.

• The b bloc is pivotal when the initial sequence of ones is any of the

following lengths:

q − 1, q − 2, · · · , q − b.

Note that there are n − b ones available, so the above statement is

valid provided that n − b ≥ q − 1 and q > b (which is equivalent to

b < q ≤ n− b+1).
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• Under the assumption of b < q ≤ n− b+ 1, there are b possible initial

sequences of ones that make the bloc pivotal, so

Shapley-Shubik index of the block of size b

=
number of orderings in which b is pivotal

total number of distinct orderings

=
b

n− b+1
.

The Shapley-Shubik index is higher than the percentage of votes of b/n.

The formation of a block increases the voting power.
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Banzhaf index

• Consider all significant combinations of “yes” or “no” votes, rather

than permutations of the players as in the Shapley-Shubik index.

• A player is said to be marginal, or a swing or critical, in a given

combination of “yes” and “no” if he can change the outcome.

• Let bi be the number of voting combinations in which voter i is

marginal; then βi =
bi∑
bi
.
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Assuming that all voting combinations are equally probable.

The game is [51; 40,30,20,10]. For the second case, if Player 1 changes

from Y to N , then the outcome changes from “Pass” to “Fail”.

Computation of the Banzhaf Index

Players Pass/Fail Marginal

1 2 3 4 P F 1 2 3 4

Y Y Y Y P

Y Y Y N P X

Y Y N Y P X X

Y N Y Y P X X

N Y Y Y P X X X

Y Y N N P X X

Y N Y N P X X
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N Y Y N F X X

Y N N Y F X X

N Y N Y F X X

N N Y Y F X X

Y N N N F X X

N Y N N F X

N N Y N F X

N N N Y F

N N N N F

24× β = (10,6,6,2)

Looking at Y Y NN (pass) and NY NN (fail), Player 1 can serve as the

defector who gives the swing from Pass to Fail in the first case and Fail to

Pass in the second case. We expect that the number of swings of winning

into losing effected by a particular player is the same as the number of

swings of losing into winning by the same player.
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Example

Sometimes symmetry can save us writing out all n! orderings. For exam-

ple, consider the weighted majority game

[5; 3,2,1,1,1,1].

Since the “1” players are all alike, we need to write out only 6 · 5 = 30

distinct orderings (instead of 6! = 720):

321111 231111 213111 211311 211131 211113

312111 132111 123111 121311 121131 121113

311211 131211 113211 112311 112131 112113

311121 131121 113121 111321 111231 111213

311112 131112 113112 111312 111132 111123
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Notice that the 1’s pivot 12/30 of the time, but since there are four of

them, each 1 pivots only 3/30 of the time. We get

Shapley-Shubik index = ϕ =
(
12

30
,
6

30
,
3

30
,
3

30
,
3

30
,
3

30

)
= (0.4,0.2,0.1,0.1,0.1,0.1).

Power as measured by the Shapley-Shubik index in a weighted voting

game is not proportional to the number of votes cast. For instance, the

player with 3/9 = 33
1

3
% of the votes has 40% of the power.
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Use the same game for the computation of the Banzhaf index

Types of winning Number of ways Number of swings for

coalitions with this can occur 3 2 1

5 votes: 32 1 1 1

311 6 = 4C2 6 12

2111 4 = 4C3 4 12

6 votes: 321 4 = 4C1 4 4

3111 4 = 4C3 4

21111 1 = 4C4 1

7 votes: 3211 6 = 4C2 6

31111 1 = 4C4 1

22 10 24

We do not need to include those winning coalitions of 8 or 9 votes, since

not even the player with 3 votes can be critical to them.
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Remark

It suffices to consider the swings only in winning coalitions in the calcu-

lation of the Banzhaf index. A defector that turns a winning coalition

into a losing coalition also gives the symmetric swing that turns a losing

coalition into a winning coalition.

The numbers in the second column are derived from the theory of com-

binations. For instance, the number of ways that you could choose 311

from 321111 is 4C2 = 6.

β =
(
22

56
,
10

56
,
6

56
,
6

56
,
6

56
,
6

56

)
≈ (0.392,0.178,0.107,0.107,0.107,0.107).

Comparing this with ϕ, we see that the two indices turn out to be quite

close in this case, with β giving slightly less power to the two large players

and slightly more to the small players.
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1.3 Case studies of power indexes calculations

United Nations Security Council

1. Big “five” – permanent member each has veto power; ten

“small” countries whose (non-permanent) membership rotates.

2. It takes 9 votes, the “big five” plus at least 4 others to carry an issue.

For simplicity, we assume no “abstain” votes. The game is [39; 7,7,7,7,

7,1,1, · · · ,1]. Why? Let x be the weight of any of the permanent

member and q be the quota. Then

4x+10 < q and q ≤ 5x+4

so that 4x + 10 < 5x + 4 giving x > 6. Taking x = 7, we then have

38 < q ≤ 39. We take q = 39.
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3. A “small” country i can be pivotal in a winning coalition if and only if

S contains exactly 9 countries including the big “five”. There are 9C3

such different S that contain i since the remaining 3 “small” countries

are chosen from 9 “small” countries (other than country i itself).

