
Mathematical Models in Economics and Finance

Topic 2 – Analysis of powers in voting systems

2.1 Weighted voting systems and yes-no voting systems

2.2 Power indexes: Shapley-Shubik index and Banzhaf index

2.3 Case studies of power indexes calculations

2.4 Probabilistic characterizations of power indexes

2.5 Potential blocs, quarreling paradoxes and bandwagon effects

2.6 Power distribution in weighted voting systems

2.7 Incomparability and desirability
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2.1 Weighted voting systems and yes-no systems

Voting procedure: “support” or “object” a given motion/bill (no “ab-

stain”).

Weighted voting system – individuals/political bodies can cast more bal-

lots than others. For example, voting by stockholders in a corporation,

more votes being held by countries with stronger economic powers in the

International Monetary Authority.

Question: How to define voting power in a weighted voting system?

• Power is not a trivial function of one’s strength as measured by his

number of votes.

• Voters with pivotal though small number of votes may have higher

influential power per each vote held.
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Define two indices that indicate the real distribution of influence.

• Useful in evaluating some of the existing democratic institutions in

terms of fairness, concealed biases, etc.

Remark

No mathematical theory will suffice to reveal all of the behind-the-scene

nuances - influences of party loyalty, persuasion, lobbying, fractionalism,

bribes, gratuities, campaign financing, etc.

A new field called GOVERNMETRICS
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Weighted majority voting game is characterized by a voting vector

[q;w1, w2, · · · , wn]

where there are n voters, wi is the voting weight of player i; N =

{1,2, · · · , n} be the set of all n voters; q is the quota (minimum num-

ber of votes required to pass a bill).

Let S be a typical coalition, which is a subset of N . A coalition wins a

bill (called winning) whenever ∑
i∈S

wi ≥ q.

It is natural to observe “complement of a winning coalition should be

losing”. As a result, we require the quota to observe q >
1

2

∑
i∈N

wi in order

to avoid two disjoint coalitions that are both winning.
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Examples

1. [51; 28,24,24,24]; the first voter is much stronger than the last 3

since he needs only one other to pass an issue, while the other three

must all combine in order to win.

2. [51; 26,26,26,22], the last player seems powerless since any winning

coalition containing him can just as well win without him (a dummy).

3. In the game [q; 1,1, · · · ,1], each player has equal power. This is called

a pure bargaining game.

4. [51; 40,30,20,10] and [51; 30,25,25,20] seem identical in terms of

voting influence, since the same set of coalitions are winning in both

voting vectors.
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5. Games such as [3; 2,2,1], [8; 7,5,3] and [51; 49,48,3] are identical to

[2; 1,1,1] in terms of power, since they give rise to the same collection

of winning coalitions.

6. If we add to the game [3; 2,1,1] the rule that player 2 can cast an

additional vote in the case of 2 to 2 tie, then it is effectively [3; 2,2,1].

If player 1 can cast the tie breaker, then it becomes [3; 3,1,1] and he

is the dictator. He forms a winning coalition by himself.

7. In the game [50(n − 1) + 1; 100,100, · · · ,100,1], the last player has

the same power as the others when n is odd; the game is similar to

one in which all players have the same weights. For example, when

n = 5, we have [201; 100,100,100,100,1]. Any 3 of the 5 players can

form a winning coalition.
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Dummy players

Any winning coalition that contains such an impotent voter could win

just as well without him.

Examples

• Player 4 in [51; 26,26,26,22].

• Player n in [50(n − 1) + 1; 100; 100, · · · ,100,1] is a dummy when n

is even. For example, take n = 4, we have [151; 100,100,100,1].

Obviously, the last player is a dummy.

• In [10; 5,5,5,2,1,1], the 4th player with 2 votes is a dummy. The

5th and 6th players with only one vote are sure to be dummies. The

collection of dummies remains to be a dummy collection. This is

because one cannot turn a losing coalition into a winning coalition by

adding a dummy one at a time.
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Example

Consider [16; 12,6,6,4,3], player 5 with 3 votes is a dummy since no

subset of the numbers 12,6,6,4 sums to 13,14 or 15. Therefore, player

5 could never be pivotal in the sense that by adding his vote a coalition

would just reach or surpass the quota of 16.

Example

If we add the 8th player with one vote into [15; 5,5,5,5,2,1,1] so that

the new game becomes [15; 5,5,5,5,2,1,1,1], the 4th player in the new

voting game is not a dummy since sum of votes of some coalition may

assume the value of 13.
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Notion of Power

• The index should indicate one’s relative influence, in some numerical

way, to bring about the passage or defeat of some bill.

• The index should depend upon the number of players involved, on

one’s fraction of the total weight, and upon how the remainder of

the weight is distributed (a critical swing-man that causes a desired

outcome).

• A winning coalition is said to be minimal winning if no proper subset

of it is winning. A coalition that is not winning is called losing. Tech-

nically, the one who is the ‘last’ to join a minimal winning coalition is

particularly influential.

• A voter i is a dummy if every winning coalition that contains him

is also winning without him, that is, he is in no minimal winning

coalition. A dummy has ZERO power.
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Example

Party Leader No. of seats
Liberals Pierre E. Trudeau 109
Tories Robert L. Stanfield 107
New Democrats David Lewis 31
Others 17

• Though Liberals has the largest number of seats, none of the parties

has the majority. Any two of the three leading parties can form a

coalition and obtain the majority, so the first three parties had equal

power. Other small parties are all dummies.
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Veto Power and Dictators

A player or coalition is said to have veto power if no coalition is able

to win a ballot without his or their consent. A subset S of voters is a

blocking coalition or has veto power if and only if its complement N − S

is not winning. We also require that S itself is losing in order to be a

blocking coalition, otherwise S is a dictatorial coalition (see “dictator”

below).

Given that q > 50% of total votes, a player i is a dictator if he forms a

winning coalition {i} by himself.

• If the dictator says “yes”, then the bill is passed. If the dictator says

“no”, then the bill is not passed (veto power).

• If a dictator exists, then all other players are dummies.
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Example

Player 1 has veto power in [51; 50,49,1] and [3; 2,1,1]. In the last case,

if he is the chairman with additional power to break ties, then the game

becomes [3; 3,1,1] and now he becomes a dictator.

Example

The ability of an individual to break tie votes in the pure bargaining game
[
n
2 +1;1,1, · · · ,1

]
when n is even

[
n+1
2 ; 1,1, · · · ,1

]
when n is odd

adds power when n is even and adds nothing when n is odd. Actually,

when n is odd, tie votes will not occur.
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Properties on dummies

A collection of dummies can never turn a losing coalition into a winning

coalition.

In other words, it is not possible that S∪{D1, · · · , Dm} is winning but S is

losing since the dummies can be successively deleted while the coalition

remains to be winning.

Corollary

If both “d” and “ℓ” are dummies, then the coalition {d, ℓ] is dummy.
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Theorem

In a weighted voting game, let “d” and “ℓ” be two voters with votes xd
and xℓ, respectively. Suppose “d” is a dummy and xℓ ≤ xd, then “ℓ” is

also a dummy.

Proof

Assume the contrary. Suppose “ℓ” is not a dummy, then there exists a

coalition S that does not contain the dummy “d” such that S is losing

but S ∪ {ℓ} is winning. As a remark, we just require S not to contain

“d” while S may contain dummies other than “d”. Now, n(S) < q while

n(S ∪ {ℓ}) ≥ q. Since xℓ ≤ xd, so n(S ∪ {d}) ≥ q, contradicting that “d” is

a dummy.

Corollary

If the coalition {d, ℓ} is dummy, then both “d” and “ℓ” are dummies. This

is obvious since n({d, ℓ}) ≥ max(xd, xℓ).
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Yes-no voting system

A yes–no voting system is simply a set of rules that specify exactly which

collections of “yes” votes yield passage of a bill.

Under what condition that a yes–no voting system is a weighted system

(with weights assigned for the voters and quota)?

Example

Bill to be passed: Grades of this course are based on “absolute grading”.

Set of players, N = {professor, tutor, Chan, Lee, Cheung, Wong, Ho}.

Yes–no rule requires professor, at least one from “tutor and Chan” and

number of students must be at least 3. Each of the following play-

er/coalition, “professor” and “tutor and Chan”, has veto power.
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United States federal system

• 537 voters in this system: 435 House of Representatives, 100 Senate

members, Vice-President and President.

• Vice President plays the role of tie breaker in the Senate

• President has veto power that can be overridden by a two-thirds vote

of both the House and the Senate.

To pass a bill, it must be supported by either one of the following three

sets of votes

1. 218 or more representatives and 51 or more senators and President

2. 218 or more representatives and 50 senators and both Vice President

and President

3. 290 or more representatives and 67 or more senators.
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System to amend the Canadian constitution (since 1982)

• In addition to the House of Commons and the Senate, approval by

two-thirds majority of provincial legislatures, that is, at least 7 of

the 10 Canadian provinces subject to the proviso that the approving

provinces have among them at least half of Canada’s population.

• Based on 1961 census

Prince Edward Island (1%)
Newfoundland (3%)
New Brunswick (3%)
Nova Scotia (4%)
Manitoba (5%)
Saskatchewan (5%)
Alberta (7%)
British Columbia (9%)
Quebec (29%)
Ontario (34%)
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Swap robustness and trade robustness

Definition (swap robust)

A yes–no voting system is said to be swap robust if a “swap” of one

player for one between two winning coalitions leaves at least one of the

two coalitions winning.

• Start with two arbitrary winning coalitions X and Y

– arbitrary player x in X (not in Y ) and arbitrary player y in Y (not

in X)

– let X ′ and Y ′ be the result of exchanging x and y

– either X ′ or Y ′ is winning for swap robustness
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Proposition

Every weighted voting system is swap robust.

Proof

1. If x and y have the same weight, then both X ′ and Y ′ are winning.

2. If x is heavier than y, then Y ′ weighs strictly more than Y . The weight

of Y ′ certainly exceeds the quota, and thus Y ′ is winning.

3. If y is heavier than x, then a similar argument as in (2) holds.

To show a voting system to be not swap robust, we produce two winning

coalitions X and Y and a trade between them that renders both losing.

Intuitively, X and Y should both be “almost losing” and make both actu-

ally losing by a one-for-one trade. We seek for the appropriate coalitions

X and Y among the minimal winning coalitions.
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Proposition

The US federal system is not swap robust.

Proof

X = {President, 51 shortest senators and 218 shortest House Representatives}

Y = {President, 51 tallest senators and 218 tallest House Representatives}

Let x be shortest senator and y be the tallest House Representative.

Both X and Y are winning coalitions; x ∈ X but x ̸∈ Y ; y ∈ Y but y ̸∈ X.

After swapping, X ′ is a losing coalition since it has only 50 senators and

Y ′ is a losing coalition because it has only 217 Representatives.

Corollary The US federal system is not a weighted voting system.
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Proposition

The procedure to amend the Canadian Constitution is swap robust (later

shown to be not weighted).

Proof

Suppose X and Y are winning coalitions, x ∈ X, x ̸∈ Y while y ∈ Y but

y ̸∈ X. We must show that at least one of X ′ and Y ′ is still a winning

coalition. That is, at least one of X ′ and Y ′ still satisfies both conditions:

(i) It contains at least 7 provinces.

(ii) The provinces represent at least half of the Canadian population.

The first condition is obvious. If x has more population than y, then Y ′

is a winning coalition. Similar argument when x has a smaller population

than y.
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Definition (trade robust)

A yes–no voting system is said to be trade robust if an arbitrary exchange

of players (a series of trades involving groups of players) among several

winning coalitions leaves at least one of the coalitions winning.

1. The exchanges of players are not necessarily one-for-one as they are

in swap robustness.

2. The trades may involve more than two coalitions.

For example, consider 3 winning coalitions X, Y and Z.

(i) 3 players are exchanged out from X, 2 to Y and 1 to Z;

(ii) 4 players are exchanged out from Y , 1 to X and 3 to Z;

(iii) 3 players are exchanged out from Z, 2 to X and 1 to Z;
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Proposition

Every weighted voting system is trade robust.

Proof

• A series of trades among several winning coalitions leaves the total

weight of all these coalitions added together unchanged. Hence, the

average weight of these coalitions is unchanged.

• Suppose we start with several winning coalitions in a weighted voting

system, then their average weight at least meets quota. After the

trades, the average weight of the coalitions is unchanged and at least

meets quota. Hence, at least one of the coalitions must meet quota

(at least one of the resulting coalitions is winning).
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Proposition The procedure to amend the Canadian Constitution is not

trade robust.

Proof

X Y
Prince Edward Island (1%) New Brunswick (3%)
Newfoundland (3%) Nova Scotia (4%)
Manitoba (5%) Manitoba (5%)
Saskatchewan (5%) Saskatchewan (5%)
Alberta (7%) Alberta (7%)
British Columbia (9%) British Columbia (9%)
Quebec (29%) Ontario (34%)

• Let X ′ and Y ′ be obtained by trading Prince Edward Island and New-

foundland for Ontario.

• X ′ is a losing coalition because it has too few provinces (having given

up two provinces in exchange for one).

• Y ′ is a losing coalition because the eight provinces in Y ′ represent less

than half of Canada’s population.

24



Corollary

The procedure to amend the Canadian Constitution is not a weighted

voting system.

Theorem (proof omitted)

A yes–no voting system is weighted if and only if it is trade robust.

Minority veto

For example, we have a majority group of 5 voters and a minority group

of 3 voters. The passage requires not only approval of at least 5 out of

the 8 voters, but also approval of at least 2 of the 3 minority voters. This

system is swap robust but not trade robust.

Hint Consider how to make one coalition to have more total number

of voters but do not have enough minority voters while the other

coalition has less total number of voters but more minority voters

after the trades.
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Illustration

Majority group of 5 voters minority group of 3 voters

To form a winning coalition, we must have

• at least 5 out of 8 total voters
• at least 2 out of 3 minority voters

X = {M1,M2,M3,m1,m2} Both X&Y are winning coalitions
Y = {M3,M4,M5,m2,m3}
X ′ = {M1,M2,M3,M4,M5,m2} Both X ′&Y ′ are losing coalitons
Y ′ = {M3,m1,m2,m3}

Hence, the system is NOT trade robust since X ′ does not satisfy the mi-

nority requirement and Y ′ does not satisfy the “total votes” requirement.

