
Mathematics and Social Choice Theory

Topic 2 – Analysis of powers in voting systems

2.1 Potential blocs, quarreling paradoxes and bandwagon effects

2.2 Power distribution in weighted voting systems

2.3 Incomparability and desirability
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2.1 Potential blocs, quarelling paradoxes and bandwagon effects

Power of Potential blocs

• Groups of voters with similar interests and values who might consider

joining together and casting their votes in common.

Question If a potential bloc decides to organize and vote as an actual

bloc, does it really gain power?

Under the Shapley-Shubik model, we are comparing the chance that the

organized bloc will pivot against the chance that one of the unorganized

members will pivot.
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• If we are in a majority game where each player has just one vote, the

answer is “yes”, provided that no other potential blocs organize.

• Union does not always mean strength in other simple games.

Example – disunity adds strength

Consider the weighted majority game [5; 3,3,1,1,1]

Here ϕ =
(

9

30
,
9

30
,
4

30
,
4

30
,
4

30

)
and β =

(
2

7
,
2

7
,
1

7
,
1

7
,
1

7

)
.

If the 3 small players unite to form a bloc of three, that bloc will have

power 1/3, which is less than the total of what the members originally

had, measured by either index.
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Example

In a 40-member council, 11 members from Town B, 14 from Town J and

15 from other towns and rural areas.

Shapley-Shubik power index calculations

1. Both towns do not organize

If the 11 members in Town B vote independently, then each supervisor

will have 1/40 of the total power and Town B together will have
11

40
= 27.5%.
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2. Town B organizes but Town J does not organize

• If the 11 members in Town B organize, then there are effectively

30 voters. Since 21 votes are needed to pass a measure, Town

B will pivot if it joins a coalition after the 10th through 20th i.e.

11/30 of the time. Town B will have 11/30 = 36
2

3
% of the power.

• Town J who had 14/40 = 35% of the power before Town B or-

ganized, would have (14/29)(19/30) ≈ 30.5% of the power after

Town B organizes. Note that 29 council members from Town

J and other towns share the remaining power of 1 −
11

30
=

19

30
.

Since the power of
19

30
is shared equally among 29 members, so

the total power of the 14 independent councils from Town J =
14

29
×

(
1−

11

30

)
.
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3. Both town organize

As a result, we have a game of 17 voters: 15 casting a single vote.

Town J pivots 100/272 of the time, for 37% of the power, while

Town B pivots 49/272 of the time, for 18% of the power.

There are 15 other members, other than Town B and Town J.

i = 0 i = 2 i = 15

1st 2nd 3rd 14th 15th

Let Town B joins right after position i and Town J joins right after

position j, 0 ≤ i ≤ 15 and 0 ≤ j ≤ 15.

(a) When Town J enters first, what is the number of possible orderings?

Since i ≥ j, we have j = 0,1,2, · · · ,15, i = j, j + 1, · · · ,15, so number

of orderings = 16+ 15+ · · ·+1 = 16×17
2 = 136.
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• Suppose j ≥ 7, then J always pivots since [j + 1, j + 2, · · · , j + 14]

contains the pivotal 21st position.

• On the other hand, with j < 7, and Town B enters after position i

with i ≥ j, then B pivots when [i+14, i+15, · · · , i+24] contains the

pivotal 21st position. This occurs when i < 7.

Summary

(i) J pivots when j = 7,8, · · · ,15, i = j, j +1, · · · ,15;

number of orderings = 9+ 8+ · · ·+1 = 9×10
2 = 45.

(ii) B pivots when j < 7, i ≤ j and i < 7. We have

j = 0,1,2, · · · ,6; i = j, j +1, · · · ,6;

the number of orderings = 7+ 6+ · · ·+2+ 1 = 28.
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(b) We consider the another case where Town B enters earlier, where

i ≤ j.

The total number of possible orderings remains to be 136. Following

similar arguments, we can show that

(i) the number of orderings that J pivots is 55;

(ii) the number of orderings that B pivots is 21.

Finally, combining the two cases, we have

ϕB =
28+ 21

272
≃ 18% and ϕJ =

45+ 55

272
≈ 37%
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First entry is the power index for B, second entry is the power index for

J.

• Town J will prefer to organize regardless of what Town B does since

Town J increases its power upon organizing. “Organize” is a domi-

nant strategy of Town J.

• Once Town J organizes, Town B is actually better off not organizing.

• Thus the natural outcome is Town B not organizes while Town J

organizes. Town B supervisors should be “cunning” to choose un-

cooperative behavior. Town B should be very happy not to rock the

boat.
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Example

Assuming 0 < x < 1/2 and 0 < y < 1/2. If Player X controls a fraction of

x of the vote and Player Y controls a fraction y, then

ϕX(x, y) =



(
1
2−y

)2
(1−x−y)2

, if x+ y ≥ 1
2

x(1−x−2y)
(1−x−y)2

, if x+ y ≤ 1
2

.

The earlier example on P.65 (Topic 1) corresponds to x = 3/9 and y =

2/9, where x+ y > 1/2. The area of the two triangles that correspond to

X being pivotal is
(
1

2
− y

)2
. The area of the square is (1− x− y)2, so

ϕX(x, y) =

(
1
2 − y

)2
(1− x− y)2

, x+ y ≥
1

2
.

If the members of X and Y vote independently, the members of X will

have power equal to their fraction of the vote, namely, x.
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0 X joins Y joins

a

b

1-x-y

Consider the case where X enters earlier than Y , so that a < b; the total

length of segment for oceanic voters is 1− x− y.
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(i) x+ y ≥
1

2

y
2

1

x
2

1

0 pivots

0 pivots

X pivots

Y pivots

X pivots

Y pivots

1 – x – y

Distinguish the various cases to determine which one of the two in-

tervals [a, a+ x] or [b+ x, b+ x+ y] includes the pivotal point 1
2.
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0 a a + x b + x b + x+ y 1

2

1

X joins Y joins

For x+ y ≥ 1
2; by assuming a < b,X pivots when a+ x ≥ 1

2 i.e. a ≥ 1
2 − x.

Otherwise, for a+ x < 1
2, we haveY pivots when b+ x ≤ 1

2 i.e. b ≤ 1
2 − x

O pivots when b+ x > 1
2 i.e. b > 1

2 − x.

The power index of X and Y are, respectively,

ϕX(x, y) =

(
1
2 − y

)2
(1− x− y)2

and ϕY (x, y) =

(
1
2 − x

)2
(1− x− y)2

.

Since the power of any player holding x votes is the same across all

players, so we expect

ϕX(x, y) = ϕY (y, x).

Lastly, ϕX(x, y) + ϕY (x, y) + ϕO(x, y) = 1.
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(ii) x+ y ≤ 1
2

X

X

O

Y

Y

O

O

O

2

1
-x

x

2

1
-x

2

1
-y

2

1
-y

2

1

2

1

1 x y- -

1 x y- -
2

1
-x y-

2

1
-x y-

2

1
-x y-

O

O

14



Assuming a < b, a slight modification is required when x+ y ≤
1

2
since X

pivots if and only if
1

2
− x ≤ a ≤

1

2
. For a >

1

2
, O pivots. Similarly, when

a <
1

2
− x− y and b <

1

2
− x− y, O pivots. We obtain

ϕX(x, y) =

(
1
2 − y

)2
−

(
1
2 − x− y

)2
(1− x− y)2

=
x(1− x− 2y)

(1− x− y)2
;

ϕY (x, y) =
y(1− y − 2x)

(1− x− y)2
;

ϕU = 1− ϕX − ϕY .

By symmetry, ϕX(x, y) = ϕY (y, x). This is because ϕX(x, y) is the power

of X when he holds x votes and the other holds y votes; while ϕY (y, x)

gives the power of Y when he holds x votes and the other holds y votes.
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We compare the power of x when both blocs organize or both do not

organize by examining the relative magnitude of ϕX(x, y) and x.