For each such S, the corresponding coefficient in the Shapley-Shubik

formula for this 15-person game is
(9− 1)!(15− 9)!

15!
. Hence, ϕS =

9C3 ×
8!6!

15!
≈ 0.001863. Any “big-five” has index ϕb =

1− 10ϕS
5

=

0.1963.

4. Old Security Council before 1963, which was

[27; 5,5,5,5,5,1,1,1,1,1,1].

What is the corresponding yes-no voting system?

Answer for ϕ : ϕb =
1

5
·
76

77
;ϕS =

1

6
·
1

77
.
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Canadian Constitutional Amendment

Investigate the voting powers exhibited in a 10-person game between the

provinces, and to compare the results with the provincial populations.

The winning coalitions or those with veto power can be described as

follows. In order for passage, approval is required of

(a) any province that has (or ever had) 25% of the population,

(b) at least two of the four Atlantic provinces, and

(c) at least two of the four western provinces that currently contain to-

gether at least 50% of the total western population.
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Veto power

Recall that a blocking coalition (holding veto power) is a subset of players

whose complement is not winning. Using the current population figures,

the veto power is held by

(i) Ontario (O) and Quebec (Q),

(ii) any three of the four Atlantic (A) provinces [New Brunswick (NB),

Nova Scotia (NS), Prince Edward Island (PEI), and Newfoundland

(N)],

(iii) British Columbia (BC) plus any one of the three prairie (P ) provinces

[Alberta (AL), Saskatchewan (S), and Manitoba (M)], and

(iv) the three prairie provinces taken together.
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In calculating the Shapley-Shubik index of Quebec or Ontario, it is nec-

essary to list all possible winning coalitions since any of these winning

coalitions must contain Quebec and Ontario.

Winning Provincial Coalitions

Type S s No. of such S

1 1P , 2A , BC, Q, O 6 18

2 2P , 2A , BC, Q, O 7 18

3 3P , 2A, Q, O 7 6

4 1P , 3A , BC, Q, O 7 12

5 3P , 2A , BC, Q, O 8 6

6 2P , 3A , BC, Q, O 8 12

7 3P , 3A, Q, O 8 4

8 1P , 4A , BC, Q, O 8 3

9 3P , 3A , BC, Q, O 9 4

10 2P , 4A , BC, Q, O 9 3

11 3P , 4A, Q, O 9 1

12 3P , 4A , BC, Q, O 10 1

Total: 88
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Ontario’s Shapley-Shubik index

φO =
[18(5!4!) + 36(6!3!) + 25(7!2!) + 8(8!1!) + 1(9!0!)]

10!
=

53

168

• There are 18 winning coalitions that contain 6 provinces. In order that

Ontario serves as the pivotal player, 5 provinces are in front of her and

4 provinces are behind her. This explains why there are altogether

18(5!4!) permutations in these 6-province winning coalitions.

• Ontario and Quebec are equivalent in terms of influential power (though

their populations are different).
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British Columbia

Listing of all winning coalitions that upon deleting British Columbia the

corresponding coalition becomes losing. These are the winning coalitions

that British Columbia can serve as the pivotal player.

Type          S s No. of such S

1 1P, 2A, BC, Q, O 6 3C1 × 4C2 =18

2 1P, 3A, BC, Q, O 7 3C1 × 4C3 =12

3 1P, 4A, BC, Q, O 8 3C1 × 4C4 =3

4 2P, 2A, BC, Q, O 7 3C2 × 4C2 =18

5 2P, 3A, BC, Q, O 8 3C2 × 4C3 =12

6 2P, 4A, BC, Q, O 9 3C2 × 4C4 =3

• Note that we exclude those coalitions with 3 prairie provinces since the

deletion of British Columbia does not cause the coalition to become

losing.

ϕBC =
18(5!4!) + 30(6!3!) + 15(7!2!) + 3(8!1!)

10!
.
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Atlantic provinces

We consider winning coalitions that contain a particular Atlantic province

and one of the three other Atlantic provinces.

Type S s No. of such S

1 Asp,1A,1P,BC,Q,O 6 3C1 × 3C1 = 9

2 Asp,1A,2P,BC,Q,O 7 3C1 × 3C2 = 9

3 Asp,1A,3P,BC,Q,O 8 3C1 = 3

4 Asp,1A,3P,Q,O 7 3C1 = 3

ϕAsp =
9(5!4!) + 12(6!3!) + 3(7!2!)