Swap robustness is easily seen since the requirement of 5 votes out of 8

voters is satisfied under one-for-one trade and the minority requirement is

always satisfied by at least one of the coalitions after one-for-one trade.
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Intersection of weighted voting systems and dimension theory

The procedure to amend the Canadian Constitution can be constructed

by “putting together” two weighted systems.

• W1 = collection of coalitions with 7 or more provinces

• W2 = collection of coalitions representing at least half of Canada’s

population

A coalition is winning if and only if it is winning in both System I and

System II.

W = W1 ∩W2.

Question How to construct a non-weighted system in terms of intersection

of weighted ones?
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Dimension of a yes-no voting system

A yes–no voting system is said to be dimension k if and only if it can be

represented as the intersection of exactly k weighted voting systems, but

not as the intersection of k − 1 weighted voting systems.

For example, the procedure to amend the Canadian Constitution is of

dimension 2 since the passage requires two separate weighted voting sys-

tems with regard to “population” and “provinces”.
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Proposition

The US federal system has dimension 2.

System I: quota = 67 System II: quota = 290

weight 0 to House Representative weight 1 to House Representative
weight 1 to Senator weight 0 to Senator
weight 0.5 to Vice President weight 0 to Vice President
weight 16.5 to President weight 72 to President

System I is meant for the Senate (veto power of the President and tie

breaker role of the Vice President; sum of weights of P & VP = 17,

weight of P ≥ 16 and weight of VP > 0). System II is meant for the

House, with veto power of the President.
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Let X be a minimal winning coalition. Then X is one of the following 3

kinds of coalitions:

1. X consists of 218 House members, 51 Senators and the President

2. X consists of 218 House members, 50 Senators, the Vice President

and the President

3. X consists of 290 House members and 67 Senators.

All these 3 kinds of coalitions achieve quota in both Systems I and II.
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Conversely, how to find the minimal winning coalitions that satisfy both

weighted voting systems?

Hint (With the President)

In System I, weight of the President is 16.5, so the other members

of X must contribute at least weight 50.5 to the total System I. X

must contain either 51 (or more) senators or at least 50 senators

and the Vice President.

Looking at System II, which is at least 290 including the 72

contributed by the President. So X must also contain at least

290− 72 = 218 House Representatives.
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Proposition

Suppose S is a yes–no voting system for the set V of voters, and let

m be the number of losing coalitions in S. It is then possible to find

m weighted voting systems with the same set V of voters such that a

coalition is winning in S if and only if it is winning in every one of these

m weighted systems.

Proof

For each losing coalition L in S, we construct an associated weighted

voting system. Let |L| be the number of voters in L. Every voter in L

is given weight −1. Every voter not in L is given weight 1. Quota is

set at −|L| + 1. The possibility that a coalition is losing if and only if it

contains exactly all the voters in this particular losing coalition L. Then

every other coalition is a winning coalition in this weighted voting system

(including any proper subset of L).
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• If a coalition is winning in S, then it is winning in each of these

weighted systems.

• Conversely, if a coalition is winning in each of these weighted systems,

then it is a winning coalition in S (a losing coalition in S must lose in

one of these weighted voting systems).

Unfortunately, this procedure is enormously inefficient since there may be

too many losing coalitions.

Puzzle: Since we allow negative values for votes and quota, every proper

subset of the losing coalition L also wins in the weighted voting system

associated with L.
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Alternative proof

• Define a maximal losing coalition to be a losing coalition that becomes

winning with the addition of any one voter outside the losing coalition

(implicitly all dummies are included in any of these maximal losing

coalitions). Any subset of a maximal losing coalition is also losing.

• We identify all these distinct maximal losing coalitions as L1, . . . , Lm.

• For each maximal losing coalition Li, we construct a weighted voting

system. Let |Li| be the number of voters in Li. Every voter in Li

is assigned weight 1, while every voter not in Li is assigned weight

|Li| + 1. The quota is set at |Li| + 1. A subset of Li is losing under

the associated weighted system since the total weight is less than the

quota |Li|+1.

• Under the intersection of these weighted voting systems:

coalition C in S is losing (one of these Li’s or a subset of some Li)

⇔ coalition C is losing in at least one of these weighted voting system
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Example – Yes-no voting system to decide on grading policy

The professor, tutor and 33 students vote to decide whether “absolute

grading” should be applied in assigning the grades of this course.

Voting rule 1

1. The professor, tutor and a particular student A each has veto power.

2. To pass the proposal, the voting rule requires yes votes from the

professor, tutor, student A and at least 20 other students.

Note that all winning coalitions must contain the professor, tutor and

student A. Any arbitrary trades among the winning coalitions involve

only the remaining 32 students.
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To show trade robustness, since there are at least 20 other students in

the winning coalitions on average, this average remains unchanged after

any series of arbitrary trades. There must exist a coalition with at least

20 other students after the trades. This represents a winning coalition.

Hence, the yes-no voting system is trade robust, so it can be represented

as a weighted voting system. To find the weighted voting vector, we let

w represent the weight of each of the other students is one. The quota

q must observe

2w +32 < q and 3w +20 ≥ q

so that 3w +20 > 2w +32 ⇔ w > 12. Suppose we pick w = 13, then

59 = 3× 13+ 20 ≥ q > 2× 13+ 32 = 58 so that q = 59.

A possible representation of the weighted vector is [59; 13,13,13,1,1, . . . ,1,1].
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Voting rule 2

We modify voting rule 1 on setting “veto power”. Now the veto power is

held by the professor or “tutor and student A” together. That is, tutor

and student A each does not hold veto power individually. To pass the

proposal, the new rule requires yes votes from at least one of tutor and

student A, and 20 other students.

It is easily seen that the new voting rule is NOT swap robust. To show

the claim, we consider the following pair of winning coalitions:

X1 = {P, T, S1, S2, . . . , S20} and X2 = {P,A, S13, S14, . . . , S32}.

Suppose we transfer S1 from X1 to X2 and A from X2 to X1, the two

remaining coalitions are both losing. Therefore, this yes-no system is not

a weighted voting system.
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However, it can be represented as the intersection of 3 weighted voting

systems.

System W1 System W2 System W3

q1 = 1 q2 = 1 q3 = 20
wP = 1, wT = wA = 0 wP = 0, wT = wA = 1 wP = wT = wA = 0

wS1
= wS2

= . . . = wS32
= 0 wS1

= wS2
= . . . = wS32

= 0 wS1
= wS2

= . . . = wS32
= 1

W = W1 ∩W2 ∩W3
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2.2 Power indexes

Shapley-Shubik power index

1. One looks at all possible orderings of the n players, and consider this

as all of the potential ways of building up toward a winning coalition.

For each one of these permutations, some unique player joins and

thereby turns a losing coalition into a winning one, and this voter is

called the pivot.

2. In the sequence of player x1, x2, · · · , xi−1, xi, · · · , xn, {x1, x2, · · · , xi} is a

winning coalition but {x1, x2, · · · , xi−1} is losing, then i is in the pivotal

position.

3. What is the probability that a particular voter is the pivot? The

expected frequency with which a voter is the pivot, over all possible

orderings of the voters, is taken to be a good indication of his voting

power.
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Example – 4-player weighted voting game

The 24 permutations of the four players 1,2,3 and 4 in the weighted

majority game [51; 40,30,20,10] are listed below. The “*” indicates

which player is pivotal in the corresponding ordering.

1 2∗3 4 2 1∗3 4 3 1∗2 4 4 1 2∗3

1 2∗4 3 2 1∗4 3 3 1∗4 2 4 1 3∗2

1 3∗2 4
�



�
	2 3 1∗4

�



�
	3 2 1∗4

�



�
	4 2 1∗3

1 3∗4 2 2 3 4∗ 1 3 2∗4 1 4 2∗3 1

1 4 2∗ 3
�



�
	2 4 1∗ 3

�



�
	3 4 1∗ 2

�



�
	4 3 1∗ 2

1 4 3∗ 2 2 4 3∗ 1 3 4 2∗ 1 4 3 2∗ 1

For Player 1 winning coalitions consisting of 2 players.

�� �� winning coalitions consisting of 3 players.
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Shapley-Shubik power index for the ith player is

ϕi =
number of sequences in which player i is a pivot

n!

and we write ϕ = (ϕ1, · · · , ϕn).

Here, we assume that each of the n! alignments is equiprobable.

The power index can be expressed as

ϕi =
∑ (s− 1)!(n− s)!

n!

with
∑
i∈N

ϕi = 1


where s = |S| = number of voters in set S. The summation is taken over

all winning coalitions S for which S − {i} is losing.
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Counting permutations for which a player is pivotal in achieving minimal

winning coalitions

• Player 1 is pivotal in 3 coalitions (namely {1,2,3}, {1,2,4}, {1,3,4})
consisting of 3 players and in 2 coalitions (namely {1,2}, {1,3}) con-

sisting of two players.

ϕ1 = 3
(3− 1)!(4− 3)!

4!
+ 2

(2− 1)!(4− 2)!

4!
=

10

24
.

• For player 2, she is pivotal in {1,2,3} and {1,2,4} with 3 players and

{1,2} with 2 players. Therefore

ϕ2 = 2
(3− 1)!(4− 3)!

4!
+

(2− 1)!(4− 2)!

4!
=

6

24
.

We have

ϕ =
(10,6,6,2)

24
.
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Example – A bloc versus singles

Suppose we have n players and that a single block of size b forms. Consider

the resulting weighted voting system: [q; b,1,1, · · · ,1︸ ︷︷ ︸
n− b of these

].

• n− b+ 1 is just the number of distinct orderings. The b bloc will be

pivotal precisely when the initial sequence of ones is of length at least

q − b but not more than q − 1.

• The b bloc is pivotal when the initial sequence of ones is any of the

following lengths:

q − 1, q − 2, · · · , q − b.

Note that there are n − b ones available, so the above statement is

valid provided that n − b ≥ q − 1 and q > b (which is equivalent to

b < q ≤ n− b+1).
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• Under the assumption of b < q ≤ n− b+ 1, there are b possible initial

sequences of ones that make the bloc pivotal, so

Shapley-Shubik index of the block of size b

=
number of orderings in which b is pivotal

total number of distinct orderings

=
b

n− b+1
.

The Shapley-Shubik index is higher than the percentage of votes of b/n.

The formation of a block increases the voting power.
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Banzhaf index

• Consider all significant combinations of “yes” or “no” votes, rather

than permutations of the players as in the Shapley-Shubik index.

• A player is said to be marginal, or a swing or critical, in a given

combination of “yes” and “no” if he can change the outcome.

• Let bi be the number of voting combinations in which voter i is

marginal; then βi =
bi∑
bi
.
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Assuming that all voting combinations are equally probable.

The game is [51; 40,30,20,10]. For the second case, if Player 1 changes

from Y to N , then the outcome changes from “Pass” to “Fail”.

Computation of the Banzhaf Index

Players Pass/Fail Marginal

1 2 3 4 P F 1 2 3 4

Y Y Y Y P

Y Y Y N P X

Y Y N Y P X X

Y N Y Y P X X

N Y Y Y P X X X

Y Y N N P X X

Y N Y N P X X
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N Y Y N F X X

Y N N Y F X X

N Y N Y F X X

N N Y Y F X X

Y N N N F X X

N Y N N F X

N N Y N F X

N N N Y F

N N N N F

24× β = (10,6,6,2)

Looking at Y Y NN (pass) and NY NN (fail), Player 1 can serve as the

defector who gives the swing from Pass to Fail in the first case and Fail to

Pass in the second case. We expect that the number of swings of winning

into losing effected by a particular player is the same as the number of

swings of losing into winning by the same player.
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Example

Sometimes symmetry can save us writing out all n! orderings. For exam-

ple, consider the weighted majority game

[5; 3,2,1,1,1,1].

Since the “1” players are all alike, we need to write out only 6 · 5 = 30

distinct orderings (instead of 6! = 720):

321111 231111 213111 211311 211131 211113

312111 132111 123111 121311 121131 121113

311211 131211 113211 112311 112131 112113

311121 131121 113121 111321 111231 111213

311112 131112 113112 111312 111132 111123
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Notice that the 1’s pivot 12/30 of the time, but since there are four of

them, each 1 pivots only 3/30 of the time. We get

Shapley-Shubik index = ϕ =
(
12

30
,
6

30
,
3

30
,
3

30
,
3

30
,
3

30

)
= (0.4,0.2,0.1,0.1,0.1,0.1).

Power as measured by the Shapley-Shubik index in a weighted voting

game is not proportional to the number of votes cast. For instance, the

player with 3/9 = 33
1

3
% of the votes has 40% of the power.
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Use the same game for the computation of the Banzhaf index

Types of winning Number of ways Number of swings for

coalitions with this can occur 3 2 1

5 votes: 32 1 1 1

311 6 = 4C2 6 12

2111 4 = 4C3 4 12

6 votes: 321 4 = 4C1 4 4

3111 4 = 4C3 4

21111 1 = 4C4 1

7 votes: 3211 6 = 4C2 6

31111 1 = 4C4 1

22 10 24

We do not need to include those winning coalitions of 8 or 9 votes, since

not even the player with 3 votes can be critical to them.
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Remark

It suffices to consider the swings only in winning coalitions in the calcu-

lation of the Banzhaf index. A defector that turns a winning coalition

into a losing coalition also gives the symmetric swing that turns a losing

coalition into a winning coalition.

The numbers in the second column are derived from the theory of com-

binations. For instance, the number of ways that you could choose 311

from 321111 is 4C2 = 6.

β =
(
22

56
,
10

56
,
6

56
,
6

56
,
6

56
,
6

56

)
≈ (0.392,0.178,0.107,0.107,0.107,0.107).

Comparing this with ϕ, we see that the two indices turn out to be quite

close in this case, with β giving slightly less power to the two large players

and slightly more to the small players.
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2.3 Case studies of power indexes calculations

United Nations Security Council

1. Big “five” – permanent member each has veto power; ten

“small” countries whose (non-permanent) membership rotates.

2. It takes 9 votes, the “big five” plus at least 4 others to carry an issue.

For simplicity, we assume no “abstain” votes. The game is [39; 7,7,7,7,

7,1,1, · · · ,1]. Why? Let x be the weight of any of the permanent

member and q be the quota. Then

4x+10 < q and q ≤ 5x+4

so that 4x + 10 < 5x + 4 giving x > 6. Taking x = 7, we then have

38 < q ≤ 39. We take q = 39.
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3. A “small” country i can be pivotal in a winning coalition if and only if

S contains exactly 9 countries including the big “five”. There are 9C3

such different S that contain i since the remaining 3 “small” countries

are chosen from 9 “small” countries (other than country i itself).