50%

50%

25%

25%

! ( , )>X x y x

! ( , )>yY x y

50%

25%

50%25%

Note that 0 ≤ x ≤
1

2
and 0 ≤ y ≤

1

2
. It is seen that ϕX(x, y) = x when

x = y =
1

4
, x = y = 0 or x = y =

1

2
. When both x and y are less than

1

4
,

the organization of bloc X is beneficial when bloc Y is not substantially

larger than bloc X.
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The members of X will be better off if both X and Y organize precisely

when ϕX(x, y) > x [the region below the curve ϕX(x, y) = x]. If X rep-

resents Town J and Y represents Town B, then point P corresponds to

the above example.
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Quarreling paradoxes

• What happens if the two players quarrel, and refuse to enter into a

coalition together?

• We normally think that we maximize our power by keeping as many

options open as possible, and that restricting our freedom to act

lessens our influence.

• Quarreling, of course, restricts our freedom to act.
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Example

Consider the weighted voting game

[5; 3, 2, 2]
A  B  C

For this game, ϕ = (2/3,1/6,1/6) and β = (3/5,1/5,1/5), as seen by

writing out the orderings with the pivots underlined:

ABC BAC CAB

ACB ∗BCA ∗ CBA

and the winning coalitions with the critical defectors underlined:

AB AC ∗ABC.
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Suppose members B and C quarrel. What is the effect on the Shapley-

Shubik index?

In considering the orders in which the players might join a coalition in

support of a proposal, we must now rule out those orderings in which

B and C join together to help put the coalition over the top, i.e. those

orderings in which both B and C join at or before the pivot.

There are two orderings in which this happens, marked by an ∗. In the

four other orderings, the coalition becomes winning with the help of only

one of B or C. By the original Shapley-Shubik assumption, these four

orderings are equally likely. We obtain the Shapley-Shubik index with

quarreling as

ϕ
Q
BC =

(
1

2
,
1

4
,
1

4

)
.
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Banzhaf model for quarreling

We merely eliminate from consideration those winning coalitions contain-

ing both B and C (just ABC above) and compute proportions of critical

defections in the remaining winning coalitions. We obtain

β
Q
BC =

(
1

2
,
1

4
,
1

4

)
with the same qualitative effect of an increase in B and C’s share of the

power at the expense of A.
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What are the possibilities?

1. If two members quarrel, they may both gain power (as measured by

ϕ or β). See the above example.

2. If two members quarrel, they may both lose power.

This, of course, seems much more natural than (1).

3. If two members quarrel, one may gain power while the other loses

power. (A quarrel might hurt you while helping your opponent, or

vice versa · · · .)

Example: A and D quarrel in [5; 3,2,2,1]

ϕ = β =
(

5

12
,
1

4
,
1

4
,
1

12

)

ϕ
Q
AD = β

Q
AD =

(
3

8
,
1

4
,
1

4
,
1

8

)
.
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4. A quarrel may not affect the power of the quarrelers at all, but change

the power of innocent bystanders.

Example: B and C quarrel in the game of the last example.

ϕ
Q
BC = β

Q
BC =

(
1

2
,
1

4
,
1

4
,0

)
Poor D, whose only chance to become part of a minimal winning

coalition was with BC, has become a dummy.
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5. The presence of dummies does not change the relative proportion

of pivotal orderings among the players. However, quarreling with a

dummy always hurts you. This is because the quarreler with the

dummy would lose more on the number of pivotal orderings that

involve the dummy compared to other players. It is still possible

for a bystander to lose in power (the loss is less than that of the

quarreler) if this bystander derives most of her power via “joining

with the quarreler”.

Example: A quarrels with D in [4; 2,2,2,1]

ϕ = β =
(
1

3
,
1

3
,
1

3
,0

)

ϕ
Q
AD = β

Q
AD =

(
1

4
,
3

8
,
3

8
,0

)
It may be worthwhile staying on friendly terms even with those who

have no power.
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One-way quarrel (hostility)

A one-way quarreler can help or hurt his victim, and he may either help

or hurt himself.

For example, in [5; 3,2,2,1], if B or C is hostile to D, D loses the chance

of forming a minimal winning coalition, making D to be a dummy. In this

case, the victim D is hurt.

Suppose that, in the weighted voting game
[7; 4, 3, 2, 1]

A  B  C D player B hates

player C and refuses to join any coalition in support of a proposal that C

has already joined. Player C has no such hostile feeling about B. What

is the effect upon the power of B and C?
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Orderings and pivots are

A B CD B A CD
*

CA B D DA B C

A B DC B A DC CA D B DA C B

*
AC B D

+
BC A D

*
CB A D DB A C

AC D B
+

BCD A
*

CBD A
+

DBC A

AD B C BD A C CD A B DC A B

AD C B
+

BDC A
*

CDB A
*

DCB A

1. Consider ∗ACBD, C joins earlier. Since B is hostile to C, B will not

join later to form a winning coalition.

2. Consider +BCAD, B joins earlier. Since C is hostile to B, C will not

join later to form a winning coalition.

Both orderings will be ruled out if B and C quarrel.
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With no quarreling, we have

ϕ =
(
14

24
,
6

24
,
2

24
,
2

24

)
≈ (0.58,0.25,0.08,0.08).

B’s hostility to C rules out orderings marked by ∗, giving

ϕ
Q
B→C =

(
10

18
,
4

18
,
2

18
,
2

18

)
≈ (0.56,0.22,0.11,0.11).

B has hurt himself and helped his victim.

If we reversed the situation and had C hating B, the orderings marked

by+ would be ruled out, giving

ϕ
Q
C→B

(
10

20
,
6

20
,
2

20
,
2

20

)
= (0.50,0.30,0.10,0.10)

C would help B, and also help herself!
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Example

Weighted voting game: [5; 4,2,1,1,1]; the first two voters quarrel. Note

that the first two players can form a winning coalition together.

4 2 1 1 1 2 4 1 1 1 2 1 4 1 1

4 1 2 1 1 1 4 2 1 1 1 2 4 1 1

4 1 1 2 1 1 4 1 2 1 1 1 4 2 1

4 1 1 1 2 1 4 1 1 2 1 1 4 1 2

2 1 1 4 1 2 1 1 1 4

1 2 1 4 1 1 2 1 1 4

1 1 2 4 1 1 1 2 1 4

1 1 1 4 2 1 1 1 2 4

20 distinct orderings without consideration of quarrel

ϕ =
(

6

10

1

10

1

10

1

10

1

10

)
.
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Rule out 7 orderings when the first two voters quarrel

4 2 1 1 1 1 2 4 1 1

2 4 1 1 1 1 2 1 4 1

2 1 1 4 1 1 1 2 4 1

2 1 4 1 1

These “illegal” orderings must lie in the set of pivotal orderings held

by the two quarreling players. In other words, none of these “illegal”

orderings are pivotal orderings of the other players.
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After ruling out 7 “illegal” orderings, the remaining 13 coalitions are:

4 1 2 1 1 1 1 4 2 1

4 1 1 2 1 1 1 4 1 2

4 1 1 1 2 1 1 1 4 2

1 4 2 1 1 2 1 1 1 4

1 4 1 2 1 1 2 1 1 4

1 4 1 1 2 1 1 2 1 4

1 1 1 2 4

Out of these 13 orderings, 6 orderings of which “4”-voter pivots, only

one ordering of which “2”-voter pivots, 6 orderings of which either one

of the three “1”-voter pivots. The new power indexes with quarreling is

ϕ =
(

6

13

1

13

2

13

2

13

2

13

)
.
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Lemma

Assume that the two players A and B in a N-person voting game can

always form a winning coalition just with themselves. Suppose A and B

now quarrel, show that the other players in the game enjoy an increase

in power.