10!
.
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Prairie provinces

We consider winning coalitions that contain

(i) a particular prairie province and British Columbia

(ii) a particular prairie province and two other prairie provinces

Type          S s No. of such S

1 Psp, 2A, BC, Q, O 6 6

2 Psp, 3A, BC, Q, O 7 4

3 Psp, 4A, BC, Q, O 8 1

4 Psp, 2P, 2A, Q, O 7 6

5 Psp, 2P, 3A, Q, O 8 4

6 Psp, 2P, 4A, Q, O 9 1

ϕPsp =
6(5!4!) + 10(6!3!) + 5(7!2!) + 8!1!

10!
.
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Shapley-Shubik Index Provinces

Province (in %) % Population /Population

BC 12.50 9.38 1.334

AL 4.17 7.33 0.570

S 4.17 4.79 0.872

M 4.17 4.82 0.865

(4 Western) (25.01) (26.32) (0.952)

O 31.55 34.85 0.905

Q 31.55 28.94 1.092

NB 2.98 3.09 0.965

NS 2.98 3.79 0.786

PEI 2.98 0.54 5.53

N 2.98 2.47 1.208

(4 Atlantic) (11.92) (9.89) (1.206)

• British Columbia has a higher index value per capita compared to

other Western provinces.
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Power of the major stockholders

• Consider a corporation with one major stockholder X who controls

40% of the stock, and suppose the remainder is split evenly among

60 other stockholders, each having 1%.

• There are 61 players. Since the 60 minor stockholders are symmetric,

there are only 61 distinct orderings, depending only on the position

of X.

• Of these 61 orderings, X will pivot if he appears in positions 12− 51

inclusive (if we assume that approval must be by an amount strictly

over 50%), i.e. 40/61 of the time.

1st 12th 51st 60th

40 positions{
60 singles as the 60 minor stockholders
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• Now suppose X still controls 40% of the stock, but the remainder is

split evenly among 600 other stockholders, each controlling 0.1%.

• Of the 601 distinct orderings, X will pivot if he appears in positions

102−501, i.e., 400/601 of the time. Clearly, as the number of minor

stockholders gets very large, X’s share of the power (as measured by

the Shapley-Shubik index) approaches 2/3.
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Oceanic weighted voting game

• Let there be one major player X controlling 40% of the vote, with

the remaining 60% held by an infinite “ocean” of minor voters.

• Think of the minor voters lined up as points in a line segment of length

0.6, as they come to join a coalition in support of some proposal.

• Voter X can join at any point along this line segment. He will pivot

if he joins after 0.1 and before (or at) 0.5. His Shapley-Shubik index

is

ϕX =
Length of segment in which X pivots

Total length of segment
=

0.5− 0.1

0.6
=

2

3
.
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Example

There are two major voters and an ocean of minor voters. Suppose

voter X holds 3/9 of the total vote, and voter Y holds 2/9, with the

other 4/9 held by the ocean of minor voters. The minor voters line up

along a line segment of length 4/9. X and Y can join at any point along

this line segment:
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• We can represent geometrically the positions at which X and Y join

by giving a single point in a square of side 4/9, whose horizontal

coordinate is X’s position and whose vertical coordinate is Y ’s:

• The point is above the diagonal of the square if X joins before Y ,

and below the diagonal if Y joins before X.
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• Which points in the square correspond to orderings for which X or Y

pivots?

• Divide the square into regions where X pivots, Y pivots, or voters in

the ocean (O) pivot:
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X joins before Y (points that lie above the diagonal ⇔ a < b)

1. If X joins before 3/18, it can never be pivotal since

a+3/9 < 1/2 for a < 3/18.

Y can be pivotal provided that b < 3/18.

3/18 4/9

X Y

0

When Y joins after X and the point of joining is after 3/18, then the

oceanic voters have pivoted already.

2. The oceanic voters all combined together cannot pass the bill since

they hold 4/9 which is less than 50% of the votes. If X joins after

1/2− 3/9 = 3/18, then X pivots.
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Calculate the Shapley-Shubik index for X or Y by calculating the area of

the region in which X or Y pivots and dividing by the total area of the

square. We have

ϕX =
(5/18)2

(4/9)2
=

25

64
≈ 0.391

ϕY =
(3/18)2

(4/9)2
=

9

64
≈ 0.141;

with the other 1 −
25

64
−

9

64
=

30

64
being shared by the oceanic play-

ers. Interestingly, the major stockholder X has a higher power rela-

tive to his percentage holding. The gain comes at the expense of Y .
(!"#$%&'()

• If there are three major players in an oceanic game, we represent

orderings as points in a cube. We then calculate the volumes of the

regions where each of the major players pivots.
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Shapley-Shubik index of the President

Actual federal system (with the Vice President ignored)

When the number of Representatives ≥ 290 and the number of Senator

≥ 67, the President cannot be pivotal.

House Senate

218 51 to 100 Without the two-thirds majority

in both the Senate and the House,

289 51 to 100 the President can veto.