For each such S, the corresponding coefficient in the Shapley-Shubik

formula for this 15-person game is
(9− 1)!(15− 9)!

15!
. Hence, ϕS =

9C3 ×
8!6!

15!
≈ 0.001863. Any “big-five” has index ϕb =

1− 10ϕS
5

=

0.1963.

4. Old Security Council before 1963, which was

[27; 5,5,5,5,5,1,1,1,1,1,1].

What is the corresponding yes-no voting system?

Answer for ϕ : ϕb =
1

5
·
76

77
;ϕS =

1

6
·
1

77
.
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Canadian Constitutional Amendment

Investigate the voting powers exhibited in a 10-person game between the

provinces, and to compare the results with the provincial populations.

The winning coalitions or those with veto power can be described as

follows. In order for passage, approval is required of

(a) any province that has (or ever had) 25% of the population,

(b) at least two of the four Atlantic provinces, and

(c) at least two of the four western provinces that currently contain to-

gether at least 50% of the total western population.
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Veto power

Recall that a blocking coalition (holding veto power) is a subset of players

whose complement is not winning. Using the current population figures,

the veto power is held by

(i) Ontario (O) and Quebec (Q),

(ii) any three of the four Atlantic (A) provinces [New Brunswick (NB),

Nova Scotia (NS), Prince Edward Island (PEI), and Newfoundland

(N)],

(iii) British Columbia (BC) plus any one of the three prairie (P ) provinces

[Alberta (AL), Saskatchewan (S), and Manitoba (M)], and

(iv) the three prairie provinces taken together.
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In calculating the Shapley-Shubik index of Quebec or Ontario, it is nec-

essary to list all possible winning coalitions since any of these winning

coalitions must contain Quebec and Ontario.

Winning Provincial Coalitions

Type S s No. of such S

1 1P , 2A , BC, Q, O 6 18

2 2P , 2A , BC, Q, O 7 18

3 3P , 2A, Q, O 7 6

4 1P , 3A , BC, Q, O 7 12

5 3P , 2A , BC, Q, O 8 6

6 2P , 3A , BC, Q, O 8 12

7 3P , 3A, Q, O 8 4

8 1P , 4A , BC, Q, O 8 3

9 3P , 3A , BC, Q, O 9 4

10 2P , 4A , BC, Q, O 9 3

11 3P , 4A, Q, O 9 1

12 3P , 4A , BC, Q, O 10 1

Total: 88
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Ontario’s Shapley-Shubik index

φO =
[18(5!4!) + 36(6!3!) + 25(7!2!) + 8(8!1!) + 1(9!0!)]

10!
=

53

168

• There are 18 winning coalitions that contain 6 provinces. In order that

Ontario serves as the pivotal player, 5 provinces are in front of her and

4 provinces are behind her. This explains why there are altogether

18(5!4!) permutations in these 6-province winning coalitions.

• Ontario and Quebec are equivalent in terms of influential power (though

their populations are different).
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British Columbia

Listing of all winning coalitions that upon deleting British Columbia the

corresponding coalition becomes losing. These are the winning coalitions

that British Columbia can serve as the pivotal player.

Type          S s No. of such S

1 1P, 2A, BC, Q, O 6 3C1 × 4C2 =18

2 1P, 3A, BC, Q, O 7 3C1 × 4C3 =12

3 1P, 4A, BC, Q, O 8 3C1 × 4C4 =3

4 2P, 2A, BC, Q, O 7 3C2 × 4C2 =18

5 2P, 3A, BC, Q, O 8 3C2 × 4C3 =12

6 2P, 4A, BC, Q, O 9 3C2 × 4C4 =3

• Note that we exclude those coalitions with 3 prairie provinces since the

deletion of British Columbia does not cause the coalition to become

losing.

ϕBC =
18(5!4!) + 30(6!3!) + 15(7!2!) + 3(8!1!)

10!
.
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Atlantic provinces

We consider winning coalitions that contain a particular Atlantic province

and one of the three other Atlantic provinces.

Type S s No. of such S

1 Asp,1A,1P,BC,Q,O 6 3C1 × 3C1 = 9

2 Asp,1A,2P,BC,Q,O 7 3C1 × 3C2 = 9

3 Asp,1A,3P,BC,Q,O 8 3C1 = 3

4 Asp,1A,3P,Q,O 7 3C1 = 3

ϕAsp =
9(5!4!) + 12(6!3!) + 3(7!2!)

10!
.
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Prairie provinces

We consider winning coalitions that contain

(i) a particular prairie province and British Columbia

(ii) a particular prairie province and two other prairie provinces

Type          S s No. of such S

1 Psp, 2A, BC, Q, O 6 6

2 Psp, 3A, BC, Q, O 7 4

3 Psp, 4A, BC, Q, O 8 1

4 Psp, 2P, 2A, Q, O 7 6

5 Psp, 2P, 3A, Q, O 8 4

6 Psp, 2P, 4A, Q, O 9 1

ϕPsp =
6(5!4!) + 10(6!3!) + 5(7!2!) + 8!1!

10!
.
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Shapley-Shubik Index Provinces

Province (in %) % Population /Population

BC 12.50 9.38 1.334

AL 4.17 7.33 0.570

S 4.17 4.79 0.872

M 4.17 4.82 0.865

(4 Western) (25.01) (26.32) (0.952)

O 31.55 34.85 0.905

Q 31.55 28.94 1.092

NB 2.98 3.09 0.965

NS 2.98 3.79 0.786

PEI 2.98 0.54 5.53

N 2.98 2.47 1.208

(4 Atlantic) (11.92) (9.89) (1.206)

• British Columbia has a higher index value per capita compared to

other Western provinces.
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Power of the major stockholders

• Consider a corporation with one major stockholder X who controls

40% of the stock, and suppose the remainder is split evenly among

60 other stockholders, each having 1%.

• There are 61 players. Since the 60 minor stockholders are symmetric,

there are only 61 distinct orderings, depending only on the position

of X.

• Of these 61 orderings, X will pivot if he appears in positions 12− 51

inclusive (if we assume that approval must be by an amount strictly

over 50%), i.e. 40/61 of the time.

1st 12th 51st 60th

40 positions{
60 singles as the 60 minor stockholders
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• Now suppose X still controls 40% of the stock, but the remainder is

split evenly among 600 other stockholders, each controlling 0.1%.

• Of the 601 distinct orderings, X will pivot if he appears in positions

102−501, i.e., 400/601 of the time. Clearly, as the number of minor

stockholders gets very large, X’s share of the power (as measured by

the Shapley-Shubik index) approaches 2/3.
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Oceanic weighted voting game

• Let there be one major player X controlling 40% of the vote, with

the remaining 60% held by an infinite “ocean” of minor voters.

• Think of the minor voters lined up as points in a line segment of length

0.6, as they come to join a coalition in support of some proposal.

• Voter X can join at any point along this line segment. He will pivot

if he joins after 0.1 and before (or at) 0.5. His Shapley-Shubik index

is

ϕX =
Length of segment in which X pivots

Total length of segment
=

0.5− 0.1

0.6
=

2

3
.
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Example

There are two major voters and an ocean of minor voters. Suppose

voter X holds 3/9 of the total vote, and voter Y holds 2/9, with the

other 4/9 held by the ocean of minor voters. The minor voters line up

along a line segment of length 4/9. X and Y can join at any point along

this line segment:
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• We can represent geometrically the positions at which X and Y join

by giving a single point in a square of side 4/9, whose horizontal

coordinate is X’s position and whose vertical coordinate is Y ’s:

• The point is above the diagonal of the square if X joins before Y ,

and below the diagonal if Y joins before X.
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• Which points in the square correspond to orderings for which X or Y

pivots?

• Divide the square into regions where X pivots, Y pivots, or voters in

the ocean (O) pivot:
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X joins before Y (points that lie above the diagonal ⇔ a < b)

1. If X joins before 3/18, it can never be pivotal since

a+3/9 < 1/2 for a < 3/18.

Y can be pivotal provided that b < 3/18.

3/18 4/9

X Y

0

When Y joins after X and the point of joining is after 3/18, then the

oceanic voters have pivoted already.

2. The oceanic voters all combined together cannot pass the bill since

they hold 4/9 which is less than 50% of the votes. If X joins after

1/2− 3/9 = 3/18, then X pivots.
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Calculate the Shapley-Shubik index for X or Y by calculating the area of

the region in which X or Y pivots and dividing by the total area of the

square. We have

ϕX =
(5/18)2

(4/9)2
=

25

64
≈ 0.391

ϕY =
(3/18)2

(4/9)2
=

9

64
≈ 0.141;

with the other 1 −
25

64
−

9

64
=

30

64
being shared by the oceanic play-

ers. Interestingly, the major stockholder X has a higher power rela-

tive to his percentage holding. The gain comes at the expense of Y .
(!"#$%&'()

• If there are three major players in an oceanic game, we represent

orderings as points in a cube. We then calculate the volumes of the

regions where each of the major players pivots.
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Shapley-Shubik index of the President

Actual federal system (with the Vice President ignored)

When the number of Representatives ≥ 290 and the number of Senator

≥ 67, the President cannot be pivotal.

House Senate

218 51 to 100 Without the two-thirds majority

in both the Senate and the House,

289 51 to 100 the President can veto.

290 51 to 66 Once the House has the two-thirds majority, the

President is pivotal only when the Senate lies

435 51 to 66 between one-half and two-thirds majority
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(
435
218

)[(
100
51

)
(218+ 51)!(535− 218− 51)! + · · ·

+
(

100
100

)
(218+ 100)!(535− 218− 100)!

]
+ · · ·

+
(

435
289

)[(
100
51

)
(289+ 51)!(535− 289− 51)! + · · ·

+
(

100
100

)
(289+ 100)!(535− 289− 100)!

]
+
(

435
290

)[(
100
51

)
(290+ 51)!(535− 290− 51)! + · · ·

+
(

100
66

)
(290+ 66)!(535− 290− 66)!

]
+ · · ·

+
(

435
435

)[(
100
51

)
(435+ 51)!(535− 435− 51)! + · · ·

+
(

100
66

)
(435+ 66)!(535− 435− 66)!

]
When divided by 536!, we obtain the Shapley-Shubik index of the Presi-

dent as ϕ = 0.16047.
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Inclusion of the Vice President

We need to add the case where 50 Senators and the Vice President say

“yes”. The following terms should be added:(
435
218

)(
100
50

)
(218+ 51)!(535− 218− 50)!

+
(
435
219

)(
100
50

)
(219+ 51)!(535− 219− 50)!

+ · · ·+
(
435
435

)(
100
50

)
(435+ 51)!(535− 435− 50)!

The denominator is modified to be 537!

• For the first term, we choose 218 Representatives from 435 of them

and 50 Senators from 100 of them. There are 218 + 50 + 1 “yes”

voters and 535 − 218 − 50 “no” voters. We have (218 + 50 + 1)!

orderings before the President and (535 − 218 − 50)! orderings after

the President.
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Banzhaf index of the President

Let S denote the number of coalitions within the Senate that contain

more than two-thirds of the members of the Senate:

S =

(
100
67

)
+ · · ·+

(
100
100

)
.

Let s denote the number of coalitions within the Senate that contain

equal and more than one-half of the members of the Senate:

s =

(
100
50

)
+

(
100
51

)
+ · · ·+

(
100
100

)
.

Let H denote the number of coalitions within the House that contain

more than two-thirds of the members of the House:

H =

(
435
290

)
+ · · ·+

(
435
435

)
.
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Let h denote the number of coalitions within the House that contain more

than one-half of the members of the House:

h =

(
435
218

)
+ · · ·+

(
435
435

)
.

• We count the number of winning coalitions with the President such

that the defection of the President turns winning into losing. Write

NP = total number of winning coalitions in which the president is

critical.

NP =

[(
435
218

)
+ · · ·+

(
435
289

)] [(
100
50

)
+

(
100
51

)
+ · · ·+

(
100
100

)]

+

[(
435
290

)
+ · · ·+

(
435
435

)] [(
100
50

)
+

(
100
51

)
+ · · ·+

(
100
66

)]
= (h−H)× s+H × (s− S) = h× s−H × S.

• The total number of winning coalitions in which the Vice President

is critical = NV =
(
100
50

)
× h.
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• Given a particular senator, we find the number of winning coalitions

such that this senator is critical.

Without the President, the number of critical swings effected by this

senator is
(
99
66

)
× H; and with the President, (but without the Vice

president), the number of critical swings is
(
99
50

)
× h. The last term

corresponds to the presence of both the President and Vice President.

The total number of winning coalitions to which the chosen senator

is critical = NS =
(
99
66

)
×H +

(
99
50

)
× h+

(
99
49

)
× h.

• In a similar manner, the total number of winning coalitions to which

a particular Representative is critical = NR =
(
434
289

)
× S +

(
434
217

)
× s.
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Banzhaf indexes calculations

Total number of critical swings by all players

= N = 100×NS +435×NR +NP +NV

Banzhaf index of any senator

=
number of winning coalitions to which the chosen senator is critical

total number of critical swings
= NS/N

Banzhaf index for the President = NP/N.
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2.4 Probabilistic characterization of power indexes

Question of Individual Effect. What is the probability that my vote

will make a difference, that is, that a proposal will pass if I vote for it,

but fail if I vote against it?

Question of Individual-Group Agreement. What is the probability that

the group decision will agree with my decision on a proposal?

• The answers depend on both the decision rule of the body and the

probabilities that various members will vote for or against a proposal.

In some particular political example, we might also be able to estimate

voting probabilities of the players for some particular proposal or class

of proposals.

• If we are interested in general theoretical questions of power, we can-

not reasonably assume particular knowledge about individual players

or proposals. We should only make assumptions about voting proba-

bilities which do not discriminate among the players.
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Homogeneity Assumption. Every proposal to come before the decision-

making body has a certain probability p of appealing to each member of

the body. The homogeneity is among members: they all have the same

probability p of voting for a given proposal, but p varies from proposal to

proposal.