Proof

We let ni and n′i denote the number of orderings that player i is pivotal

without and with A and B quarreling, respectively. The Shapley-Shubik

power index of player i without and with quarreling are

ϕi =
ni∑N

i=1 ni
and ϕ′i =

n′i∑N
i=1 n

′
i

,

respectively. It is easily seen that n′A < nA and n′B < nB due to the

constraint imposed by quarreling.
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However, ni = n′i, i ̸= A,B, since quarrel between A and B does not

change the number of pivotal orderings of player i. This is because A and

B together can form a winning coalition, so the ruling out of orderings

with both A and B together would not reduce the pivotal orderings held

by player i. We then have

ϕ′i =
n′i∑N

i=1 n
′
i

>
n′i

nA + nB +
∑N

i = 1
i ̸= A,B

n′i

=
ni

nA + nB +
∑N

i = 1
i ̸= A,B

ni
= ϕi, i ̸= A,B.

Therefore, all other players other than the quarrelers in the game enjoy

an increase in power.
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Warning on the results

1. The conclusion is true, a subtlety of political situations that precise

analysis has thrown light upon.

2. The conclusion is a peculiarity of the power indices, showing that they

have strange properties that should make us wary of where and how

we use them.

3. The conclusion is a peculiarity not of the indices but of the model of

quarreling we made using the indices. The model does not adequately

reflect properties of real world quarrels.
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Bandwagon effect

• Two opposing blocs compete for the support of uncommitted voters in

an attempt to achieve winning sizes. Uncommitted voters suddenly

find it advantageous to begin committing themselves to the larger

bloc, quickly enlarging it to winning size.

“be (jump) on the bandwagon” – join in what seems likely to be a

successful enterprise.

Two opposing blocs, X and Y , and a collection of uncommitted voters

U .

• If X and Y are opposing, we rule out orderings in which they join

together to win. We consider only orderings in which exactly one of

X or Y is present when the coalition first becomes winning. Also, we

rule out the possibility of uncommitted voters uniting to win without

either X or Y .
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Example

Consider [5; 3,2,1,1,1,1]

• Of the 30 orderings, 9 of them are ruled out by the restriction that

exactly one of the “3” or “2” should appear at or before the pivot:

• The use of the remaining 21 orderings leads to a modified Shapley-

Shubik index(
6

21
,
3

21
,
3

21
,
3

21
,
3

21
,
3

21

)
≈ (0.286,0.143,0.143,0.143,0.143,0.143).

• An uncommitted voter should commit to X if the increment of power

he will add to X is larger than the power he would have if he remains

uncommitted .
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• If an uncommitted voter commits to X, then the new game is

[ 5; 3, 2, 1, 1, 1, 1 ] −→ [ 5; 4, 2, 1, 1, 1 ]
X Y U

with only 3 uncommitted voters.

To calculate the modified Shapley-Shubik index by writing down the

20 possible orderings for this game, crossing out the 7 “illegal” order-

ings since X and Y are not supposed to appear together in a winning

coalition. We obtain(
6

13
,
1

13
,
2

13
,
2

13
,
2

13

)
≈ (0.462,0.077,0.154,0.154,0.154).

• The uncommitted voter raises the power of X from 0.286 to 0.462,

an increment of 0.176, which is more than 0.143 he would have by

remaining uncommitted.
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Example - 1956 Democratic Vice-Presidential Nomination

Jack Kennedy 618 45%

Estes Kefauver 551.5 40%

Albert Gore 110.5 8%

Others 92 7%

Total 1372 (687 is needed to be nominated)

As a model, we consider the weighted voting game

[50; 45, 40, 8, 1,1,1,1,1,1,1︸ ︷︷ ︸]
J E G uncommitted

JE should be ruled out. We also rule out JG and allow EG.
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Background

• Gore was friendly with Kennedy, but Gore and Kefauver were both

senators from Tennessee.

• Gore’s supporters would not follow Gore to Kennedy. Gore was under

constant pressure to withdraw in favor of Kefauver. In fact, Kefauver

went on to win the nomination.

We would like to examine the degree that Kennedy is disadvantaged by

not being able to form an alliance with Gore.

Under the above alliance conditions, 408 of the 10!/7! = 720 possible

orderings were ruled out. For example,

40 1 1 45 1 1 8 1 1 1; 1 8 40 45 1 1 1 1 1 1

are ruled out since J and E should not appear together to form a winning

coalition.
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Of the remaining orderings, J has 20 pivots, E and G both have 98, and

uncommitted delegates have 96, giving the following modified SS index

(0.064 0.314 0.314 0.043 0.043 0.043 0.043 0.043 0.043 0.043).

Interestingly, E and G have equal power under the above alliance condi-

tions. This is because E cannot form a winning coalition even with the

inclusion of all uncommitted voters. Poor J, since he quarrels with both

E and G, his power is much undermined.

Consider the following possible changes:

1. G joins E, giving [50; 45,48,1,1,1,1,1,1,1]. The new power indexes

are now

(0.111 0.389 0.071 0.071 0.071 0.071 0.071 0.071 0.071).

G can contribute only 0.075 to E, much less than he has by not joining

E.
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2. An uncommitted delegate joins J, giving

[50; 46,40,8,1,1,1,1,1,1]

with power indices

(0.088 0.285 0.285 0.057 0.057 0.057 0.057 0.057 0.057 ).

She has contributed only 0.024 to J, less than she had while uncom-

mitted.

3. An uncommitted delegate joins E, giving

[50; 45,41,8,1,1,1,1,1,1]

with power indexes

(0.039 0.377 0.377 0.034 0.034 0.034 0.034 0.034 0.034 ).

She has committed 0.063 to E, more than 0.043 she had while un-

committed. A bandwagon effect for E occurs.
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Example

Let x be the fraction of votes controlled by bloc X, y the fraction con-

trolled by bloc Y , and u = 1 − x − y the fraction held by an ocean of

uncommitted voters. Assume majority rule and x <
1

2
, y <

1

2
.

(a) x+ y ≤ 1/2 (u ≥ 1/2). (b) x+ y ≥ 1/2 (u ≤ 1/2).

The label Y in the figure means player Y pivots; U means an uncommitted

voter pivots; I means an illegal ordering.

41



• Ordering represented by points in the lower left-hand corners and the

upper right-hand corner are ruled out since we require exactly one of

X or Y to appear at or before the pivot. For example, considering

the case x + y ≥ 1/2, the left bottom triangle above the diagonal

corresponds to Y being pivotal if X and Y do not oppose each other.

Since this triangle corresponds to the scenario where X joins before

Y and Y pivots, this should be ruled out as “illegal”. Similarly, for

the case x+ y ≤ 1/2, the box at the top right corner corresponds to

the scenario where U pivots without the participation of either X or

Y . The power index of X is found to be

ϕX(x, y) =



x(1−x−2y)
1−x−y−x2−y2

, if x+ y ≤ 1
2

(
1
2−y

)2
(1−x−y)2+2

(
1
2−x

)(
1
2−y

), if x+ y ≥ 1
2

.

The formulas for ϕY are symmetric to this.

42



The total power of the uncommitted voters:

ϕU(x, y) =


(1−2x)(1−2y)
1−x−y−x2−y2

, if x+ y ≤ 1
2,

(1−2x)(1−2y)

(1−x−y)2+2
(
1
2−x

)(
1
2−y

), if x+ y ≥ 1
2.

• Consider a small bloc of uncommitted voters, comprising a fraction

∆x of the total vote, considering whether to join X.

• If they do, the power increment they will contribute is ϕX(x+∆x, y)−
ϕX(x, y). If they remain uncommitted, as they are independent and

sharing equal power, their total power will be (∆x/u)ϕU(x, y).
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• They should join X if

ϕX(x+∆x, y)− ϕX(x, y) >
∆x

u
ϕU(x, y).

Taking the limit ∆x → 0, we obtain

∂ϕX
∂x

>
ϕU
u

.

• When x+ y ≥
1

2
, the curve where

∂ϕX
∂x

=
ϕU
u

is a straight line

1

2
− y = a

(
1

2
− x

)
, a ≈ 1.78.