290 51 to 66 Once the House has the two-thirds majority, the

President is pivotal only when the Senate lies

435 51 to 66 between one-half and two-thirds majority
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(
435
218

)[(
100
51

)
(218+ 51)!(535− 218− 51)! + · · ·

+
(

100
100

)
(218+ 100)!(535− 218− 100)!

]
+ · · ·

+
(

435
289

)[(
100
51

)
(289+ 51)!(535− 289− 51)! + · · ·

+
(

100
100

)
(289+ 100)!(535− 289− 100)!

]
+
(

435
290

)[(
100
51

)
(290+ 51)!(535− 290− 51)! + · · ·

+
(

100
66

)
(290+ 66)!(535− 290− 66)!

]
+ · · ·

+
(

435
435

)[(
100
51

)
(435+ 51)!(535− 435− 51)! + · · ·

+
(

100
66

)
(435+ 66)!(535− 435− 66)!

]
When divided by 536!, we obtain the Shapley-Shubik index of the Presi-

dent as ϕ = 0.16047.
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Inclusion of the Vice President

We need to add the case where 50 Senators and the Vice President say

“yes”. The following terms should be added:(
435
218

)(
100
50

)
(218+ 51)!(535− 218− 50)!

+
(
435
219

)(
100
50

)
(219+ 51)!(535− 219− 50)!

+ · · ·+
(
435
435

)(
100
50

)
(435+ 51)!(535− 435− 50)!

The denominator is modified to be 537!

• For the first term, we choose 218 Representatives from 435 of them

and 50 Senators from 100 of them. There are 218 + 50 + 1 “yes”

voters and 535 − 218 − 50 “no” voters. We have (218 + 50 + 1)!

orderings before the President and (535 − 218 − 50)! orderings after

the President.
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Banzhaf index of the President

Let S denote the number of coalitions within the Senate that contain

more than two-thirds of the members of the Senate:

S =

(
100
67

)
+ · · ·+

(
100
100

)
.

Let s denote the number of coalitions within the Senate that contain

equal and more than one-half of the members of the Senate:

s =

(
100
50

)
+

(
100
51

)
+ · · ·+

(
100
100

)
.

Let H denote the number of coalitions within the House that contain

more than two-thirds of the members of the House:

H =

(
435
290

)
+ · · ·+

(
435
435

)
.
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Let h denote the number of coalitions within the House that contain more

than one-half of the members of the House:

h =

(
435
218

)
+ · · ·+

(
435
435

)
.

• We count the number of winning coalitions with the President such

that the defection of the President turns winning into losing. Write

NP = total number of winning coalitions in which the president is

critical.

NP =

[(
435
218

)
+ · · ·+

(
435
289

)] [(
100
50

)
+

(
100
51

)
+ · · ·+

(
100
100

)]

+

[(
435
290

)
+ · · ·+

(
435
435

)] [(
100
50

)
+

(
100
51

)
+ · · ·+

(
100
66

)]
= (h−H)× s+H × (s− S) = h× s−H × S.

• The total number of winning coalitions in which the Vice President

is critical = NV =
(
100
50

)
× h.
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• Given a particular senator, we find the number of winning coalitions

such that this senator is critical.

Without the President, the number of critical swings effected by this

senator is
(
99
66

)
× H; and with the President, (but without the Vice

president), the number of critical swings is
(
99
50

)
× h. The last term

corresponds to the presence of both the President and Vice President.

The total number of winning coalitions to which the chosen senator

is critical = NS =
(
99
66

)
×H +

(
99
50

)
× h+

(
99
49

)
× h.

• In a similar manner, the total number of winning coalitions to which

a particular Representative is critical = NR =
(
434
289

)
× S +

(
434
217

)
× s.
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Banzhaf indexes calculations

Total number of critical swings by all players

= N = 100×NS +435×NR +NP +NV

Banzhaf index of any senator

=
number of winning coalitions to which the chosen senator is critical

total number of critical swings
= NS/N

Banzhaf index for the President = NP/N.
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1.4 Probabilistic characterization of power indexes

Question of Individual Effect. What is the probability that my vote

will make a difference, that is, that a proposal will pass if I vote for it,

but fail if I vote against it?

Question of Individual-Group Agreement. What is the probability that

the group decision will agree with my decision on a proposal?

• The answers depend on both the decision rule of the body and the

probabilities that various members will vote for or against a proposal.

In some particular political example, we might also be able to estimate

voting probabilities of the players for some particular proposal or class

of proposals.

• If we are interested in general theoretical questions of power, we can-

not reasonably assume particular knowledge about individual players

or proposals. We should only make assumptions about voting proba-

bilities which do not discriminate among the players.
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Homogeneity Assumption. Every proposal to come before the decision-

making body has a certain probability p of appealing to each member of

the body. The homogeneity is among members: they all have the same

probability p of voting for a given proposal, but p varies from proposal to

proposal.