The homogeneity assumption does not assume that members will all

vote the same way, but it does say something about their similar criteria

for evaluating proposals. For instance, some bills that came before a

legislature seem to have a high probability of appealing to all members,

and pass by large margins: those have high p. Others are overwhelmingly

defeated (low p) or controversial (p near 1/2).

Remark For the Shapley-Shubik index, we further assume the common

p to be uniformly distributed between 0 and 1.
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Shapley-Shubik index focuses on the order in which a winning coalition

forms, and defines the power of a player to be proportional to the number

of orderings in which she is pivotal. If voters have a certain degree of

homogeneity, then ϕ is most appropriate.

Theorem 1. The Shapley-Shubik index ϕ gives the answer to the ques-

tion of individual effect under the homogeneity assumption about voting

probabilities.

Remark A swing for player i occurs if a coalition Si exists such that∑
j∈Si

wj < q and wi +
∑
j∈Si

wj ≥ q.
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Proof of Theorem 1

We randomize the probabilities p1, . . . , pN and invoke the conditional inde-

pendence assumption. Given the realization of pi = (p1, . . . , pi−1, pi+1, . . . , pN),

the conditional probability that player i’s vote will make a difference is

given by

πi(pi) =
∑
Si

∏
j∈Si

pj
∏
j ̸∈Si

(1− pj),

where pj is the voting probability of player j. The sum is taken over

all such coalitions where player i is pivotal. The expected frequency

where player i is pivotal is obtained by integrating over the probability

distribution:

E[πi(pi)] =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
πi(pi)fi(pi) dp1 . . . dpi−1 dpi+1 . . . dpN

where fi(pi) is the joint density function of pi. The voting probabilities

are randomized.
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Remark

Density function fX(x) of a uniform distribution over [a, b] is given by

fX(x) =


1

b−a a < x < b

0 otherwise
.

Under the homogeneity assumption, a number p is selected from the

uniform distribution on [0,1] and pj is set equal to p for all j. In this case,

fi(p) = 1 since a = 0 and b = 1 so that

E[πi(p)] =
∫ 1

0
πi(p) dp where πi(p) =

∑
Si

psi(1− p)N−si−1, si = n(Si).

81



Lastly, making use of the Beta integral:

si!(N − si − 1)!

N !
=
∫ 1

0
psi(1− p)N−si−1 dp,

we obtain

E[πi(p)] =
∑
Si

si!(N − si − 1)!

N !
= ϕi = Shapley-Shubik index for player i.

The Beta integral links the probability of being pivotal under the homo-

geneity assumption of voting probabilities with the expected frequency of

being pivotal in various orderings of voters.
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Independence Assumption. Every proposal has a probability pi of ap-

pealing to the ith member. Each of the pi is chosen independently from

the interval [0,1]. Here how one member feels about the proposal has

nothing to do with how any other member feels.

Banzhaf index ignores the question of ordering and looks only at the final

coalition which forms in support of some proposal. The power of a player

is defined to be proportional to the number of such coalitions. If the

voters in some political situation behave completely independently, then

β is the most appropriate index.

Theorem 2.

The absolute Banzhaf index β′ gives the answer to the question of individ-

ual effect under the independence assumption about voting probabilities.
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• The absolute Banzhaf index β′
i can be interpreted as assuming that

each player votes randomly and independently with a probability of

1/2. It can be shown mathematically that this is equivalent to assume

that voting probabilities are selected randomly and independently from

a distribution with mean 1/2 without regard for the forms of those

distributions.

• Each player can be thought of as having probability 1/2 of voting for

any given proposal, so we can think of all coalitions to be equally

likely to form. Therefore, the probability of player i’s vote making a

difference is exactly the probability that player i will be a swing voter.

This is precisely the absolute Banzhaf index.
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Proof of Theorem 2

Under the independence assumption, the voting probabilities are selected

independently from distributions (not necessarily uniform) on [0,1] with

E[pj] = 1/2. Since pj are independent, the joint density is

fi(p) =
∏
j ̸=i

fj(pj)

where fj(pj) is the marginal density for pj. Consider

E[πi(p)] =
∑
Si

∫ 1

0
· · ·

∫ 1

0

∏
j∈Si

pj
∏
j ̸∈Si

(1− pj)
∏
j ̸=i

fj(pj) dp1 · · · dpN

=
∑
Si

∏
j∈Si

∫ 1

0
pjfj(pj) dpj

∏
j ̸∈Si

∫ 1

0
(1− pj)fj(pj) dpj

= πi

(
1

2

)
=
∑
Si

1

2N−1
=

ηi
2N−1

= β′
i

= absolute Banzhaf index for player i,

where ηi is the number of swings for player i. Note that the sum of the

absolute Banzhaf indexes for all players is not equal to 1.
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Example

[3; 2,1,1]

A B C

• Each voter will vote for a proposal with probability p. What is the

probability that A’s vote will make a difference between approval and

rejection?

• If both B and C vote against the proposal, A’s vote will not make a

difference, since the proposal will fail regardless of what he does.

• If B or C or both vote for the proposal, A’s vote will decide between

approval and rejection.

An alternative approach is shown here to compute ϕi (βi) without resort

to counting of pivotal orderings (swings).
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The probability that A’s vote will make a difference is given by

A(p) = p(1 – p)      +     (1 – p)p + p2 = 2p – p2.

B for, C against B against, C for     both for 

Similarly, B’s vote will make a difference only if A votes for, and C votes

against. If they both voted for, the proposal would pass regardless of

what B did.

B(p) = p(1 – p)           = p – p2.

A for, C against

By symmetry, we also have πC(p) = p− p2.

• Shapley-Shubik index: voting probabilities are chosen by players from

a common uniform distribution on the unit interval.

• Banzhaf index: voting probabilities are selected independently from

any set of distributions which have a common mean of 1/2.
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1. Homogeneity assumption

We must average the probability of making a difference πA(p) over all

p between 0 and 1.

for A:
∫ 1

0
πA(p) dp =

∫ 1

0
(2p− p2) dp =

2

2
−

1

3
=

2

3
= ϕA

for B:
∫ 1

0
πB(p) dp =

∫ 1

0
(p− p2) dp =

1

2
−

1

3
=

1

6
= ϕB

for C:
∫ 1

0
πC(p) dp =

∫ 1

0
(p− p2) dp =

1

2
−

1

3
=

1

6
= ϕC

2. Independence assumption

Assume that all players vote with probability 1/2 for or against a

proposal. We obtain

πA

(
1

2

)
= 2

(
1

2

)
−
(
1

2

)2
=

3

4
= β′

A

πB

(
1

2

)
= πC

(
1

2

)
=

1

4
= β′

B = β′
C,

thus verifying Theorem 2. Finally, βA =
3

5
, βB =

1

5
, βC =

1

5
.
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Theorem 3

The answer to player i’s question of individual-group agreement, under the

independence assumption about voting probabilities, is given by (1+β′
i)/2.

Theorem 2 says that β′
i gives the probability that player i’s vote will make

the difference between approval and rejection. Since his vote makes the

difference, in this situation the group decision always agrees with his.

• With probability 1− β′
i player i’s vote will not make a difference, but

in this case the group will still agree with him, by chance, half the

time.

• Hence the total probability that the group decision will agree with

player i’s decision is

(β′
i)(1) + (1− β′

i)
(
1

2

)
=

1+ β′
i

2
.
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Example

Consider the weighted voting game: [51; 40,30,20,10]. We list all the

marginal cases where defection of a player changes losing to winning.

Players marginal (losing to winning)

1 2 3 4 1 2 3 4

N Y Y N × ×
Y N N Y × ×
N Y N Y × ×
N N Y Y × ×
Y N N N × ×
N Y N N ×
N N Y N ×
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For player 1, we have η1 = 5, where the 5 coalitions are

S
(1)
1 = {2,3}, S(2)

1 = {2,4}, S(3)
1 = {3,4}, S(4)

1 = {2}, S(5)
1 = {3}.

The conditional probability that player 1 makes a difference:

π1(p2, p3, p4) = p2p3(1− p4) + p2(1− p3)p4 + (1− p2)p3p4

+ p2(1− p3)(1− p4) + (1− p2)p3(1− p4).

Under the independence assumption and expected probabilities all equal
1
2 , the absolute Banzhaf index of Player 1 is given by
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E[π1(p2, p3, p4)] =
∫ 1

0
p2f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

+
∫ 1

0
p2f2(p2) dp2

∫ 1

0
(1− p3)f3(p3) dp3

∫ 1

0
p4f4(p4) dp4

+
∫ 1

0
(1− p2)f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
p4f4(p4) dp4

+
∫ 1

0
p2f2(p2) dp2

∫ 1

0
(1− p3)f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

+
∫ 1

0
(1− p2)f2(p2) dp2

∫ 1

0
p3f3(p3) dp3

∫ 1

0
(1− p4)f4(p4) dp4

= π1(
1

2
,
1

2
,
1

2
) =

5

23
= β′

1.

Similarly, we obtain

β′
2 =

3

8
, β′

3 =
3

8
, β′

4 =
1

8
.

The Banzhaf index is

β = (
5

12

3

12

3

12

1

12
).
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Player 1 - group agreement

Out of 24 = 16 cases, there are 2η1 = 2× 5 = 10 cases where Player 1 is

marginal. In the remaining 6 cases (out of 16 cases), Player 1 does not

make a difference.

players pass/fail

1 2 3 4

Y Y Y Y P
 with Y for players 2,3&4 gives “Pass” already,

player 1 has equal probability to say Y or NN Y Y Y P

Y N N Y F
 with N for players 2&3 gives “Fail” already,

player 1 has equal probability to say Y or NN N N Y F

Y N N N F
 with N for players 2,3&4 gives “Fail” already,

player 1 has equal probability to say Y or NN N N N F

Probability of player 1-group agreement =
1

2
× (1−

5

8
) + 1×

5

8
=

13

16
.
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Example

Look again at
[3; 2, 1, 1]

A  B  C . What is the probability that, under the inde-

pendence assumption, the group decision will agree with A’s preference?

• With probability 1/2, A will support a proposal. It will then pass unless

B and C both oppose it, which will happen with probability 1/4.
• If A opposes the proposal (probability 1/2), it will always fail.
• The probability of agreement with A is thus

1

2

(
1−

1

4

)
+

1

2
(1) =

7

8
=

1+ 3
4

2
=

1+ β′
A

2
.
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• Similarly, if B supports a proposal (probability 1/2), it will pass if and

only if A supports it (probability 1/2).

• If B opposes the proposal (probability 1/2), it will fail unless both A

and C support it (probability 1/4):

1

2

(
1

2

)
+

1

2

(
1−

1

4

)
=

5

8
=

1+ 1
4

2
=

1+ β′
B

2
.
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Example

Consider
[5; 3, 2, 1, 1]

A  B  C D . Let ρi(p) be the probability that the group decision

agrees with player i’s decision, given that all players (including i) vote for

a proposal with probability p. Note that A has veto power.

Remark

In the calculation procedure, it is convenient to set pA = pB = pC = pD =

p. This is because under the independence assumption and common mean

of probabilities of 1/2, we may set p = 1/2 apparently in the calculation

of E[ρi(pA, pB, pC, pD)].
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(a) It can be shown easily that

A(p) = p [p + (1 – p) p2]       +     (1 – p)(1)  = 1 – p + p2 + p3 – p4.

A yes B yes B no, C + D yes A no

B(p) = p (p)     + (1 – p) (1 – p3 ) = 1 – p + p2 – p3 + p4

B yes A yes B no, not all of

A, C, D yes

C(p) = p [p (p +   (1 – p ) p)]    + (1 – p ) [(1 – p ) + p [(1 – p )]

C yes A yes B yes B no, D yes C no A no A yes, B no

= 1 – p – p2 + 3p3 – p4.

(b) Now calculate ρA(1/2), ρB(1/2), and ρC(1/2) and show that these are

(1+ β′
A)/2, (1+ β′

B)/2, and (1+ β′
C)/2, thus verifying Theorem 3 for

this case.
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Example

Consider the majority-minority voting system with 7 voters, where 5 of

them are in the majority group and the remaining 2 voters are in the

minority group. The passage of a bill requires at least 4 votes from

all voters and at least 1 vote from the minority group. Suppose the 5

members in the majority group vote as a homogeneous group and the 2

members in the minority group vote as another homogeneous group.

(a) Compute the probability that a majority player’s vote decides the

passage of a bill.

(b) Compute the probability that a minority player’s vote decides the

passage of a bill.
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Solution

Under the homogeneity assumption, we let p and q denote the homoge-

neous voting probability of the majority group and minority group, re-

spectively.

(a) Consider a particular majority member, her vote can decide the pas-

sage of a bill if

(i) 1 minority member and 2 other majority members say “yes” and

other members say “no”;

(ii) 2 minority member and 1 other majority members say “yes” and

other members say “no”.
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P [majority player’s vote can decide the passage|p, q]
= C2

1C
4
2q(1− q)p2(1− p)2 + C4

1q
2p(1− p)3

= 12q(1− q)p2(1− p)2 +4q2p(1− p)3.

Assuming independence of the random probabilities p and q, and both of

them follow the uniform distribution, we obtain

P [majority player’s vote can decide the passage]

=
∫ 1

0

∫ 1

0

[
12q(1− q)p2(1− p)2 +4q2p(1− p)3

]
dpdq

= 12
∫ 1

0
p2(1− p)2 dp

∫ 1

0
q(1− q) dq +4

∫ 1

0
p(1− p)3 dp

∫ 1

0
q2 dq.
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(b) Consider a particular minority member, her vote can decide the pas-

sage of a bill if

(i) 3 or more majority members say “yes” and other members say

“no”;

(ii) 2 majority members and the other minority member say “yes” and

other members say “no”.

Using similar assumptions on p and q, we obtain

P [minority player’s vote can decide the passage]

=
∫ 1

0

∫ 1

0

 5∑
k=3

C5
kp

k(1− p)5−k(1− q) + C5
2p

2(1− p)3q

 dpdq
= 10

[∫ 1

0
p3(1− p)2 dp

∫ 1

0
(1− q) dq +

∫ 1

0
p2(1− p)3 dp

∫ 1

0
q dq

]

+ 5
∫ 1

0
p4(1− p) dp

∫ 1

0
(1− q) dq +

∫ 1

0
p5 dp

∫ 1

0
(1− q) dq.
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Example

Consider the voting game: [2; 1,1,1].