• When x + y ≤
1

2
, the bandwagon curves for X and Y are plotted in

the figure. It is advantageous to join X when (x, y) lies below the

bandwagon curve for X. When x and y are both small, x has to be

several times larger than y in order that the uncommitted voters join

X (see the bandwagon curve at the lower left corner).
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1976-Race between Ford (player X) and Reagan (player Y ) for the Re-

publican nomination. The small numbers along the curve represent the

number of weeks lapsed since the race started. By week 22, the uncom-

mitted voters joined Ford to take advantage of the bandwagon effect.
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2.2 Power distribution in weighted voting systems

Meeting the target

• Suppose the players are the countries of a federal union, one may wish

the power of a player to be proportional to its population.

• Given the “population” vector p representing the ideal influence of the

players, find the distribution of weights (w1, · · · , wn) and the quota of

such that the sum of the differences between the target and the power

is minimized.

• Let d(x, y) be the distance between the power index and the target:

d(x, y) =
n∑

i=1

(xi − yi)
2, x ∈ Rn and y ∈ Rn.

We write dSS = distance between the Shapley-Shubik index and the

target, and similar definition for dB.
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3-player case

Given w1 ≥ w2 ≥ w3, the four different weighted quota games for n = 3,

with examples, are presented below.

Conditions on w Banzhaf Shapley-Shubik Example
w1 ≥ q β1 = (1,0,0) ϕ1 = (1,0,0) G1 = (2; 2,0,0)

w1 + w3 < q and w1 + w2 ≥ q β2 =
(
1
2
, 1
2
,0

)
ϕ2 =

(
1
2
, 1
2
,0

)
G2 = (2; 1,1,0)

w1 < q and w2 + w3 ≥ q β3 =
(
1
3
, 1
3
, 1
3

)
ϕ3 =

(
1
3
, 1
3
, 1
3

)
G3 = (4; 2,2,2)

w1 < q and w2 + w3 < q and w1 + w3 ≥ q β4 =
(
3
5
, 1
5
, 1
5

)
ϕ4 =

(
2
3
, 1
6
, 1
6

)
G4 = (5; 4,2,2)

For example, suppose w1 < q and w2+w3 ≥ q, then the winning coalitions

are {1,2,3}, {1,2}, {1,3}, {2,3}. All players then have equal power.

Notation

Let W be the set of all winning coalitions. A voting game is proper if

S ∈ W then N\S ̸∈ W , where N is the set of all players. If a coalition

S ∈ W , then V (S) = 1; otherwise, V (S) = 0.

47



• It is impossible to have V ({2}) = 1 or V ({3}) = 1. If otherwise,

V ({1}) = 1, then V ({2,3}) = 0. This leads to a contradiction.

V({1})=1 (1, 0, 0)

V({1})=0

V({2, 3})=1

0,
2

1
,

2

1

V({2, 3})=0

V({2, 3})=0

V({1, 3})=1
5

1
,

5

1
,

5

3

V({1, 3})=0

V({1, 2})=1

3

1
,

3

1
,

3

1

V({1, 2})=0
3

1
,

3

1
,

3

1

Vector of power under Banzhaf index
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Banzhaf index

1. V ({1}) = 1

This means player 1 has all the power, so the vector of power is

(1,0,0).

2. V ({1}) = 0 and V ({2,3}) = 1

We have V ({1,2,3}) = 1, V ({1,3}) = 1 and V ({1,2}) = 1. There is

no decisive player since V ({1}) = V ({2}) = V ({3}) = 0. However, in

{1,2}, {1,3}, {2,3}, every player is decisive. Therefore, the vector of

power is (1/3,1/3,1/3).

3. V ({1}) = 0, V ({2,3} = 0 and V ({1,3}) = 1.

We have V ({1,2,3}) = 1 and V ({1,2}) = 1.

In {1,2,3}, only player 1 is decisive while in {1,2}, {1,3}, every player

is decisive. Therefore, the vector of power is (3/5,1/5,1/5).
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4. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 1

We have V ({1,2,3}) = 1. Only player 3 is not decisive while in {1,2},
every player is decisive. Therefore, the vector of power is (1/2,1/2,0).

5. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 0

We have V ({1,2,3}) = 1. In {1,2,3}, every player is decisive and the

vector of power is (1/3,1/3,1/3).

In summary, there are 5 possible cases but only 4 vectors of power. The

Banzhaf indexes are:

(1/3,1/3,1/3), (3/5,1/5,1/5), (1/2,1/2,0) and (1,0,0).
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Let w(S) denote the sum of weights in the coalition S.

First, we consider one-player coalitions

w({3}) w({2}) w({1})

q q

(i){1,0,0} (ii) irrelevant

The quota q may fall (i) below w({1}) and player 1 is the dictator; or (ii)

above w({1}), and as a result, there is no one-player winning coalition.

We rule out the case where q falls below w({2}). If otherwise, {2,3} is

also winning and its complement {1} cannot be winning.

Next, we consider two-player and three-player coalitions

w({2,3}) w({1,3}) w({1,2})

q qqq

w({1,2,3})

1 1 1
( ){ , , }

3 3 3
a

3 1 1
( ){ , , }

5 5 5
b

1 1
( ){ , ,0}

2 2
c

1 1 1
( ){ , , }

3 3 3
d
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Remarks

It is necessary to refine the potential ordering of weights in coalitions

according to w({1}) < w({2,3}) or otherwise. We avoid the discussion

on the special case of w({1}) = w({2,3}).

1. Suppose w({1}) < w({2,3}), then {1} can never be winning. Implicitly,

we deduce that w({1}) < q, and there will be no one-player winning

coalition. We can perform the analysis solely based on the two-player

and three-player coalitions.

2. Suppose w({1}) > w({2,3}), then {2,3} can never be winning. We

rule out the scenario where q < w({2,3}) and need to include the new

cases (i) w({2,3}) < q < w({1}) and (ii) w({1}) < q < w({2,3}).

Case (i) gives the power distribution {1,0,0} while case (ii) gives{
3

5
,
1

5
,
1

5

}
.
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Assuming w({1}) < w({2,3}), we examine the various outcomes when q

increases gradually.

(a) w({1}) < q < w({2,3})
All two-player coalitions and three-player coalitions are winning, so

the players have equal power.

(b) w({2,3}) < q < w({1,3})
Since {2,3} is not winning, player 1 has higher power compared to

players 2 and 3, so the power distribution is
{
3

5
,
1

5
,
1

5

}
.

(c) w({1,3}) < q < w({1,2})
Since {1,2} is the only two-player winning coalitions, so player 3 is a

dummy. This gives the power distribution
{
1

2
,
1

2
,0

}
.

(d) w({1,2}) < q < w({1,2,3})
All two-player coalitions are losing and only {1,2,3} is the winning

coalition. Therefore, the players have equal power.
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What would happen when some of the voters have the same weight?

1. Suppose w1 = w2 > w3, we rule out the case where player 1 is the

dictator of the game. We consider the following cases:

(a) w1 < q < w1 + w3, we have the power distribution
{
1

3
,
1

3
,
1

3

}
. This

is because player 3 is critical in {1,3} and {2,3}, while player 1 is

critical in {1,2} and {1,3} (similarly for player 2).

(b) w1 + w3 < q < 2w1, the power distribution is
{
1

2
,
1

2
,0

}
.

(c) 2w1 < q < 2w1 + w3, the power distribution is
{
1

3
,
1

3
,
1

3

}
.

Note that the power distribution
{
3

5
,
1

5
,
1

5

}
is ruled out.

2. Suppose w1 > w2 = w3, we rule out the power distribution
{
1

2
,
1

2
,0

}
.

It is still possible for player 1 to be the dictator.