The homogeneity assumption does not assume that members will all

vote the same way, but it does say something about their similar criteria

for evaluating proposals. For instance, some bills that came before a

legislature seem to have a high probability of appealing to all members,

and pass by large margins: those have high p. Others are overwhelmingly

defeated (low p) or controversial (p near 1/2).

Remark For the Shapley-Shubik index, we further assume the common

p to be uniformly distributed between 0 and 1.
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Shapley-Shubik index focuses on the order in which a winning coalition

forms, and defines the power of a player to be proportional to the number

of orderings in which she is pivotal. If voters have a certain degree of

homogeneity, then ϕ is most appropriate.

Theorem 1. The Shapley-Shubik index ϕ gives the answer to the ques-

tion of individual effect under the homogeneity assumption about voting

probabilities.

Remark A swing for player i occurs if a coalition Si exists such that∑
j∈Si

wj < q and wi +
∑
j∈Si

wj ≥ q.
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Proof of Theorem 1

We randomize the probabilities p1, . . . , pN and invoke the conditional inde-

pendence assumption. Given the realization of pi = (p1, . . . , pi−1, pi+1, . . . , pN),

the conditional probability that player i’s vote will make a difference is

given by

πi(pi) =
∑
Si

∏
j∈Si

pj
∏
j ̸∈Si

(1− pj),

where pj is the voting probability of player j. The sum is taken over

all such coalitions where player i is pivotal. The expected frequency

where player i is pivotal is obtained by integrating over the probability

distribution:

E[πi(pi)] =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
πi(pi)fi(pi) dp1 . . . dpi−1 dpi+1 . . . dpN

where fi(pi) is the joint density function of pi. The voting probabilities

are randomized.
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Remark

Density function fX(x) of a uniform distribution over [a, b] is given by

fX(x) =


1

b−a a < x < b

0 otherwise
.

Under the homogeneity assumption, a number p is selected from the

uniform distribution on [0,1] and pj is set equal to p for all j. In this case,

fi(p) = 1 since a = 0 and b = 1 so that

E[πi(p)] =
∫ 1

0
πi(p) dp where πi(p) =

∑
Si

psi(1− p)N−si−1, si = n(Si).
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Lastly, making use of the Beta integral:

si!(N − si − 1)!

N !
=
∫ 1

0
psi(1− p)N−si−1 dp,

we obtain

E[πi(p)] =
∑
Si

si!(N − si − 1)!

N !
= ϕi = Shapley-Shubik index for player i.

The Beta integral links the probability of being pivotal under the homo-

geneity assumption of voting probabilities with the expected frequency of

being pivotal in various orderings of voters.
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Independence Assumption. Every proposal has a probability pi of ap-

pealing to the ith member. Each of the pi is chosen independently from

the interval [0,1]. Here how one member feels about the proposal has

nothing to do with how any other member feels.

Banzhaf index ignores the question of ordering and looks only at the final

coalition which forms in support of some proposal. The power of a player

is defined to be proportional to the number of such coalitions. If the

voters in some political situation behave completely independently, then

β is the most appropriate index.

Theorem 2.

The absolute Banzhaf index β′ gives the answer to the question of individ-

ual effect under the independence assumption about voting probabilities.
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• The absolute Banzhaf index β′
i can be interpreted as assuming that

each player votes randomly and independently with a probability of

1/2. It can be shown mathematically that this is equivalent to assume

that voting probabilities are selected randomly and independently from

a distribution with mean 1/2 without regard for the forms of those

distributions.

• Each player can be thought of as having probability 1/2 of voting for

any given proposal, so we can think of all coalitions to be equally

likely to form. Therefore, the probability of player i’s vote making a

difference is exactly the probability that player i will be a swing voter.

This is precisely the absolute Banzhaf index.
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Proof of Theorem 2

Under the independence assumption, the voting probabilities are selected

independently from distributions (not necessarily uniform) on [0,1] with

E[pj] = 1/2. Since pj are independent, the joint density is

fi(p) =
∏
j ̸=i

fj(pj)

where fj(pj) is the marginal density for pj. Consider

E[πi(p)] =
∑
Si

∫ 1

0
· · ·

∫ 1

0

∏
j∈Si

pj
∏
j ̸∈Si

(1− pj)
∏
j ̸=i

fj(pj) dp1 · · · dpN

=
∑
Si

∏
j∈Si

∫ 1

0
pjfj(pj) dpj

∏
j ̸∈Si

∫ 1

0
(1− pj)fj(pj) dpj

= πi

(
1

2

)
=
∑
Si

1

2N−1
=

ηi
2N−1

= β′
i

= absolute Banzhaf index for player i,

where ηi is the number of swings for player i. Note that the sum of the

absolute Banzhaf indexes for all players is not equal to 1.
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Example

[3; 2,1,1]

A B C

• Each voter will vote for a proposal with probability p. What is the

probability that A’s vote will make a difference between approval and

rejection?