Let pA, pB and pC be the probabilities that A,B and C will vote for a

proposal. Assuming independence of the random voting probabilities, we

calculate the probabilities of a player’s vote making a difference:

πA = pB(1− pC) + (1− pB)pC,

πB = pA(1− pC) + (1− pA)pC,

πC = pA(1− pB) + (1− pA)pB.

• If the pis are all independent (β′) or all equal (ϕ) as they vary between

0 and 1, then the players have equal power.
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Suppose B and C are homogeneous (pB = pC), but A is independent.

Then the answers to the question of individual effect are

for A:
∫ 1

0
2pB(1− pB) dpB =

1

3

for B or C:

(∫ 1

0
pA dpA

)(∫ 1

0
(1− pB) dpB

)
+

(∫ 1

0
(1− pA) dpA

)(∫ 1

0
pB dpB

)

=
1

2
·
1

2
+

1

2
·
1

2
=

1

2
.

With the pair sharing homogeneity in voting probabilities, B and C both

have more power than A. In particular, we could normalize (1/3,1/2,1/2)

to (1/4,3/8,3/8) and compare that to (1/3,1/3,1/3).
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Canadian Constitutional Amendment Scheme revisited

B1 ⊗ B2 ⊗ M4,2 ⊗ [3; 2,1,1,1]
Quebec Ontario Atlantic British Columbia and Central.

Intersection of 4 weighted voting systems.

Province Shapley-Shubik index Banzhaf index Percentage of population

Ontario 31.55 21.78 34.85

Quebec 31.55 21.78 2.94

Bristish Columbia 12.50 16.34 9.38

Central

  Alberta 4.17 5.45 7.33

  Saskatchewan 4.17 5.45 4.79

  Manitoba 4.17 5.45 4.82

Atlantic

  New Brunswick 2.98 5.94 3.09

  Nova Scotia 2.98 5.94 3.79

  P.E.I. 2.98 5.94 0.54

  Newfoundland 2.98 5.94 2.47

Percentage of power

average

31.90

average

5.65

average

2.47
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Observations

• Based on the Shapley-Shubik index calculations, the scheme “pro-

duces a distribution of power that matches the distribution of popu-

lation surprisingly well”.

• However, based on the Banzhaf analysis, the scheme would serious-

ly under-represent Ontario and Quebec and seriously over-represent

British Columbia and the Atlantic provinces.

• It is disquieting that the two power indexes actually give different

orders for the power of the players. ϕ says the Central Provinces are

more powerful than the Atlantic provinces, and β says the opposite.
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Which index is more applicable?

• Use ϕ if we believe there is a certain kind of homogeneity among the

provinces.

• Use β if we believe there are more likely to act independently of each

other.

Actual behavior

• Quebec and British Columbia would likely to behave independently.

• The four Atlantic provinces would more likely to satisfy the homo-

geneity assumption.

Hybrid approach

If a group of provinces is homogeneous, assign the members of that group

the same p, which varies between 0 and 1 (independent of the p assigned

to other provinces or groups of provinces).
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Now calculate the probability that Quebec’s vote, say, will make a differ-

ence:

πQ = pO[6p
2
A(1− pA)

2 +4p3A(1− pA) + p4A]

O yes 2 or more A’s yes

·{pB[3pC(1− pC)
2 +3p2C(1− pC) + p3C] + (1− pB)p3C}

B yes 1 or 2C’s yes or 3C’s yes

We now compute the expectation of πQ as pO, pA, pB, and pC vary inde-

pendently between 0 and 1. Technically, that involves a “fourfold multiple

integral.”

E[πQ] =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
πQ dpC dpB dpA dpO.

Note that the joint density function of pC, pB, pA and pD reduces to 1

since it is the product of the marginal functions of pC, pB, pA and pD
(due to independence assumption) and each of these marginal density

functions equals 1 since they are uniform density functions over [0,1].
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We obtain E[πQ] = E[πO] = 24/160, E[πC] = 8/160, E[πB] = 12/160, E[πA] =

5/160. There are 3C’s and 4A’s, the π’s sum to 104/160, so we normal-

ize by multiplying the factor 160/104. The final power indexes under this

scenarios are tabulated below under “As homogeneous and Cs homoge-

neous”.
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Alternative homogeneity assumption

Quebec seems often to consider itself an island of French culture in the

sea of English Canada. Treat all 9 other provinces as homogeneous

among themselves, and Quebec as independent.

Quebec: 38.69 British Columbia: 11.61
Ontario: 25.84 Central provinces: 3.87

Atlantic province: 3.07

Quebec’s veto gives it considerable power. Alternatively, by staying ho-

mogeneous with other provinces, Ontario loses her power when compared

to Quebec.

• Consider the effect of British Columbia’s possible homogeneity with

the Central provinces. Is it obvious that such homogeneity should

give Quebec and Ontario more power?

Apparently, the previous power index calculations indicate that a higher

level of homogeneity of other players gives more influential power to the

province with veto power.
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2.5 Potential blocs, quarelling paradoxes and bandwagon effects

Power of Potential blocs

• Groups of voters with similar interests and values who might consider

joining together and casting their votes in common.

Question If a potential bloc decides to organize and vote as an actual

bloc, does it really gain power?

Under the Shapley-Shubik model, we are comparing the chance that the

organized bloc will pivot against the chance that one of the unorganized

members will pivot.
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• If we are in a majority game where each player has just one vote, the

answer is “yes”, provided that no other potential blocs organize.

• Union does not always mean strength in other simple games.

Example – disunity adds strength

Consider the weighted majority game [5; 3,3,1,1,1]

Here ϕ =
(

9

30
,
9

30
,
4

30
,
4

30
,
4

30

)
and β =

(
2

7
,
2

7
,
1

7
,
1

7
,
1

7

)
.

If the 3 small players unite to form a bloc of three, that bloc will have

power 1/3, which is less than the total of what the members originally

had, measured by either index.
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Example

In a 40-member council, 11 members from Town B, 14 from Town J and

15 from other towns and rural areas.

Shapley-Shubik power index calculations

1. Both towns do not organize

If the 11 members in Town B vote independently, then each supervisor

will have 1/40 of the total power and Town B together will have
11

40
= 27.5%.
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2. Town B organizes but Town J does not organize

• If the 11 members in Town B organize, then there are effectively

30 voters. Since 21 votes are needed to pass a measure, Town

B will pivot if it joins a coalition after the 10th through 20th i.e.

11/30 of the time. Town B will have 11/30 = 36
2

3
% of the power.

• Town J who had 14/40 = 35% of the power before Town B or-

ganized, would have (14/29)(19/30) ≈ 30.5% of the power after

Town B organizes. Note that 29 council members from Town J and

other towns share the remaining power of 1−
11

30
=

19

30
. Since the

power of
19

30
is shared equally among 29 members, so the total pow-

er of the 14 independent councils from Town J =
14

29
×
(
1−

11

30

)
.
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3. Both town organize

As a result, we have a game of 17 voters: 15 casting a single vote.

Town J pivots 100/272 of the time, for 37% of the power, while

Town B pivots 49/272 of the time, for 18% of the power.

There are 15 other members, other than Town B and Town J.

i = 0 i = 2 i = 15

1st 2nd 3rd 14th 15th

Let Town B joins right after position i and Town J joins right after

position j, 0 ≤ i ≤ 15 and 0 ≤ j ≤ 15.

(a) When Town J enters first, what is the number of possible orderings?

Since i ≥ j, we have j = 0,1,2, · · · ,15, i = j, j + 1, · · · ,15, so number

of orderings = 16+ 15+ · · ·+1 = 16×17
2 = 136.
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• Suppose j ≥ 7, then J always pivots since [j + 1, j + 2, · · · , j + 14]

contains the pivotal 21st position.

• On the other hand, with j < 7, and Town B enters after position i

with i ≥ j, then B pivots when [i+14, i+15, · · · , i+24] contains the

pivotal 21st position. This occurs when i < 7.

Summary

(i) J pivots when j = 7,8, · · · ,15, i = j, j +1, · · · ,15;

number of orderings = 9+ 8+ · · ·+1 = 9×10
2 = 45.

(ii) B pivots when j < 7, i ≤ j and i < 7. We have

j = 0,1,2, · · · ,6; i = j, j +1, · · · ,6;

the number of orderings = 7+ 6+ · · ·+2+ 1 = 28.
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(b) We consider the another case where Town B enters earlier, where

i ≤ j.

The total number of possible orderings remains to be 136. Following

similar arguments, we can show that

(i) the number of orderings that J pivots is 55;

(ii) the number of orderings that B pivots is 21.

Finally, combining the two cases, we have

ϕB =
28+ 21

272
≃ 18% and ϕJ =

45+ 55

272
≈ 37%
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First entry is the power index for B, second entry is the power index for

J.

• Town J will prefer to organize regardless of what Town B does s-

ince Town J increases its power upon organizing. “Organize” is a

dominant strategy of Town J.

• Once Town J organizes, Town B is actually better off not organizing.

• Thus the natural outcome is Town B not organizes while Town J

organizes. Town B supervisors should be “cunning” to choose un-

cooperative behavior. Town B should be very happy not to rock the

boat.
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Example

Assuming 0 < x < 1/2 and 0 < y < 1/2. If Player X controls a fraction of

x of the vote and Player Y controls a fraction y, then

ϕX(x, y) =



(
1
2−y

)2
(1−x−y)2

, if x+ y ≥ 1
2

x(1−x−2y)
(1−x−y)2

, if x+ y ≤ 1
2

.

The earlier example on P.65 (Topic 1) corresponds to x = 3/9 and y =

2/9, where x+ y > 1/2. The area of the two triangles that correspond to

X being pivotal is
(
1

2
− y

)2
. The area of the square is (1− x− y)2, so

ϕX(x, y) =

(
1
2 − y

)2
(1− x− y)2

, x+ y ≥
1

2
.

If the members of X and Y vote independently, the members of X will

have power equal to their fraction of the vote, namely, x.
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0 X joins Y joins

a

b

1-x-y

Consider the case where X enters earlier than Y , so that a < b; the total

length of segment for oceanic voters is 1− x− y.
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(i) x+ y ≥
1

2

y
2

1

x
2

1

0 pivots

0 pivots

X pivots

Y pivots

X pivots

Y pivots

1 – x – y

Distinguish the various cases to determine which one of the two in-

tervals [a, a+ x] or [b+ x, b+ x+ y] includes the pivotal point 1
2.
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0 a a + x b + x b + x+ y 1

2

1

X joins Y joins

For x+ y ≥ 1
2; by assuming a < b,X pivots when a+ x ≥ 1

2 i.e. a ≥ 1
2 − x.

Otherwise, for a+ x < 1
2, we haveY pivots when b+ x ≤ 1

2 i.e. b ≤ 1
2 − x

O pivots when b+ x > 1
2 i.e. b > 1

2 − x.

The power index of X and Y are, respectively,

ϕX(x, y) =

(
1
2 − y

)2
(1− x− y)2

and ϕY (x, y) =

(
1
2 − x

)2
(1− x− y)2

.

Since the power of any player holding x votes is the same across all

players, so we expect

ϕX(x, y) = ϕY (y, x).

Lastly, ϕX(x, y) + ϕY (x, y) + ϕO(x, y) = 1.
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(ii) x+ y ≤ 1
2

X

X

O

Y

Y

O

O

O

2

1
-x

x

2

1
-x

2

1
-y

2

1
-y

2

1

2

1

1 x y- -

1 x y- -
2

1
-x y-

2

1
-x y-

2

1
-x y-

O

O
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Assuming a < b, a slight modification is required when x+ y ≤
1

2
since X

pivots if and only if
1

2
− x ≤ a ≤

1

2
. For a >

1

2
, O pivots. Similarly, when

a <
1

2
− x− y and b <

1

2
− x− y, O pivots. We obtain

ϕX(x, y) =

(
1
2 − y

)2
−
(
1
2 − x− y

)2
(1− x− y)2

=
x(1− x− 2y)

(1− x− y)2
;

ϕY (x, y) =
y(1− y − 2x)

(1− x− y)2
;

ϕU = 1− ϕX − ϕY .

By symmetry, ϕX(x, y) = ϕY (y, x). This is because ϕX(x, y) is the power

of X when he holds x votes and the other holds y votes; while ϕY (y, x)

gives the power of Y when he holds x votes and the other holds y votes.
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We compare the power of x when both blocs organize or both do not

organize by examining the relative magnitude of ϕX(x, y) and x.

50%

50%

25%

25%

! ( , )>X x y x

! ( , )>yY x y

50%

25%

50%25%

Note that 0 ≤ x ≤
1

2
and 0 ≤ y ≤

1

2
. It is seen that ϕX(x, y) = x when

x = y =
1

4
, x = y = 0 or x = y =

1

2
. When both x and y are less than

1

4
,

the organization of bloc X is beneficial when bloc Y is not substantially

larger than bloc X.
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The members of X will be better off if both X and Y organize precisely

when ϕX(x, y) > x [the region below the curve ϕX(x, y) = x]. If X rep-

resents Town J and Y represents Town B, then point P corresponds to

the above example.
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Quarreling paradoxes

• What happens if the two players quarrel, and refuse to enter into a

coalition together?

• We normally think that we maximize our power by keeping as many

options open as possible, and that restricting our freedom to act

lessens our influence.

• Quarreling, of course, restricts our freedom to act.
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Example

Consider the weighted voting game

[5; 3, 2, 2]
A  B  C

For this game, ϕ = (2/3,1/6,1/6) and β = (3/5,1/5,1/5), as seen by

writing out the orderings with the pivots underlined:

ABC BAC CAB

ACB ∗BCA ∗ CBA

and the winning coalitions with the critical defectors underlined:

AB AC ∗ABC.
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Suppose members B and C quarrel. What is the effect on the Shapley-

Shubik index?

In considering the orders in which the players might join a coalition in

support of a proposal, we must now rule out those orderings in which

B and C join together to help put the coalition over the top, i.e. those

orderings in which both B and C join at or before the pivot.