3. Suppose w1 = w2 > w3, the 3 players are equal in power.
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Shapely-Shubik index

There are 6 possible orders with 3 players

1. V ({1}) = 1

Player 1 is the only pivotal, even if it arrives last in the coalition. The

vector of power is (1,0,0)

2. V ({1}) = 0 and V ({2,3}) = 1

We have V ({1,2,3}) = 1, V ({1,3}) = 1 and V ({1,2}) = 1

For each order, the player in the second position is pivotal, so the

vector of power is (1/3,1/3,1/3).
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3. V ({1}) = 0, V ({2,3}) = 0 and V ({1,3}) = 1

We have V ({1,2,3}) = 1 and V ({1,2}) = 1.

When player 1 is not first in the order, it is always pivotal.

When player 1 is first in the orders, the pivotal is the player which ar-

rives second in the order. Therefore, the vector of power is (2/3,1/6,1/6).

4. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 1

We have V ({1,2,3}) = 1. When player 1 is first in the order, player 2

is pivotal. When player 2 is first in the order, player 1 is pivotal. In the

orders 312 and 321, the player who arrives last is pivotal. Therefore,

the vector of power is (1/2,1/2,0).
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5. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 0

We have V ({1,2,3}) = 1. It is always the player who arrives last in

the order the pivotal. The vector of power is (1/3,1/3,1/3).

In summary, there are 4 vectors of power using the Shapley-Shubik index:

(1/3,1/3,1/3), (2/3,1/6,1/6), (1/2,1/2,0) and (1,0,0).

Remark

There has not existed a general formula to determine all the possible

vectors for a given n and a given power index.
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Target power distribution

Let pi denote the power index of player i, i = 1,2,3. Assume that

p2 + p2 + p3 = 1, we can represent all the possible targets in a simplex.

Further, p1 ≥ p2 ≥ p3 which implies p2 ≥
1

2
−

p1
2

since 2p2 + p1 ≥ 1.

In summary, the simplex that contains feasible power distributions satisfies

p1 ≥ p2

p2 ≥
1

2
−

p1
2

p2 ≤ 1− p1.

The area of the admissible region A is equal to

1

2

∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
2 1

1
3

1
3 1

1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2

(
1

6
+

1

2
−

1

3
−

1

6

)
=

1

12
≈ 0.0833.
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The possible target vectors
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If we calculate the distances dB and dSS between a vector of power and

a target p, we obtain easily:

• dB = dSS = (p1 − 1
3)

2 + (p2 − 1
3)

2 + (p3 − 1
3)

2

=
3∑

i=1

p2i −
1

3
for the vector (1/3,1/3,1/3).

• dB =
3∑

i=1

p2i +
1

25
−

4p1
5

for the vector (3/5,1/5,1/5).

• dSS =
3∑

i=1

p2i +
1

6
− p1 for the vector (2/3,1/6,1/6).

• dB = dSS =
3∑

i=1

p2i +
1

2
− p1 − p2 for the vector (1/2,1/2,0).

• dB = dSS =
3∑

i=1

p2i +1− 2p1 for the vector (1,0,0).
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We can compare the distances and obtain for the Banzhaf index:

• The vector of power β1 = (1,0,0) and G1 minimizes dB if p1 >

5/6. The result is obtained by comparing dB =
3∑

i=1

p2i +
1

6
− p1 for

(3/5,1/5,1/5) and dB =
3∑

i=1

p2i +1− 2p1 for (1,0,0).

• The vector of power β2 = (1/2,1/2,0) and G2 minimizes dB if p2 >

1/3 and p2 > 5/6− p1.

• The vector of power β3 = (1/3,1/3,1/3) and G3 minimizes dB if

p2 < 1/2 and p2 < 5/6− p1.

• The vector of power β4 = (3/5,1/5,1/5) and G4 minimizes dB oth-

erwise. The 3 boundaries are given by: 1/25− 4p1/5 < −1/3, 1/25−
4p1/5 < 1/2 − p1 − p2 and 1/25 − 4p1/5 < 1 − 2p1; that is if 7/15 <

p1 < 4/5 and p1 +5p2 < 23/10.
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The different closest games for the Banzhaf index for n = 3
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The same reasoning for the Shapley-Shubik index enables us to define

the following domains:

• The vector of power ϕ1 = (1,0,0) and G1 minimizes dSS if p1 > 4/5.

• The vector of power ϕ2 = (1/2,1/2,0) and G2 minimizes dSS if p2 >

23/50− p1/5 and p2 > 5/6− p1.

• The vector of power ϕ3 = (1/3,1/3,1/3) and G3 minimizes dSS if

p2 < 7/15 and p2 > 5/6− p1.

• The vector of power ϕ4 = (2/3,1/6,1/6) and G4 minimizes dSS oth-

erwise, that is if 7/5 < p1 < 4/5 and p1 +5p2 < 23/10.
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The different closest games for the Shapley-Shubik index for n = 3
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Different Shapley-Shubik and Banzhaf inverse games for n = 3
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Example

For a voting game with 3 players, suppose the target power distribution

of the 3 players is

ptar =
(
1

2
,
1

4
,
1

4

)
.

Based on Shapley-Shubik indexes, find the weighted voting system whose

power distribution is closest to the given target distribution.

Solution

Recall that there are only 4 possible power distributions in a 3-player vot-

ing game under the Shapley-Shubik indexes: (1,0,0),
(
1

3
,
1

3
,
1

3

)
,
(
1

2
,
1

2
,0

)
and

(
2

3
,
1

6
,
1

6

)
.

66



The distance between ptar and (1,0,0) =
(
1

2
− 1

)2
+

(
1

4
− 0

)2
+

(
1

4
− 0

)2

=
3

8
.

The distance between ptar and
(
1

3
,
1

3
,
1

3

)
=

(
1

2
−

1

3

)2
+

(
1

4
−

1

3

)2
+

(
1

4
−

1

3

)2

=
1

24
.

The distance between ptar and
(
1

2
,
1

2
,0

)
=

(
1

2
−

1

2

)2
+

(
1

4
−

1

2

)2
+

(
1

4
− 0

)2

=
1

16
.

The distance between ptar and
(
2

3
,
1

6
,
1

6

)
=

(
1

2
−

2

3

)2
+

(
1

4
−

1

6

)2
+

(
1

4
−

1

6

)2

=
1

24
.

The closest distance is
1

24
, achieved by either choosing

(
1

3
,
1

3
,
1

3

)
or(

2

3
,
1

6
,
1

6

)
. The corresponding power distribution can be achieved by the

respective weighted voting vector [2; 1,1,1] or [5; 3,2,2].
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Four-player weighted voting systems

Editorial Committee

Editor-in-chief has 3 votes; Managing Editor has 2 votes; News Editor

and Feature Editor, each has 1 vote. Total votes = 7, quota = 4.

• Given the weighted voting vector [4; 3,2,1,1], we aim to achieve the

power distribution that matches with hierarchy of influence, where

PChief > PMan > PNews = PFeat.

• Take the 4 editors as A,B,C,D for convenience:

S
(1)
A = {B,C}, S

(2)
A = {B,D}, S

(3)
A = {C,D}, S

(4)
A = {B}, S

(5)
A = {C},

S
(6)
A = {D}; S

(1)
B = {A}, S

(2)
B = {C,D}; S

(1)
C = {A}, S

(2)
C = {B,D};

etc.

The corresponding Banzhaf indexes are

BChief =
1

2
, BMan =

1

6
, BNews =

1

6
, BFeat =

1

6
.
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• Can we design the weights so that the desired hierarchy of influence

is achieved?

Consider a weighted voting system of size 4 as represented by

[q;w1, w2, w3, w4]

with w1 ≥ w2 ≥ w3 ≥ w4, what are the possible power distributions?

We assume

w1 + w2 + w3 + w4

2
< q ≤ w1 + w2 + w3 + w4.

Furthermore, we assume

(a) wi < q for each i; that is, none of the players form a winning

coalition on herself.