• If both B and C vote against the proposal, A’s vote will not make a

difference, since the proposal will fail regardless of what he does.

• If B or C or both vote for the proposal, A’s vote will decide between

approval and rejection.

An alternative approach is shown here to compute ϕi (βi) without resort

to counting of pivotal orderings (swings).
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The probability that A’s vote will make a difference is given by

A(p) = p(1 – p)      +     (1 – p)p + p2 = 2p – p2.

B for, C against B against, C for     both for 

Similarly, B’s vote will make a difference only if A votes for, and C votes

against. If they both voted for, the proposal would pass regardless of

what B did.

B(p) = p(1 – p)           = p – p2.

A for, C against

By symmetry, we also have πC(p) = p− p2.

• Shapley-Shubik index: voting probabilities are chosen by players from

a common uniform distribution on the unit interval.

• Banzhaf index: voting probabilities are selected independently from

any set of distributions which have a common mean of 1/2.
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1. Homogeneity assumption

We must average the probability of making a difference πA(p) over all

p between 0 and 1.

for A:
∫ 1

0
πA(p) dp =

∫ 1

0
(2p− p2) dp =

2

2
−

1

3
=

2

3
= ϕA

for B:
∫ 1

0
πB(p) dp =

∫ 1

0
(p− p2) dp =

1

2
−

1

3
=

1

6
= ϕB

for C:
∫ 1

0
πC(p) dp =

∫ 1

0
(p− p2) dp =

1

2
−

1

3
=

1

6
= ϕC

2. Independence assumption

Assume that all players vote with probability 1/2 for or against a

proposal. We obtain

πA

(
1

2

)
= 2

(
1

2

)
−
(
1

2

)2
=

3

4
= β′

A

πB

(
1

2

)
= πC

(
1

2

)
=

1

4
= β′

B = β′
C,

thus verifying Theorem 2. Finally, βA =
3

5
, βB =

1

5
, βC =

1

5
.
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Theorem 3

The answer to player i’s question of individual-group agreement, under the

independence assumption about voting probabilities, is given by (1+β′
i)/2.

Theorem 2 says that β′
i gives the probability that player i’s vote will make

the difference between approval and rejection. Since his vote makes the

difference, in this situation the group decision always agrees with his.

• With probability 1− β′
i player i’s vote will not make a difference, but

in this case the group will still agree with him, by chance, half the

time.

• Hence the total probability that the group decision will agree with

player i’s decision is

(β′
i)(1) + (1− β′

i)
(
1

2

)
=

1+ β′
i

2
.
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Example

Consider the weighted voting game: [51; 40,30,20,10]. We list all the

marginal cases where defection of a player changes losing to winning.

Players marginal (losing to winning)

1 2 3 4 1 2 3 4

N Y Y N × ×
Y N N Y × ×
N Y N Y × ×
N N Y Y × ×
Y N N N × ×
N Y N N ×
N N Y N ×
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For player 1, we have η1 = 5, where the 5 coalitions are

S
(1)
1 = {2,3}, S(2)

1 = {2,4}, S(3)
1 = {3,4}, S(4)

1 = {2}, S(5)
1 = {3}.

The conditional probability that player 1 makes a difference:

π1(p2, p3, p4) = p2p3(1− p4) + p2(1− p3)p4 + (1− p2)p3p4

+ p2(1− p3)(1− p4) + (1− p2)p3(1− p4).

Under the independence assumption and expected probabilities all equal
1
2 , the absolute Banzhaf index of Player 1 is given by
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E[π1(p2, p3, p4)] =
∫ 1

0
p2f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

+
∫ 1

0
p2f2(p2) dp2

∫ 1

0
(1− p3)f3(p3) dp3

∫ 1

0
p4f4(p4) dp4

+
∫ 1

0
(1− p2)f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
p4f4(p4) dp4

+
∫ 1

0
p2f2(p2) dp2

∫ 1

0
(1− p3)f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

+
∫ 1

0
(1− p2)f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

= π1(
1

2
,
1

2
,
1

2
) =

5

23
= β′

1.

Similarly, we obtain

β′
2 =

3

8
, β′

3 =
3

8
, β′

4 =
1

8
.

The Banzhaf index is

β = (
5

12

3

12

3

12

1

12
).
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Player 1 - group agreement

Out of 24 = 16 cases, there are 2η1 = 2× 5 = 10 cases where Player 1 is

marginal. In the remaining 6 cases (out of 16 cases), Player 1 does not

make a difference.

players pass/fail

1 2 3 4

Y Y Y Y P
 with Y for players 2,3&4 gives “Pass” already,

player 1 has equal probability to say Y or NN Y Y Y P

Y N N Y F
 with N for players 2&3 gives “Fail” already,

player 1 has equal probability to say Y or NN N N Y F

Y N N N F
 with N for players 2,3&4 gives “Fail” already,

player 1 has equal probability to say Y or NN N N N F

Probability of player 1-group agreement =
1

2
× (1−

5

8
) + 1×

5

8
=

13

16
.
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Example

Look again at
[3; 2, 1, 1]

A  B  C . What is the probability that, under the inde-

pendence assumption, the group decision will agree with A’s preference?