There are two orderings in which this happens, marked by an ∗. In the

four other orderings, the coalition becomes winning with the help of only

one of B or C. By the original Shapley-Shubik assumption, these four

orderings are equally likely. We obtain the Shapley-Shubik index with

quarreling as

ϕ
Q
BC =

(
1

2
,
1

4
,
1

4

)
.
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Banzhaf model for quarreling

We merely eliminate from consideration those winning coalitions contain-

ing both B and C (just ABC above) and compute proportions of critical

defections in the remaining winning coalitions. We obtain

β
Q
BC =

(
1

2
,
1

4
,
1

4

)
with the same qualitative effect of an increase in B and C’s share of the

power at the expense of A.
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What are the possibilities?

1. If two members quarrel, they may both gain power (as measured by

ϕ or β). See the above example.

2. If two members quarrel, they may both lose power.

This, of course, seems much more natural than (1).

3. If two members quarrel, one may gain power while the other loses

power. (A quarrel might hurt you while helping your opponent, or

vice versa · · · .)

Example: A and D quarrel in [5; 3,2,2,1]

ϕ = β =
(

5

12
,
1

4
,
1

4
,
1

12

)

ϕ
Q
AD = β

Q
AD =

(
3

8
,
1

4
,
1

4
,
1

8

)
.
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4. A quarrel may not affect the power of the quarrelers at all, but change

the power of innocent bystanders.

Example: B and C quarrel in the game of the last example.

ϕ
Q
BC = β

Q
BC =

(
1

2
,
1

4
,
1

4
,0
)

Poor D, whose only chance to become part of a minimal winning

coalition was with BC, has become a dummy.
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5. The presence of dummies does not change the relative proportion

of pivotal orderings among the players. However, quarreling with a

dummy always hurts you. This is because the quarreler with the

dummy would lose more on the number of pivotal orderings that

involve the dummy compared to other players. It is still possible

for a bystander to lose in power (the loss is less than that of the

quarreler) if this bystander derives most of her power via “joining

with the quarreler”.

Example: A quarrels with D in [4; 2,2,2,1]

ϕ = β =
(
1

3
,
1

3
,
1

3
,0
)

ϕ
Q
AD = β

Q
AD =

(
1

4
,
3

8
,
3

8
,0
)

It may be worthwhile staying on friendly terms even with those who

have no power.
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One-way quarrel (hostility)

A one-way quarreler can help or hurt his victim, and he may either help

or hurt himself.

For example, in [5; 3,2,2,1], if B or C is hostile to D, D loses the chance

of forming a minimal winning coalition, making D to be a dummy. In this

case, the victim D is hurt.

Suppose that, in the weighted voting game
[7; 4, 3, 2, 1]

A  B  C D player B hates

player C and refuses to join any coalition in support of a proposal that C

has already joined. Player C has no such hostile feeling about B. What

is the effect upon the power of B and C?
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Orderings and pivots are

A B CD B A CD
*

CA B D DA B C

A B DC B A DC CA D B DA C B

*
AC B D

+
BC A D

*
CB A D DB A C

AC D B
+

BCD A
*

CBD A
+

DBC A

AD B C BD A C CD A B DC A B

AD C B
+

BDC A
*

CDB A
*

DCB A

1. Consider ∗ACBD, C joins earlier. Since B is hostile to C, B will not

join later to form a winning coalition.

2. Consider +BCAD, B joins earlier. Since C is hostile to B, C will not

join later to form a winning coalition.

Both orderings will be ruled out if B and C quarrel.
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With no quarreling, we have

ϕ =
(
14

24
,
6

24
,
2

24
,
2

24

)
≈ (0.58,0.25,0.08,0.08).

B’s hostility to C rules out orderings marked by ∗, giving

ϕ
Q
B→C =

(
10

18
,
4

18
,
2

18
,
2

18

)
≈ (0.56,0.22,0.11,0.11).

B has hurt himself and helped his victim.

If we reversed the situation and had C hating B, the orderings marked

by+ would be ruled out, giving

ϕ
Q
C→B

(
10

20
,
6

20
,
2

20
,
2

20

)
= (0.50,0.30,0.10,0.10)

C would help B, and also help herself!
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Example

Weighted voting game: [5; 4,2,1,1,1]; the first two voters quarrel. Note

that the first two players can form a winning coalition together.

4 2 1 1 1 2 4 1 1 1 2 1 4 1 1

4 1 2 1 1 1 4 2 1 1 1 2 4 1 1

4 1 1 2 1 1 4 1 2 1 1 1 4 2 1

4 1 1 1 2 1 4 1 1 2 1 1 4 1 2

2 1 1 4 1 2 1 1 1 4

1 2 1 4 1 1 2 1 1 4

1 1 2 4 1 1 1 2 1 4

1 1 1 4 2 1 1 1 2 4

20 distinct orderings without consideration of quarrel

ϕ =
(

6

10

1

10

1

10

1

10

1

10

)
.
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Rule out 7 orderings when the first two voters quarrel

4 2 1 1 1 1 2 4 1 1

2 4 1 1 1 1 2 1 4 1

2 1 1 4 1 1 1 2 4 1

2 1 4 1 1

These “illegal” orderings must lie in the set of pivotal orderings held

by the two quarreling players. In other words, none of these “illegal”

orderings are pivotal orderings of the other players.
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After ruling out 7 “illegal” orderings, the remaining 13 coalitions are:

4 1 2 1 1 1 1 4 2 1

4 1 1 2 1 1 1 4 1 2

4 1 1 1 2 1 1 1 4 2

1 4 2 1 1 2 1 1 1 4

1 4 1 2 1 1 2 1 1 4

1 4 1 1 2 1 1 2 1 4

1 1 1 2 4

Out of these 13 orderings, 6 orderings of which “4”-voter pivots, only

one ordering of which “2”-voter pivots, 6 orderings of which either one

of the three “1”-voter pivots. The new power indexes with quarreling is

ϕ =
(

6

13

1

13

2

13

2

13

2

13

)
.
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Lemma

Assume that the two players A and B in a N-person voting game can

always form a winning coalition just with themselves. Suppose A and B

now quarrel, show that the other players in the game enjoy an increase

in power.

Proof

We let ni and n′i denote the number of orderings that player i is pivotal

without and with A and B quarreling, respectively. The Shapley-Shubik

power index of player i without and with quarreling are

ϕi =
ni∑N

i=1 ni
and ϕ′i =

n′i∑N
i=1 n

′
i

,

respectively. It is easily seen that n′A < nA and n′B < nB due to the

constraint imposed by quarreling.
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However, ni = n′i, i ̸= A,B, since quarrel between A and B does not

change the number of pivotal orderings of player i. This is because A and

B together can form a winning coalition, so the ruling out of orderings

with both A and B together would not reduce the pivotal orderings held

by player i. We then have

ϕ′i =
n′i∑N

i=1 n
′
i

>
n′i

nA + nB +
∑N

i = 1
i ̸= A,B

n′i

=
ni

nA + nB +
∑N

i = 1
i ̸= A,B

ni
= ϕi, i ̸= A,B.

Therefore, all other players other than the quarrelers in the game enjoy

an increase in power.
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Warning on the results

1. The conclusion is true, a subtlety of political situations that precise

analysis has thrown light upon.

2. The conclusion is a peculiarity of the power indices, showing that they

have strange properties that should make us wary of where and how

we use them.

3. The conclusion is a peculiarity not of the indices but of the model of

quarreling we made using the indices. The model does not adequately

reflect properties of real world quarrels.
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Bandwagon effect

• Two opposing blocs compete for the support of uncommitted voters in

an attempt to achieve winning sizes. Uncommitted voters suddenly

find it advantageous to begin committing themselves to the larger

bloc, quickly enlarging it to winning size.

“be (jump) on the bandwagon” – join in what seems likely to be a

successful enterprise.

Two opposing blocs, X and Y , and a collection of uncommitted voters

U .

• If X and Y are opposing, we rule out orderings in which they join

together to win. We consider only orderings in which exactly one of

X or Y is present when the coalition first becomes winning. Also, we

rule out the possibility of uncommitted voters uniting to win without

either X or Y .
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Example

Consider [5; 3,2,1,1,1,1]

• Of the 30 orderings, 9 of them are ruled out by the restriction that

exactly one of the “3” or “2” should appear at or before the pivot:

• The use of the remaining 21 orderings leads to a modified Shapley-

Shubik index(
6

21
,
3

21
,
3

21
,
3

21
,
3

21
,
3

21

)
≈ (0.286,0.143,0.143,0.143,0.143,0.143).

• An uncommitted voter should commit to X if the increment of power

he will add to X is larger than the power he would have if he remains

uncommitted .
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• If an uncommitted voter commits to X, then the new game is

[ 5; 3, 2, 1, 1, 1, 1 ] −→ [ 5; 4, 2, 1, 1, 1 ]
X Y U

with only 3 uncommitted voters.

To calculate the modified Shapley-Shubik index by writing down the

20 possible orderings for this game, crossing out the 7 “illegal” order-

ings since X and Y are not supposed to appear together in a winning

coalition. We obtain(
6

13
,
1

13
,
2

13
,
2

13
,
2

13

)
≈ (0.462,0.077,0.154,0.154,0.154).

• The uncommitted voter raises the power of X from 0.286 to 0.462,

an increment of 0.176, which is more than 0.143 he would have by

remaining uncommitted.

144



Example - 1956 Democratic Vice-Presidential Nomination

Jack Kennedy 618 45%

Estes Kefauver 551.5 40%

Albert Gore 110.5 8%

Others 92 7%

Total 1372 (687 is needed to be nominated)

As a model, we consider the weighted voting game

[50; 45, 40, 8, 1,1,1,1,1,1,1︸ ︷︷ ︸]
J E G uncommitted

JE should be ruled out. We also rule out JG and allow EG.
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Background

• Gore was friendly with Kennedy, but Gore and Kefauver were both

senators from Tennessee.

• Gore’s supporters would not follow Gore to Kennedy. Gore was under

constant pressure to withdraw in favor of Kefauver. In fact, Kefauver

went on to win the nomination.

We would like to examine the degree that Kennedy is disadvantaged by

not being able to form an alliance with Gore.

Under the above alliance conditions, 408 of the 10!/7! = 720 possible

orderings were ruled out. For example,

40 1 1 45 1 1 8 1 1 1; 1 8 40 45 1 1 1 1 1 1

are ruled out since J and E should not appear together to form a winning

coalition.
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Of the remaining orderings, J has 20 pivots, E and G both have 98, and

uncommitted delegates have 96, giving the following modified SS index

(0.064 0.314 0.314 0.043 0.043 0.043 0.043 0.043 0.043 0.043).

Interestingly, E and G have equal power under the above alliance condi-

tions. This is because E cannot form a winning coalition even with the

inclusion of all uncommitted voters. Poor J, since he quarrels with both

E and G, his power is much undermined.

Consider the following possible changes:

1. G joins E, giving [50; 45,48,1,1,1,1,1,1,1]. The new power indexes

are now

(0.111 0.389 0.071 0.071 0.071 0.071 0.071 0.071 0.071).

G can contribute only 0.075 to E, much less than he has by not joining

E.
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2. An uncommitted delegate joins J, giving

[50; 46,40,8,1,1,1,1,1,1]

with power indices

(0.088 0.285 0.285 0.057 0.057 0.057 0.057 0.057 0.057 ).

She has contributed only 0.024 to J, less than she had while uncom-

mitted.

3. An uncommitted delegate joins E, giving

[50; 45,41,8,1,1,1,1,1,1]

with power indexes

(0.039 0.377 0.377 0.034 0.034 0.034 0.034 0.034 0.034 ).

She has committed 0.063 to E, more than 0.043 she had while un-

committed. A bandwagon effect for E occurs.
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Example

Let x be the fraction of votes controlled by bloc X, y the fraction con-

trolled by bloc Y , and u = 1 − x − y the fraction held by an ocean of

uncommitted voters. Assume majority rule and x <
1

2
, y <

1

2
.

(a) x+ y ≤ 1/2 (u ≥ 1/2). (b) x+ y ≥ 1/2 (u ≤ 1/2).

The label Y in the figure means player Y pivots; U means an uncommitted

voter pivots; I means an illegal ordering.
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• Ordering represented by points in the lower left-hand corners and the

upper right-hand corner are ruled out since we require exactly one of

X or Y to appear at or before the pivot. For example, considering

the case x + y ≥ 1/2, the left bottom triangle above the diagonal

corresponds to Y being pivotal if X and Y do not oppose each other.

Since this triangle corresponds to the scenario where X joins before

Y and Y pivots, this should be ruled out as “illegal”. Similarly, for

the case x+ y ≤ 1/2, the box at the top right corner corresponds to

the scenario where U pivots without the participation of either X or

Y . The power index of X is found to be

ϕX(x, y) =



x(1−x−2y)
1−x−y−x2−y2

, if x+ y ≤ 1
2

(
1
2−y

)2
(1−x−y)2+2

(
1
2−x

)(
1
2−y

), if x+ y ≥ 1
2

.

The formulas for ϕY are symmetric to this.
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The total power of the uncommitted voters:

ϕU(x, y) =


(1−2x)(1−2y)
1−x−y−x2−y2

, if x+ y ≤ 1
2,

(1−2x)(1−2y)

(1−x−y)2+2
(
1
2−x

)(
1
2−y

), if x+ y ≥ 1
2.

• Consider a small bloc of uncommitted voters, comprising a fraction

∆x of the total vote, considering whether to join X.

• If they do, the power increment they will contribute is ϕX(x+∆x, y)−
ϕX(x, y). If they remain uncommitted, as they are independent and

sharing equal power, their total power will be (∆x/u)ϕU(x, y).
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• They should join X if

ϕX(x+∆x, y)− ϕX(x, y) >
∆x

u
ϕU(x, y).

Taking the limit ∆x → 0, we obtain

∂ϕX
∂x

>
ϕU
u

.

• When x+ y ≥
1

2
, the curve where

∂ϕX
∂x

=
ϕU
u

is a straight line

1

2
− y = a

(
1

2
− x

)
, a ≈ 1.78.

• When x + y ≤
1

2
, the bandwagon curves for X and Y are plotted in

the figure. It is advantageous to join X when (x, y) lies below the

bandwagon curve for X. When x and y are both small, x has to be

several times larger than y in order that the uncommitted voters join

X (see the bandwagon curve at the lower left corner).
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1976-Race between Ford (player X) and Reagan (player Y ) for the Re-

publican nomination. The small numbers along the curve represent the

number of weeks lapsed since the race started. By week 22, the uncom-

mitted voters joined Ford to take advantage of the bandwagon effect.
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2.6 Power distribution in weighted voting systems

Meeting the target

• Suppose the players are the countries of a federal union, one may wish

the power of a player to be proportional to its population.