(b)
∑

j ̸=iwj ≥ q; that is, none of the players has veto power.
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Republic of PAIN (Pennsylvania and its Neighbors)

Total of 90 votes; quota = 46

Apportionment according to population: New York 38
Pennsylvania 25
Ohio 23
West Virginia 4

Any two of New York, Pennsylvania and Ohio can pass a bill. West

Virginia is a dummy. The Banzhaf indexes of the 4 states are found to

be

BNY = BPen = BOhio =
1

3
and BWV = 0.

Any weighted voting system of the form

[2m;m,m,m,1], m ≥ 2

would yield the same power distribution.
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Theorem

In any 4-player weighted voting system with no veto power, there are only

5 possible power distributions:

(a) B(Pi) = 1
4 for every i.

(b) B(P1) = B(P2) = 1
3, B(P3) = B(P4) = 1

6.

(c) B(P1) = 5
12, B(P2) = B(P3) = 1

4 and B(P4) = 1
12.

(d) B(P1) = 1
2 and B(P2) = B(P3) = B(P4) = 1

6.

(e) B(P1) = B(P2) = B(P3) = 1
3 and B(P4) = 0.

When we impose w3 = w4, then cases (c) and (e) are impossible.
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Remarks

1. It is impossible to achieve

B1 > B2 > B3 = B4

as required by the Editorial Committee.

2. The best weighted voting system for PAIN is case (c), which can be

achieved by [13; 8,6,6,1].

3. For any 4-player weighted voting system with no player having veto

power, there are at most one dummy player in the system. One can

show easily that if there exist more than one dummy in the system,

then at least one player will have veto power.
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Proof of the Theorem

1. In the absence of veto power, any 4-player coalition is a winning

coalition that does not yield any critical instances. Suppose any one

of the players is critical, then that player would have veto power.

2. All the 3-player coalitions are winning coalitions. Otherwise, the miss-

ing player in that 3-player coalition has veto power. These 4 three-

player coalitions are: {P2, P3, P4}, {P1, P3, P4}, {P1, P2, P4}, {P1, P2, P3}.
Since all 3-player coalitions are winning, any single-player coalition

(complement of the respective 3-player coalition) is losing.

3. In any 2-player winning coalition, both players must be critical since

we do not permit single-player winning coalitions.
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The possible 2-player winning coalitions are

{P1, P2}, {P1, P3}, {P1, P4}, {P2, P3}, {P2, P4}, {P3, P4}.

However, if {P1, P2} wins then {P3, P4} must lose;

similarly, if {P1, P3} wins then {P2, P4} must lose;

lastly, if {P1, P4} wins then {P2, P3} must lose; or otherwise.

Therefore, there are two cases of having three 2-player winning coalitions:

{P1, P2}, {P1, P3}, {P1, P4} or {P1, P2}, {P1, P3}, {P2, P3}.
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Various possible number of 2-player winning coalitions

The possible number of two-player winning coalitions can be 0,1,2,3.

Each of the first 3 cases of having 0,1 or 2 two-player coalition generates

one power distribution. The 2 remaining power distributions are generated

when the number of two-player coalitions is 3.

Case (i) There is no 2-player winning coalition.

Every player is critical in each of the four 3-player winning coalitions. This

is because dropping any one player turns a winning three-player winning

coalition into losing (as there is no two-player winning coalition). Total

number of critical instances = 12, and we have equal share of power

among the 4 players.

B(P1) = B(P2) = B(P3) = B(P4) =
1

4
.
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Case (ii) There is only one 2-player winning coalition, which must be

{P1, P2}. Therefore, P1 and P2 are both critical in this coalition and also

in the coalitions {P1, P2, P3} and {P1, P2, P4}.

• On the other hand, P3 and P4 are not critical in {P1, P2, P3} and

{P1, P2, P4} but are critical in {P1, P3, P4} and {P2, P3, P4}.

• Also, P1 is critical in {P1, P3, P4} and P2 is critical in {P2, P3, P4}.

• As a summary, we have

4 critical instances for each of P1 and P2

2 critical instances for each of P3 and P4.

Therefore, B(P1) = B(P2) = 1
3, B(P3) = B(P4) = 1

6.
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Case (iii) If there are two winning 2-player coalitions, then they must be

{P1, P2} and {P1, P3}. This can only occur if w3 > w4. Otherwise, if

w3 = w4, then {P1, P3} winning would imply {P1, P4} winning as well.

• P1 is critical in each of the three 3-player coalitions containing P1,

yielding 5 critical instances for P1.

• P2 is critical in {P1, P2, P4}, {P2, P3, P4} and {P1, P2}.

• P3 is critical in {P1, P3, P4}, {P2, P3, P4} and {P1, P3}.

• P4 is critical in {P2, P3, P4}.

There are 12 critical instances in total. Therefore,

B(P1) =
5

12
, B(P2) = B(P3) =

1

4
and B(P4) =

1

12
.
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Case (iv) There are two cases involving three winning 2-player coalitions.

(a) {P1, P2}, {P1, P3}, {P1, P4} winning

• Each of P2, P3, P4 yields one critical instance in these 2-player win-

ning coalitions while P1 yields three critical instances.

• P1 is critical in the coalitions {P1, P2, P3}, {P1, P2, P4}, {P1, P3, P4}
while P2, P3 and P4 are critical in {P2, P3, P4}. Therefore,

B(P1) =
1

2
, B(P2) = B(P3) = B(P4) =

1

6
.
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(b) We may have {P1, P2}, {P1, P3} and {P2, P3} winning. This occurs only

when w3 > w4.

• Now P4 is never a critical player since removing P4 from any 3-

player coalition leaves one of these three winning 2-player coali-

tions. Therefore, B(P4) = 0.

• Removing any player from {P1, P2, P3} still leaves a winning coali-

tion, but in the other three 3-player coalitions containing P4, the

other two players are critical.

• Here, we have a total of 12 critical instance, with each of P1, P2, P3

being critical 4 times. As a result, we obtain

B(P1) = B(P2) = B(P3) =
1

3
.
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Remarks

1. With a complete enumeration of the power distributions feasible for

weighted voting systems of size n, can one efficiently generate a com-

plete list of feasible power distributions for size n+1 weighted voting

system?

2. If a certain power distribution is desired, can one efficiently construct

a weighted voting system that comes closest to the ideals?
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Strict hierarchy of power B(P1) > B(P2) > · · · > B(Pn).

1. In the case of 4-player weighted voting system, there always exist at

least two players with the same Banzhaf power index.

2. When n = 5, we have [9; 5,4,3,2,1] which yields Banzhaf power

distribution:
(

9
25,

7
25,

5
25,

3
25,

1
25

)
. Note that [8; 5,4,3,2,1] does not in-

duce the above power distribution. This is the only power distribu-

tion, of the 35 possibilities in the 5-player case, with strict hierarchy

of power.

3. When n = 6, [11; 6,5,4,3,2,1] yields
(

9
28,

7
28,

5
28,

3
28,

3
28,

1
28

)
. However,

[15; 9,7,4,3,2,1] yields the power distribution with strict hierarchy(
5

12
,
3

16
,
1

6
,
1

8
,
1

16
,
1

24

)
as desired.
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2.3 Incomparability and desirability

We always consider monotone yes-no voting system — winning coalitions

remain winning if new voters join them.

Let x and y be two players, how to formalize the following intuitive no-

tions:

“x and y have equal power”
“x and y have the same amount of influence”
“x and y are equally desirable in terms of the formation

of a winning coalition”

The bottom line is to see whether x and y are both critical to turn the

coalition Z from losing to winning upon joining the coalition.
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Definition

Suppose x and y are two voters in a yes–no voting system. Then we shall

say that x and y are equally desirable (or, the desirability of x and y is

equal, or the same), denoted x ≈ y, if and only if the following holds:

For every coalition Z containing neither x nor y,
the result of x joining Z is a winning coalition

if and only if
the result of y joining Z is a winning coalition,

We say: “x and y are equivalent” when x ≈ y. In other words, x and y are

equally desirable with reference to the formation of a winning coalition.
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Example

Consider [51; 1,49,50] with 3 players A,B and C. The winning coalitions

are

{A,C}, {B,C} and {A,B,C}.