• With probability 1/2, A will support a proposal. It will then pass unless

B and C both oppose it, which will happen with probability 1/4.
• If A opposes the proposal (probability 1/2), it will always fail.
• The probability of agreement with A is thus

1

2

(
1−

1

4

)
+

1

2
(1) =

7

8
=

1+ 3
4

2
=

1+ β′
A

2
.
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• Similarly, if B supports a proposal (probability 1/2), it will pass if and

only if A supports it (probability 1/2).

• If B opposes the proposal (probability 1/2), it will fail unless both A

and C support it (probability 1/4):

1

2

(
1

2

)
+

1

2

(
1−

1

4

)
=

5

8
=

1+ 1
4

2
=

1+ β′
B

2
.
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Example

Consider
[5; 3, 2, 1, 1]

A  B  C D . Let ρi(p) be the probability that the group decision

agrees with player i’s decision, given that all players (including i) vote for

a proposal with probability p. Note that A has veto power.

Remark

In the calculation procedure, it is convenient to set pA = pB = pC = pD =

p. This is because under the independence assumption and common mean

of probabilities of 1/2, we may set p = 1/2 apparently in the calculation

of E[ρi(pA, pB, pC, pD)].
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(a) It can be shown easily that

A(p) = p [p + (1 – p) p2]       +     (1 – p)(1)  = 1 – p + p2 + p3 – p4.

A yes B yes B no, C + D yes A no

B(p) = p (p)     + (1 – p) (1 – p3 ) = 1 – p + p2 – p3 + p4

B yes A yes B no, not all of

A, C, D yes

C(p) = p [p (p +   (1 – p ) p)]    + (1 – p ) [(1 – p ) + p [(1 – p )]

C yes A yes B yes B no, D yes C no A no A yes, B no

= 1 – p – p2 + 3p3 – p4.

(b) Now calculate ρA(1/2), ρB(1/2), and ρC(1/2) and show that these are

(1+ β′
A)/2, (1+ β′

B)/2, and (1+ β′
C)/2, thus verifying Theorem 3 for

this case.
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Example

Consider the majority-minority voting system with 7 voters, where 5 of

them are in the majority group and the remaining 2 voters are in the

minority group. The passage of a bill requires at least 4 votes from

all voters and at least 1 vote from the minority group. Suppose the 5

members in the majority group vote as a homogeneous group and the 2

members in the minority group vote as another homogeneous group.

(a) Compute the probability that a majority player’s vote decides the

passage of a bill.

(b) Compute the probability that a minority player’s vote decides the

passage of a bill.
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Solution

Under the homogeneity assumption, we let p and q denote the homoge-

neous voting probability of the majority group and minority group, re-

spectively.

(a) Consider a particular majority member, her vote can decide the pas-

sage of a bill if

(i) 1 minority member and 2 other majority members say “yes” and

other members say “no”;

(ii) 2 minority member and 1 other majority members say “yes” and

other members say “no”.
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P [majority player’s vote can decide the passage|p, q]
= C2

1C
4
2q(1− q)p2(1− p)2 + C4

1q
2p(1− p)3

= 12q(1− q)p2(1− p)2 +4q2p(1− p)3.

Assuming independence of the random probabilities p and q, and both of

them follow the uniform distribution, we obtain

P [majority player’s vote can decide the passage]

=
∫ 1

0

∫ 1

0

[
12q(1− q)p2(1− p)2 +4q2p(1− p)3

]
dpdq

= 12
∫ 1

0
p2(1− p)2 dp

∫ 1

0
q(1− q) dq +4

∫ 1

0
p(1− p)3 dp

∫ 1

0
q2 dq.
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(b) Consider a particular minority member, her vote can decide the pas-

sage of a bill if

(i) 3 or more majority members say “yes” and other members say

“no”;

(ii) 2 majority members and the other minority member say “yes” and

other members say “no”.

Using similar assumptions on p and q, we obtain

P [minority player’s vote can decide the passage]

=
∫ 1

0

∫ 1

0

 5∑
k=3

C5
kp

k(1− p)5−k(1− q) + C5
2p

2(1− p)3q

 dpdq
= 10

[∫ 1

0
p3(1− p)2 dp

∫ 1

0
(1− q) dq +

∫ 1

0
p2(1− p)3 dp

∫ 1

0
q dq

]

+ 5
∫ 1

0
p4(1− p) dp

∫ 1

0
(1− q) dq +

∫ 1

0
p5 dp

∫ 1

0
(1− q) dq.
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Example

Consider the voting game: [2; 1,1,1].