• Given the “population” vector p representing the ideal influence of the

players, find the distribution of weights (w1, · · · , wn) and the quota of

such that the sum of the differences between the target and the power

is minimized.

• Let d(x, y) be the distance between the power index and the target:

d(x, y) =
n∑

i=1

(xi − yi)
2, x ∈ Rn and y ∈ Rn.

We write dSS = distance between the Shapley-Shubik index and the

target, and similar definition for dB.
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3-player case

Given w1 ≥ w2 ≥ w3, the four different weighted quota games for n = 3,

with examples, are presented below.

Conditions on w Banzhaf Shapley-Shubik Example
w1 ≥ q β1 = (1,0,0) ϕ1 = (1,0,0) G1 = (2; 2,0,0)

w1 + w3 < q and w1 + w2 ≥ q β2 =
(
1
2
, 1
2
,0
)

ϕ2 =
(
1
2
, 1
2
,0
)

G2 = (2; 1,1,0)
w1 < q and w2 + w3 ≥ q β3 =

(
1
3
, 1
3
, 1
3

)
ϕ3 =

(
1
3
, 1
3
, 1
3

)
G3 = (4; 2,2,2)

w1 < q and w2 + w3 < q and w1 + w3 ≥ q β4 =
(
3
5
, 1
5
, 1
5

)
ϕ4 =

(
2
3
, 1
6
, 1
6

)
G4 = (5; 4,2,2)

For example, suppose w1 < q and w2+w3 ≥ q, then the winning coalitions

are {1,2,3}, {1,2}, {1,3}, {2,3}. All players then have equal power.

Notation

Let W be the set of all winning coalitions. A voting game is proper if

S ∈ W then N\S ̸∈ W , where N is the set of all players. If a coalition

S ∈ W , then V (S) = 1; otherwise, V (S) = 0.
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• It is impossible to have V ({2}) = 1 or V ({3}) = 1. If otherwise,

V ({1}) = 1, then V ({2,3}) = 0. This leads to a contradiction.

V({1})=1 (1, 0, 0)

V({1})=0

V({2, 3})=1

0,
2

1
,

2

1

V({2, 3})=0

V({2, 3})=0

V({1, 3})=1
5

1
,

5

1
,

5

3

V({1, 3})=0

V({1, 2})=1

3

1
,

3

1
,

3

1

V({1, 2})=0
3

1
,

3

1
,

3

1

Vector of power under Banzhaf index
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Banzhaf index

1. V ({1}) = 1

This means player 1 has all the power, so the vector of power is

(1,0,0).

2. V ({1}) = 0 and V ({2,3}) = 1

We have V ({1,2,3}) = 1, V ({1,3}) = 1 and V ({1,2}) = 1. There is

no decisive player since V ({1}) = V ({2}) = V ({3}) = 0. However, in

{1,2}, {1,3}, {2,3}, every player is decisive. Therefore, the vector of

power is (1/3,1/3,1/3).

3. V ({1}) = 0, V ({2,3} = 0 and V ({1,3}) = 1.

We have V ({1,2,3}) = 1 and V ({1,2}) = 1.

In {1,2,3}, only player 1 is decisive while in {1,2}, {1,3}, every player

is decisive. Therefore, the vector of power is (3/5,1/5,1/5).

157



4. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 1

We have V ({1,2,3}) = 1. Only player 3 is not decisive while in {1,2},
every player is decisive. Therefore, the vector of power is (1/2,1/2,0).

5. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 0

We have V ({1,2,3}) = 1. In {1,2,3}, every player is decisive and the

vector of power is (1/3,1/3,1/3).

In summary, there are 5 possible cases but only 4 vectors of power. The

Banzhaf indexes are:

(1/3,1/3,1/3), (3/5,1/5,1/5), (1/2,1/2,0) and (1,0,0).

158



Let w(S) denote the sum of weights in the coalition S.

First, we consider one-player coalitions

w({3}) w({2}) w({1})

q q

(i){1,0,0} (ii) irrelevant

The quota q may fall (i) below w({1}) and player 1 is the dictator; or (ii)

above w({1}), and as a result, there is no one-player winning coalition.

We rule out the case where q falls below w({2}). If otherwise, {2,3} is

also winning and its complement {1} cannot be winning.

Next, we consider two-player and three-player coalitions

w({2,3}) w({1,3}) w({1,2})

q qqq

w({1,2,3})

1 1 1
( ){ , , }

3 3 3
a

3 1 1
( ){ , , }

5 5 5
b

1 1
( ){ , ,0}

2 2
c

1 1 1
( ){ , , }

3 3 3
d
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Remarks

It is necessary to refine the potential ordering of weights in coalitions

according to w({1}) < w({2,3}) or otherwise. We avoid the discussion

on the special case of w({1}) = w({2,3}).

1. Suppose w({1}) < w({2,3}), then {1} can never be winning. Implicitly,

we deduce that w({1}) < q, and there will be no one-player winning

coalition. We can perform the analysis solely based on the two-player

and three-player coalitions.

2. Suppose w({1}) > w({2,3}), then {2,3} can never be winning. We

rule out the scenario where q < w({2,3}) and need to include the new

cases (i) w({2,3}) < q < w({1}) and (ii) w({1}) < q < w({2,3}).

Case (i) gives the power distribution {1,0,0} while case (ii) gives{
3

5
,
1

5
,
1

5

}
.
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Assuming w({1}) < w({2,3}), we examine the various outcomes when q

increases gradually.

(a) w({1}) < q < w({2,3})
All two-player coalitions and three-player coalitions are winning, so

the players have equal power.

(b) w({2,3}) < q < w({1,3})
Since {2,3} is not winning, player 1 has higher power compared to

players 2 and 3, so the power distribution is
{
3

5
,
1

5
,
1

5

}
.

(c) w({1,3}) < q < w({1,2})
Since {1,2} is the only two-player winning coalitions, so player 3 is a

dummy. This gives the power distribution
{
1

2
,
1

2
,0
}
.

(d) w({1,2}) < q < w({1,2,3})
All two-player coalitions are losing and only {1,2,3} is the winning

coalition. Therefore, the players have equal power.
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What would happen when some of the voters have the same weight?

1. Suppose w1 = w2 > w3, we rule out the case where player 1 is the

dictator of the game. We consider the following cases:

(a) w1 < q < w1 + w3, we have the power distribution
{
1

3
,
1

3
,
1

3

}
. This

is because player 3 is critical in {1,3} and {2,3}, while player 1 is

critical in {1,2} and {1,3} (similarly for player 2).

(b) w1 + w3 < q < 2w1, the power distribution is
{
1

2
,
1

2
,0
}
.

(c) 2w1 < q < 2w1 + w3, the power distribution is
{
1

3
,
1

3
,
1

3

}
.

Note that the power distribution
{
3

5
,
1

5
,
1

5

}
is ruled out.

2. Suppose w1 > w2 = w3, we rule out the power distribution
{
1

2
,
1

2
,0
}
.

It is still possible for player 1 to be the dictator.

3. Suppose w1 = w2 > w3, the 3 players are equal in power.
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Shapely-Shubik index

There are 6 possible orders with 3 players

1. V ({1}) = 1

Player 1 is the only pivotal, even if it arrives last in the coalition. The

vector of power is (1,0,0)

2. V ({1}) = 0 and V ({2,3}) = 1

We have V ({1,2,3}) = 1, V ({1,3}) = 1 and V ({1,2}) = 1

For each order, the player in the second position is pivotal, so the

vector of power is (1/3,1/3,1/3).
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3. V ({1}) = 0, V ({2,3}) = 0 and V ({1,3}) = 1

We have V ({1,2,3}) = 1 and V ({1,2}) = 1.

When player 1 is not first in the order, it is always pivotal.

When player 1 is first in the orders, the pivotal is the player which ar-

rives second in the order. Therefore, the vector of power is (2/3,1/6,1/6).

4. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 1

We have V ({1,2,3}) = 1. When player 1 is first in the order, player 2

is pivotal. When player 2 is first in the order, player 1 is pivotal. In the

orders 312 and 321, the player who arrives last is pivotal. Therefore,

the vector of power is (1/2,1/2,0).
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5. V ({1}) = 0, V ({2,3}) = 0, V ({1,3}) = 0, V ({1,2}) = 0

We have V ({1,2,3}) = 1. It is always the player who arrives last in

the order the pivotal. The vector of power is (1/3,1/3,1/3).

In summary, there are 4 vectors of power using the Shapley-Shubik index:

(1/3,1/3,1/3), (2/3,1/6,1/6), (1/2,1/2,0) and (1,0,0).

Remark

There has not existed a general formula to determine all the possible

vectors for a given n and a given power index.
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Target power distribution

Let pi denote the power index of player i, i = 1,2,3. Assume that

p2 + p2 + p3 = 1, we can represent all the possible targets in a simplex.

Further, p1 ≥ p2 ≥ p3 which implies p2 ≥
1

2
−

p1
2

since 2p2 + p1 ≥ 1.

In summary, the simplex that contains feasible power distributions satisfies

p1 ≥ p2

p2 ≥
1

2
−

p1
2

p2 ≤ 1− p1.

The area of the admissible region A is equal to

1

2

∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
2 1

1
3

1
3 1

1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
=

1

2

(
1

6
+

1

2
−

1

3
−

1

6

)
=

1

12
≈ 0.0833.
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The possible target vectors
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If we calculate the distances dB and dSS between a vector of power and

a target p, we obtain easily:

• dB = dSS = (p1 − 1
3)

2 + (p2 − 1
3)

2 + (p3 − 1
3)

2

=
3∑

i=1

p2i −
1

3
for the vector (1/3,1/3,1/3).

• dB =
3∑

i=1

p2i +
1

25
−

4p1
5

for the vector (3/5,1/5,1/5).

• dSS =
3∑

i=1

p2i +
1

6
− p1 for the vector (2/3,1/6,1/6).

• dB = dSS =
3∑

i=1

p2i +
1

2
− p1 − p2 for the vector (1/2,1/2,0).

• dB = dSS =
3∑

i=1

p2i +1− 2p1 for the vector (1,0,0).
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We can compare the distances and obtain for the Banzhaf index:

• The vector of power β1 = (1,0,0) and G1 minimizes dB if p1 >

5/6. The result is obtained by comparing dB =
3∑

i=1

p2i +
1

6
− p1 for

(3/5,1/5,1/5) and dB =
3∑

i=1

p2i +1− 2p1 for (1,0,0).

• The vector of power β2 = (1/2,1/2,0) and G2 minimizes dB if p2 >

1/3 and p2 > 5/6− p1.

• The vector of power β3 = (1/3,1/3,1/3) and G3 minimizes dB if

p2 < 1/2 and p2 < 5/6− p1.

• The vector of power β4 = (3/5,1/5,1/5) and G4 minimizes dB oth-

erwise. The 3 boundaries are given by: 1/25− 4p1/5 < −1/3, 1/25−
4p1/5 < 1/2 − p1 − p2 and 1/25 − 4p1/5 < 1 − 2p1; that is if 7/15 <

p1 < 4/5 and p1 +5p2 < 23/10.
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The different closest games for the Banzhaf index for n = 3
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The same reasoning for the Shapley-Shubik index enables us to define

the following domains:

• The vector of power ϕ1 = (1,0,0) and G1 minimizes dSS if p1 > 4/5.

• The vector of power ϕ2 = (1/2,1/2,0) and G2 minimizes dSS if p2 >

23/50− p1/5 and p2 > 5/6− p1.

• The vector of power ϕ3 = (1/3,1/3,1/3) and G3 minimizes dSS if

p2 < 7/15 and p2 > 5/6− p1.

• The vector of power ϕ4 = (2/3,1/6,1/6) and G4 minimizes dSS oth-

erwise, that is if 7/5 < p1 < 4/5 and p1 +5p2 < 23/10.
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The different closest games for the Shapley-Shubik index for n = 3
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Different Shapley-Shubik and Banzhaf inverse games for n = 3
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Example

For a voting game with 3 players, suppose the target power distribution

of the 3 players is

ptar =
(
1

2
,
1

4
,
1

4

)
.

Based on Shapley-Shubik indexes, find the weighted voting system whose

power distribution is closest to the given target distribution.

Solution

Recall that there are only 4 possible power distributions in a 3-player vot-

ing game under the Shapley-Shubik indexes: (1,0,0),
(
1

3
,
1

3
,
1

3

)
,
(
1

2
,
1

2
,0
)

and
(
2

3
,
1

6
,
1

6

)
.
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The distance between ptar and (1,0,0) =
(
1

2
− 1

)2
+
(
1

4
− 0

)2
+
(
1

4
− 0

)2
=

3

8
.

The distance between ptar and
(
1

3
,
1

3
,
1

3

)
=
(
1

2
−

1

3

)2
+
(
1

4
−

1

3

)2
+
(
1

4
−

1

3

)2
=

1

24
.

The distance between ptar and
(
1

2
,
1

2
,0
)
=
(
1

2
−

1

2

)2
+
(
1

4
−

1

2

)2
+
(
1

4
− 0

)2
=

1

16
.

The distance between ptar and
(
2

3
,
1

6
,
1

6

)
=
(
1

2
−

2

3

)2
+
(
1

4
−

1

6

)2
+
(
1

4
−

1

6

)2
=

1

24
.

The closest distance is
1

24
, achieved by either choosing

(
1

3
,
1

3
,
1

3

)
or(

2

3
,
1

6
,
1

6

)
. The corresponding power distribution can be achieved by the

respective weighted voting vector [2; 1,1,1] or [5; 3,2,2].

175



Four-player weighted voting systems

Editorial Committee

Editor-in-chief has 3 votes; Managing Editor has 2 votes; News Editor

and Feature Editor, each has 1 vote. Total votes = 7, quota = 4.

• Given the weighted voting vector [4; 3,2,1,1], we aim to achieve the

power distribution that matches with hierarchy of influence, where

PChief > PMan > PNews = PFeat.

• Take the 4 editors as A,B,C,D for convenience:

S
(1)
A = {B,C}, S

(2)
A = {B,D}, S

(3)
A = {C,D}, S

(4)
A = {B}, S

(5)
A = {C},

S
(6)
A = {D}; S

(1)
B = {A}, S

(2)
B = {C,D}; S

(1)
C = {A}, S

(2)
C = {B,D};

etc.