1. A ≈ B

Test for all coalitions that do not contain A and B. The only coali-

tions containing neither A nor B are the empty coalition (Z1) and the

coalition consisting of C alone (Z2). The result of A joining Z1 is the

same as the result of B joining Z1 (a losing coalition). The result

of A joining Z2 is the same as the result of B joining Z2 (a winning

coalition).

2. A and C are not equivalent

Neither belongs to Z = {B}, but A joining Z yields {A,B} which is

losing while C joining Z yields {B,C} which is winning with 51 votes.
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Definition ‘

For two voters x and y in a yes–no voting system, we say that the desir-

ability of x and y is incomparable , denoted by

x|y,

if and only if there are coalitions Z and Z′, neither one of which contains

x or y, such that the following hold:

1. the result of x joining Z is a winning coalition, but the result of y

joining Z is a losing coalition, and

2. the result of y joining Z′ is a winning coalition, but the result of x

joining Z′ is a losing coalition.

x is critical but not y for coalition Z while y is critical but not x for another

coalition Z′.
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Example

In the US federal system, a House Representative and a Senator are

incomparable. The Vice President and a Senator are not incomparable.

Since the Vice President is the tie breaker, it is not possible that a coalition

with the Vice President is critical while with a senator is not.

Question Which yes–no voting systems will have incomparable voters?

Proposition

For any yes–no voting system, the following are equivalent:

1. There exist voters x and y whose desirability is incomparable.

2. The system fails to be swap robust.
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Proof

1 ⇒ 2

• Assume that the desirability of x and y is incomparable, and let Z and

Z′ be coalitions such that:

Z with x added is winning;
Z with y added is losing;
Z′ with y added is winning; and
Z′ with x added is losing.

• To see that the system is not swap robust, let X be the result of

adding x to the coalition Z, and let Y be the result of adding y to the

coalition Z′. Both X and Y are winning, but the one-for-one swap of

x for y renders both coalitions losing.
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Both Z and Z′ do not contain x and y.

X-winning Y-winning

x y

Z-losing Z -losing

Z ∪ {y} remains to be losing Z′ ∪ {x} remains to be losing.
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2 ⇒ 1

Assume that the system is not swap robust. Then we can choose winning

coalitions X and Y with x in X but not in Y , and y in Y but not in X,

such that both coalitions become losing if x is swapped for y. Let Z be

the result of deleting x from the coalition X, and let Z′ be the result of

deleting y from the coalition Y . Then

Z with x added is X, and this is winning;
Z with y added is losing;
Z′ with y added is Y , and this is winning; and
Z′ with x added is losing.

This shows that the desirability of x and y is incomparable and completes

the proof.

Corollary In a weighted voting system, we do not have voters whose

desirability is incomparable. Say, suppose x’s weight is heavier than y,

while it may be possible that in one coalition x turns a coalition into

winning but y does not, but it is not possible that the situation reverses

in another coalition.
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Proposition

Suppose the two players A and B are equally desirable in a yes-no voting

system, then their Shapley-Shubik index are the same.

Proof

We compare the number of pivotal orderings of A and B. For any ordering

that A pivots, we have the following two possibilities:

(i) B enters later than the pivotal position held by A

Let Z be the collection of players that have entered before A. Ob-

viously, Z is losing and it does not contain A and B. Since Z ∪ {A}
is winning, A and B are equally desirable, so Z ∪ {B} is also winning.

Since Z is a losing coalition, so B is pivotal in the same ordering with

A being swapped by B.
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(ii) B has entered prior to the pivotal position held by A

Let Z′ be the collection of players that have entered before A but

excluding B in a given A-pivoted ordering. Note that Z′∪{B} is losing

and so does Z′ ∪ {A} since A and B are equally desirable. However,

Z′ ∪ {B} ∪ {A} is winning, so B is pivotal in the ordering obtained by

swapping A and B in this A-pivoted ordering.

In both cases, we observe that all A-pivoted orderings become B-pivoted

orderings once A and B are swapped in position. Hence, A and B have

the same number of pivotal orderings. As a result, ϕA = ϕB.
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Remarks

1. Similar argument can be used to show that the Banzhaf indexes are

the same for two players that are equally desirable in a yes-no voting

game.

2. The converse statement is not true in general. Consider a voting

system with 4 players A1, A2, A3 and A4, where the passage of a bill

requires the support of (i) at least one of A1 and A2, (ii) at least one

of A3 and A4. It is easy to show that A1 and A3 are incomparable

since {A2} ∪ {A1} loses but {A2} ∪ {A3} wins. However, the 4 players

share equal power, where

ϕA1
= ϕA2

= ϕA3
= ϕA4

=
1

4
.
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Proposition

The relation of equal desirability is an equivalence relation on the set of

voters in a yes–no voting system. That is, the following statements hold:

1. The relation is reflexive: if x = y (that is, if x and y are literally the

same voter), then x and y are equally desirable.

2. The relation is symmetric: if x and y are equally desirable, then y and

x are equally desirable.

3. The relation is transitive: if x and y are equally desirable and y and z

are equally desirable, then x and z are equally desirable.

Proof (transitivity)

Assume that Z is an arbitrary coalition containing neither x nor z. We

must show that the result of x joining Z is a winning coalition if and only

if the result of z joining Z is a winning coalition.
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(i) y ̸∈ Z

– Since x ≈ y and neither x nor y belongs to Z, the result of x joining

Z is a winning coalition if and only if the result of y joining Z is a

winning coalition.

– Since y ≈ z and neither y nor z belongs to Z, the result of y joining

Z is a winning coalition if and only if the result of z joining Z is a

winning coalition.

– The result of x joining Z is a winning coalition if and only if the

result of z joining Z is a winning coalition, as desired.

winning winning winning

x

Z

y

Z

z

Z

x y» y z»
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(ii) z ∈ Z

– Let A denote the coalition resulting from y leaving Z, so Z =

A ∪ {y}. Assume that Z ∪ {x} is a winning coalition. We want to

show that Z ∪ {z} is also a winning coalition. Now,

Z ∪ {x} = A ∪ {x} ∪ {y}.

– Let Z′ = A ∪ {x}. Thus Z′ ∪ {y} is a winning coalition. Since y ≈ z

and neither y nor z belongs to Z′, we know that Z′ ∪ {z} is also a

winning coalition. But Z′ ∪ {z} = A ∪ {z} ∪ {x}.
– Let Z′′ = A∪{z}. Thus Z′′∪{x} is a winning coalition. Since x ≈ y

and neither x nor y belongs to Z′′, we know that Z′′ ∪ {y} is also a

winning coalition. But Z′′ ∪ {y} = A ∪ {z} ∪ {y} = Z ∪ {z}. Thus,

Z ∪ {z} is a winning coalition as desired.

– A completely analogous argument would show that if Z ∪ {z} is a

winning coalition, then so is Z ∪ {x}. This completes the proof.
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A does not contain x, y and z

Z = A ∪ {y}, Z′ = A ∪ {x}, Z′′ = A ∪ {z}.

Assume that Z ∪ {x} = A ∪ {x, y} is winning, we want to show that

Z ∪ {z} = A ∪ {y, z} is also winning.

winning winning
x, y y, z

A

losing

A

losing

A

losing

x, zy
z x

y
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Proposition

For any two voters x and y in a weighted voting system, the following are

equivalent:

1. x and y are equally desirable.

2. There exists an assignment of weights to the voters and a quota that

realize the system and that give x and y the same weight.

3. There are two different ways to assign weights to the voters and two

(perhaps equal) quotas such that both realize the system, but in one

of the two weightings, x has more weight than y and, in the other

weighting, y has more weight than x.
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Proof

1. 1 ⇒ 2

Assume that x and y are equally desirable and there is a weighting

and quota that realize the system. Let w(x), w(y) and q denote the

weight of x, weight of y and quota, respectively. [w(Z) = total weight

of the coalition Z].