Let pA, pB and pC be the probabilities that A,B and C will vote for a

proposal. Assuming independence of the random voting probabilities, we

calculate the probabilities of a player’s vote making a difference:

πA = pB(1− pC) + (1− pB)pC,

πB = pA(1− pC) + (1− pA)pC,

πC = pA(1− pB) + (1− pA)pB.

• If the pis are all independent (β′) or all equal (ϕ) as they vary between

0 and 1, then the players have equal power.
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Suppose B and C are homogeneous (pB = pC), but A is independent.

Then the answers to the question of individual effect are

for A:
∫ 1

0
2pB(1− pB) dpB =

1

3

for B or C:

(∫ 1

0
pA dpA

)(∫ 1

0
(1− pB) dpB

)
+

(∫ 1

0
(1− pA) dpA

)(∫ 1

0
pB dpB

)

=
1

2
·
1

2
+

1

2
·
1

2
=

1

2
.

With the pair sharing homogeneity in voting probabilities, B and C both

have more power than A. In particular, we could normalize (1/3,1/2,1/2)

to (1/4,3/8,3/8) and compare that to (1/3,1/3,1/3).
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Canadian Constitutional Amendment Scheme revisited

B1 ⊗ B2 ⊗ M4,2 ⊗ [3; 2,1,1,1]
Quebec Ontario Atlantic British Columbia and Central.

Intersection of 4 weighted voting systems.

Province Shapley-Shubik index Banzhaf index Percentage of population

Ontario 31.55 21.78 34.85

Quebec 31.55 21.78 2.94

Bristish Columbia 12.50 16.34 9.38

Central

  Alberta 4.17 5.45 7.33

  Saskatchewan 4.17 5.45 4.79

  Manitoba 4.17 5.45 4.82

Atlantic

  New Brunswick 2.98 5.94 3.09

  Nova Scotia 2.98 5.94 3.79

  P.E.I. 2.98 5.94 0.54

  Newfoundland 2.98 5.94 2.47

Percentage of power

average

31.90

average

5.65

average

2.47
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Observations

• Based on the Shapley-Shubik index calculations, the scheme “pro-

duces a distribution of power that matches the distribution of popu-

lation surprisingly well”.

• However, based on the Banzhaf analysis, the scheme would seriously

under-represent Ontario and Quebec and seriously over-represent British

Columbia and the Atlantic provinces.

• It is disquieting that the two power indexes actually give different

orders for the power of the players. ϕ says the Central Provinces are

more powerful than the Atlantic provinces, and β says the opposite.
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Which index is more applicable?

• Use ϕ if we believe there is a certain kind of homogeneity among the

provinces.

• Use β if we believe there are more likely to act independently of each

other.

Actual behavior

• Quebec and British Columbia would likely to behave independently.

• The four Atlantic provinces would more likely to satisfy the homo-

geneity assumption.

Hybrid approach

If a group of provinces is homogeneous, assign the members of that group

the same p, which varies between 0 and 1 (independent of the p assigned

to other provinces or groups of provinces).
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Now calculate the probability that Quebec’s vote, say, will make a differ-

ence:

πQ = pO[6p
2
A(1− pA)

2 +4p3A(1− pA) + p4A]

O yes 2 or more A’s yes

·{pB[3pC(1− pC)
2 +3p2C(1− pC) + p3C] + (1− pB)p3C}

B yes 1 or 2C’s yes or 3C’s yes

We now compute the expectation of πQ as pO, pA, pB, and pC vary inde-

pendently between 0 and 1. Technically, that involves a “fourfold multiple

integral.”

E[πQ] =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
πQ dpC dpB dpA dpO.

Note that the joint density function of pC, pB, pA and pD reduces to 1

since it is the product of the marginal functions of pC, pB, pA and pD
(due to independence assumption) and each of these marginal density

functions equals 1 since they are uniform density functions over [0,1].
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We obtain E[πQ] = E[πO] = 24/160, E[πC] = 8/160, E[πB] = 12/160, E[πA] =

5/160. There are 3C’s and 4A’s, the π’s sum to 104/160, so we normal-

ize by multiplying the factor 160/104. The final power indexes under this

scenarios are tabulated below under “As homogeneous and Cs homoge-

neous”.
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Alternative homogeneity assumption

Quebec seems often to consider itself an island of French culture in the

sea of English Canada. Treat all 9 other provinces as homogeneous

among themselves, and Quebec as independent.

Quebec: 38.69 British Columbia: 11.61
Ontario: 25.84 Central provinces: 3.87

Atlantic province: 3.07

Quebec’s veto gives it considerable power. Alternatively, by staying ho-

mogeneous with other provinces, Ontario loses her power when compared

to Quebec.

• Consider the effect of British Columbia’s possible homogeneity with

the Central provinces. Is it obvious that such homogeneity should

give Quebec and Ontario more power?

Apparently, the previous power index calculations indicate that a higher

level of homogeneity of other players gives more influential power to the

province with veto power.
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