We try to construct a new weighting wn such that with the same

quota

wn(x) = wn(y).

• The new weighting is obtained by keeping the weight of every voter

except x and y the same and setting both wn(x) and wn(y) equal

to the average of w(x) and w(y).
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Assuming Z is a coalition, to show that this new weighting still realizes

the same system, it is necessary to show that Z is winning in the new

weighting if and only if Z is winning in the old weighting.

Case 1 Neither x nor y belong to Z

w(Z) = wn(Z) and so wn(Z) ≥ q if and only if Z is winning.

Case 2 Both x and y belong to Z

wn(Z) = wn(Z − {x} − {y}) + wn(x) + wn(y)

= w(Z − {x} − {y}) +
w(x) + w(y)

2
× 2

= w(Z).
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Case 3 x belongs to Z but y does not belong to Z

Let Z′ = Z − {x} so that wn(Z′) = w(Z′). Consider

wn(Z) = wn(Z
′) + wn(x) = wn(Z

′) +
w(x) + w(y)

2

=
w(Z′) + w(x) + w(Z′) + w(y)

2
=

w(Z) + w(Z − {x} ∪ {y})
2

.

Since x and y are equally desirable, either both Z = Z′∪{x} and Z−{x}∪
{y} = Z′ ∪ {y} are winning or both are losing.

If both are winning, then wn(Z) ≥
q + q

2
= q.

If both are losing, then wn(Z) <
q + q

2
= q.
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2. 2 ⇒ 3

We start with a weighting and quota where x and y have the same

weight.

LH = weight of the heaviest losing coalition

WL = weight of the lightest winning coalition

LH < q ≤ WL.

Let q′ be the average of LH and q. It is seen that q′ still works as a

quota since

LH < q′ < WL.

Let ϵ be any positive number such that

LH + ϵ < q′ < WL − ϵ.

The system is unchanged if we either increase the weight of x by ϵ or

decrease the weight of x by ϵ. There are 2 weightings that realize the

system, one of which makes x heavier than y and the other of which

makes y heavier than x.
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3. 3 ⇒ 1

Assume two weightings w and w′, two quotas q and q′, such that

(i) A coalition Z is winning if and only if w(Z) ≥ q.

(ii) A coalition Z is winning if and only if w′(Z) ≥ q′.

(iii) w(x) > w(y). (iv) w′(y) > w′(x).

We start with an arbitrary coalition Z containing neither x nor y.

Suppose Z ∪{y} is winning so that w(Z ∪{y}) ≥ q. Since w(x) > w(y),

so w(Z∪{x}) ≥ q, thus Z∪{x} is winning. Similarly, Z∪{x} is winning

⇒ Z ∪ {y} is winning.

Example

Consider the yes–no voting system with 3 players whose winning coalitions

are {A,C}, {B,C} and {A,B,C}. The weighted voting system:

[51; 1,49,50] and [51; 49,1,50]

both realize the system. By the above result, we deduce that A ≈ B.
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How about two voters x and y whose desirability is neither equal nor

incomparable? For any two voters x and y in a yes–no voting system, we

say that x is more desirable than y, denoted by

x > y,

if and only if the following hold:

1. for every coalition Z containing neither x nor y, if Z ∪ {y} is winning

then so is Z ∪ {x}, and

2. there exists a coalition Z′ containing neither x nor y such that Z′∪{x}
is winning, but Z′ ∪ {y} is losing.
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Example

Consider the yes-no voting system with minority veto where the 9 voters

are classified into the majority group of 6 voters {M1,M2, . . . ,M6} and the

minority group of 3 voters {m1,m2,m3}. The passage of a bill requires at

least 5 votes from all voters and at least 1 vote from the minority voters.

(a) Any two members in the majority group are equally desirable (same

result is applicable to the minority group).
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Let M1 and M2 be two members in the majority group. Consider any

coalition Z without M1 and M2, we have

Z ∪ {M1} is winning

⇒ Z must contain at least 4 votes from {M3, . . . ,M6,m1,m2,m3}
and at least one minority vote

⇒ Z ∪ {M2} contains at least 5 votes and at least one minority vote

⇒ Z ∪ {M2} is winning

Following similar steps, we have Z ∪ {M2} is winning ⇒ Z ∪ {M1} is

winning. Combining the results, we obtain

Z ∪ {M1} is winning ⇐⇒ Z ∪ {M2} is winning
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(b) For every Z that does not contain x and y, it is easy to establish:

Z ∪ {M1} is winning ⇒ Z ∪ {m1} is winning.

This is because the head count requirement and minority veto require-

ment are satisfied.

However, it is straightforward to choose a coalition Z′ that does not

contain M1 and m1, where Z′ ∪ {m1} is winnning and Z′ ∪ {M1} is

losing. One such example is

Z′ = {M2,M3,M4,M5}.
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Example

In the US federal system, x is a senator and y is the Vice President, then

x > y. Hint: Consider coalition Z where the number of senators is 50 or

above (with the President and one-half majority of Representatives) and

coalition Z′ where the number of senators is 66 (without the President

and two-thirds majority of Representatives).

We write x ≥ y to mean either x > y or x ≈ y. The relation ≥ is called

the desirability relation on individuals.

• The binary relation ≥ is called a preordering because it is transitive

and reflexive.

• A preordering is said to be linear if for every pair x and y, one has

either x ≥ y or y ≥ x.
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Definition A yes–no voting system is said to be linear if and only if there

are no incomparable voters (equivalently, if the desirability relation on

individuals is a linear preordering).

Propositions

1. A yes–no voting system is linear if and only if it is swap robust.

This is a direct consequence of the property that non swap robust

is equivalent to the existence of a pair of voters whose desirability is

incomparable.

Corollary Every weighted voting system is linear.

2. In a weighted voting system we have x > y if and only if x has strictly

more weight than y in every weighting that realizes the system.

• When x > y, it is not possible that x has strictly more weight than y in

one weighting and reverse in the other weighting. Also, the possibility

that x and y have equal weight in any weighting is ruled out.
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Example

Consider the yes-no voting system of 4 players with the following winning

coalitions:

{A,C}, {B,C}, {A,B,C}, {C,D}, {A,C,D}, {B,C,D}, {A,B,D}, {A,B,C,D}.

(a) A and B are “equally desirable”.

Test for all coalitions that do not contain A and B:

Z1 = ϕ,Z2 = {C}, Z3 = {D}, Z4 = {C,D}.

The result of A joining any of these Zi, i = 1,2,3,4, is the same as

that of B joining Zi.
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(b) C is more desirable than D, denoted by C > D, since the following

coalitions that do not contain C and D:

Z′
1 = ϕ,Z′

2 = {A}, Z′
3 = {B}, Z′

4 = {A,B},

we have

Z′
1

∪
{C} is losing and Z′

1

∪
{D} is losing

Z′
4

∪
{C} is winning and Z′

4

∪
{D} is winning

while

Z′
i

∪
{C} is winning but Z′

i

∪
{D} is losing, i = 2,3.

(c) The given yes-no voting system is a weighted voting system. Possible

assignments of voters’ weights and quota that realize the system are:

{4; 1,1,3,2}, {9; 1,3,8,5}, {9; 3,1,8,5}, {9; 2,2,8,5} etc.
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Remarks

1. The first and the fourth weighted voted assignments give the same

weight to A and B.

2. In the second system, B has more weight than A; while in the third

system, A has more weight than B. The fourth system is obtained

by taking the weight of A and B to be equal to the average of the

weights of A and B in the second or the third system.

3. Since C is more desirable than D, the weight of C in any assignment

is always greater than that of D.

4. The given yes-no voting system is swap robust (since it is a weighted

voting system), so there are no incomparable voters. Indeed

A ≈ B < D < C.
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