The corresponding Banzhaf indexes are

BChief =
1

2
, BMan =

1

6
, BNews =

1

6
, BFeat =

1

6
.

176



• Can we design the weights so that the desired hierarchy of influence

is achieved?

Consider a weighted voting system of size 4 as represented by

[q;w1, w2, w3, w4]

with w1 ≥ w2 ≥ w3 ≥ w4, what are the possible power distributions?

We assume

w1 + w2 + w3 + w4

2
< q ≤ w1 + w2 + w3 + w4.

Furthermore, we assume

(a) wi < q for each i; that is, none of the players form a winning

coalition on herself.

(b)
∑

j ̸=iwj ≥ q; that is, none of the players has veto power.
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Republic of PAIN (Pennsylvania and its Neighbors)

Total of 90 votes; quota = 46

Apportionment according to population: New York 38
Pennsylvania 25
Ohio 23
West Virginia 4

Any two of New York, Pennsylvania and Ohio can pass a bill. West

Virginia is a dummy. The Banzhaf indexes of the 4 states are found to

be

BNY = BPen = BOhio =
1

3
and BWV = 0.

Any weighted voting system of the form

[2m;m,m,m,1], m ≥ 2

would yield the same power distribution.
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Theorem

In any 4-player weighted voting system with no veto power, there are only

5 possible power distributions:

(a) B(Pi) = 1
4 for every i.

(b) B(P1) = B(P2) = 1
3, B(P3) = B(P4) = 1

6.

(c) B(P1) = 5
12, B(P2) = B(P3) = 1

4 and B(P4) = 1
12.

(d) B(P1) = 1
2 and B(P2) = B(P3) = B(P4) = 1

6.

(e) B(P1) = B(P2) = B(P3) = 1
3 and B(P4) = 0.

When we impose w3 = w4, then cases (c) and (e) are impossible.
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Remarks

1. It is impossible to achieve

B1 > B2 > B3 = B4

as required by the Editorial Committee.

2. The best weighted voting system for PAIN is case (c), which can be

achieved by [13; 8,6,6,1].

3. For any 4-player weighted voting system with no player having veto

power, there are at most one dummy player in the system. One can

show easily that if there exist more than one dummy in the system,

then at least one player will have veto power.
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Proof of the Theorem

1. In the absence of veto power, any 4-player coalition is a winning

coalition that does not yield any critical instances. Suppose any one

of the players is critical, then that player would have veto power.

2. All the 3-player coalitions are winning coalitions. Otherwise, the miss-

ing player in that 3-player coalition has veto power. These 4 three-

player coalitions are: {P2, P3, P4}, {P1, P3, P4}, {P1, P2, P4}, {P1, P2, P3}.
Since all 3-player coalitions are winning, any single-player coalition

(complement of the respective 3-player coalition) is losing.

3. In any 2-player winning coalition, both players must be critical since

we do not permit single-player winning coalitions.
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The possible 2-player winning coalitions are

{P1, P2}, {P1, P3}, {P1, P4}, {P2, P3}, {P2, P4}, {P3, P4}.

However, if {P1, P2} wins then {P3, P4} must lose;

similarly, if {P1, P3} wins then {P2, P4} must lose;

lastly, if {P1, P4} wins then {P2, P3} must lose; or otherwise.

Therefore, there are two cases of having three 2-player winning coalitions:

{P1, P2}, {P1, P3}, {P1, P4} or {P1, P2}, {P1, P3}, {P2, P3}.
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Various possible number of 2-player winning coalitions

The possible number of two-player winning coalitions can be 0,1,2,3.

Each of the first 3 cases of having 0,1 or 2 two-player coalition generates

one power distribution. The 2 remaining power distributions are generated

when the number of two-player coalitions is 3.

Case (i) There is no 2-player winning coalition.

Every player is critical in each of the four 3-player winning coalitions. This

is because dropping any one player turns a winning three-player winning

coalition into losing (as there is no two-player winning coalition). Total

number of critical instances = 12, and we have equal share of power

among the 4 players.

B(P1) = B(P2) = B(P3) = B(P4) =
1

4
.
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Case (ii) There is only one 2-player winning coalition, which must be

{P1, P2}. Therefore, P1 and P2 are both critical in this coalition and also

in the coalitions {P1, P2, P3} and {P1, P2, P4}.

• On the other hand, P3 and P4 are not critical in {P1, P2, P3} and

{P1, P2, P4} but are critical in {P1, P3, P4} and {P2, P3, P4}.

• Also, P1 is critical in {P1, P3, P4} and P2 is critical in {P2, P3, P4}.

• As a summary, we have

4 critical instances for each of P1 and P2

2 critical instances for each of P3 and P4.

Therefore, B(P1) = B(P2) = 1
3, B(P3) = B(P4) = 1

6.
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Case (iii) If there are two winning 2-player coalitions, then they must be

{P1, P2} and {P1, P3}. This can only occur if w3 > w4. Otherwise, if

w3 = w4, then {P1, P3} winning would imply {P1, P4} winning as well.

• P1 is critical in each of the three 3-player coalitions containing P1,

yielding 5 critical instances for P1.

• P2 is critical in {P1, P2, P4}, {P2, P3, P4} and {P1, P2}.

• P3 is critical in {P1, P3, P4}, {P2, P3, P4} and {P1, P3}.

• P4 is critical in {P2, P3, P4}.

There are 12 critical instances in total. Therefore,

B(P1) =
5

12
, B(P2) = B(P3) =

1

4
and B(P4) =

1

12
.
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Case (iv) There are two cases involving three winning 2-player coalitions.

(a) {P1, P2}, {P1, P3}, {P1, P4} winning

• Each of P2, P3, P4 yields one critical instance in these 2-player win-

ning coalitions while P1 yields three critical instances.

• P1 is critical in the coalitions {P1, P2, P3}, {P1, P2, P4}, {P1, P3, P4}
while P2, P3 and P4 are critical in {P2, P3, P4}. Therefore,

B(P1) =
1

2
, B(P2) = B(P3) = B(P4) =

1

6
.
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(b) We may have {P1, P2}, {P1, P3} and {P2, P3} winning. This occurs only

when w3 > w4.

• Now P4 is never a critical player since removing P4 from any 3-

player coalition leaves one of these three winning 2-player coali-

tions. Therefore, B(P4) = 0.

• Removing any player from {P1, P2, P3} still leaves a winning coali-

tion, but in the other three 3-player coalitions containing P4, the

other two players are critical.

• Here, we have a total of 12 critical instance, with each of P1, P2, P3

being critical 4 times. As a result, we obtain

B(P1) = B(P2) = B(P3) =
1

3
.
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Remarks

1. With a complete enumeration of the power distributions feasible for

weighted voting systems of size n, can one efficiently generate a com-

plete list of feasible power distributions for size n+1 weighted voting

system?

2. If a certain power distribution is desired, can one efficiently construct

a weighted voting system that comes closest to the ideals?
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Strict hierarchy of power B(P1) > B(P2) > · · · > B(Pn).

1. In the case of 4-player weighted voting system, there always exist at

least two players with the same Banzhaf power index.

2. When n = 5, we have [9; 5,4,3,2,1] which yields Banzhaf power

distribution:
(

9
25,

7
25,

5
25,

3
25,

1
25

)
. Note that [8; 5,4,3,2,1] does not in-

duce the above power distribution. This is the only power distribu-

tion, of the 35 possibilities in the 5-player case, with strict hierarchy

of power.

3. When n = 6, [11; 6,5,4,3,2,1] yields
(

9
28,

7
28,

5
28,

3
28,

3
28,

1
28

)
. However,

[15; 9,7,4,3,2,1] yields the power distribution with strict hierarchy(
5

12
,
3

16
,
1

6
,
1

8
,
1

16
,
1

24

)
as desired.
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2.7 Incomparability and desirability

We always consider monotone yes-no voting system — winning coalitions

remain winning if new voters join them.

Let x and y be two players, how to formalize the following intuitive no-

tions:

“x and y have equal power”
“x and y have the same amount of influence”
“x and y are equally desirable in terms of the formation

of a winning coalition”

The bottom line is to see whether x and y are both critical to turn the

coalition Z from losing to winning upon joining the coalition.
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Definition

Suppose x and y are two voters in a yes–no voting system. Then we shall

say that x and y are equally desirable (or, the desirability of x and y is

equal, or the same), denoted x ≈ y, if and only if the following holds:

For every coalition Z containing neither x nor y,
the result of x joining Z is a winning coalition

if and only if
the result of y joining Z is a winning coalition,

We say: “x and y are equivalent” when x ≈ y. In other words, x and y are

equally desirable with reference to the formation of a winning coalition.
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Example

Consider [51; 1,49,50] with 3 players A,B and C. The winning coalitions

are

{A,C}, {B,C} and {A,B,C}.

1. A ≈ B

Test for all coalitions that do not contain A and B. The only coali-

tions containing neither A nor B are the empty coalition (Z1) and the

coalition consisting of C alone (Z2). The result of A joining Z1 is the

same as the result of B joining Z1 (a losing coalition). The result

of A joining Z2 is the same as the result of B joining Z2 (a winning

coalition).

2. A and C are not equivalent

Neither belongs to Z = {B}, but A joining Z yields {A,B} which is

losing while C joining Z yields {B,C} which is winning with 51 votes.
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Definition ‘

For two voters x and y in a yes–no voting system, we say that the desir-

ability of x and y is incomparable , denoted by

x|y,

if and only if there are coalitions Z and Z′, neither one of which contains

x or y, such that the following hold:

1. the result of x joining Z is a winning coalition, but the result of y

joining Z is a losing coalition, and

2. the result of y joining Z′ is a winning coalition, but the result of x

joining Z′ is a losing coalition.

x is critical but not y for coalition Z while y is critical but not x for another

coalition Z′.
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Example

In the US federal system, a House Representative and a Senator are

incomparable. The Vice President and a Senator are not incomparable.

Since the Vice President is the tie breaker, it is not possible that a coalition

with the Vice President is critical while with a senator is not.

Question Which yes–no voting systems will have incomparable voters?

Proposition

For any yes–no voting system, the following are equivalent:

1. There exist voters x and y whose desirability is incomparable.

2. The system fails to be swap robust.
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Proof

1 ⇒ 2

• Assume that the desirability of x and y is incomparable, and let Z and

Z′ be coalitions such that:

Z with x added is winning;
Z with y added is losing;
Z′ with y added is winning; and
Z′ with x added is losing.

• To see that the system is not swap robust, let X be the result of

adding x to the coalition Z, and let Y be the result of adding y to the

coalition Z′. Both X and Y are winning, but the one-for-one swap of

x for y renders both coalitions losing.

195



Both Z and Z′ do not contain x and y.

X-winning Y-winning

x y

Z-losing Z -losing

Z ∪ {y} remains to be losing Z′ ∪ {x} remains to be losing.
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2 ⇒ 1

Assume that the system is not swap robust. Then we can choose winning

coalitions X and Y with x in X but not in Y , and y in Y but not in X,

such that both coalitions become losing if x is swapped for y. Let Z be

the result of deleting x from the coalition X, and let Z′ be the result of

deleting y from the coalition Y . Then

Z with x added is X, and this is winning;
Z with y added is losing;
Z′ with y added is Y , and this is winning; and
Z′ with x added is losing.

This shows that the desirability of x and y is incomparable and completes

the proof.

Corollary In a weighted voting system, we do not have voters whose

desirability is incomparable. Say, suppose x’s weight is heavier than y,

while it may be possible that in one coalition x turns a coalition into

winning but y does not, but it is not possible that the situation reverses

in another coalition.
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Proposition

Suppose the two players A and B are equally desirable in a yes-no voting

system, then their Shapley-Shubik index are the same.

Proof

We compare the number of pivotal orderings of A and B. For any ordering

that A pivots, we have the following two possibilities:

(i) B enters later than the pivotal position held by A

Let Z be the collection of players that have entered before A. Ob-

viously, Z is losing and it does not contain A and B. Since Z ∪ {A}
is winning, A and B are equally desirable, so Z ∪ {B} is also winning.

Since Z is a losing coalition, so B is pivotal in the same ordering with

A being swapped by B.
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(ii) B has entered prior to the pivotal position held by A

Let Z′ be the collection of players that have entered before A but

excluding B in a given A-pivoted ordering. Note that Z′∪{B} is losing

and so does Z′ ∪ {A} since A and B are equally desirable. However,

Z′ ∪ {B} ∪ {A} is winning, so B is pivotal in the ordering obtained by

swapping A and B in this A-pivoted ordering.

In both cases, we observe that all A-pivoted orderings become B-pivoted

orderings once A and B are swapped in position. Hence, A and B have

the same number of pivotal orderings. As a result, ϕA = ϕB.
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Remarks

1. Similar argument can be used to show that the Banzhaf indexes are

the same for two players that are equally desirable in a yes-no voting

game.

2. The converse statement is not true in general. Consider a voting

system with 4 players A1, A2, A3 and A4, where the passage of a bill

requires the support of (i) at least one of A1 and A2, (ii) at least one

of A3 and A4. It is easy to show that A1 and A3 are incomparable

since {A2} ∪ {A1} loses but {A2} ∪ {A3} wins. However, the 4 players

share equal power, where

ϕA1
= ϕA2

= ϕA3
= ϕA4

=
1

4
.

200



Proposition

The relation of equal desirability is an equivalence relation on the set of

voters in a yes–no voting system. That is, the following statements hold:

1. The relation is reflexive: if x = y (that is, if x and y are literally the

same voter), then x and y are equally desirable.

2. The relation is symmetric: if x and y are equally desirable, then y and

x are equally desirable.

3. The relation is transitive: if x and y are equally desirable and y and z

are equally desirable, then x and z are equally desirable.

Proof (transitivity)

Assume that Z is an arbitrary coalition containing neither x nor z. We

must show that the result of x joining Z is a winning coalition if and only

if the result of z joining Z is a winning coalition.
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(i) y ̸∈ Z

– Since x ≈ y and neither x nor y belongs to Z, the result of x joining

Z is a winning coalition if and only if the result of y joining Z is a

winning coalition.

– Since y ≈ z and neither y nor z belongs to Z, the result of y joining

Z is a winning coalition if and only if the result of z joining Z is a

winning coalition.

– The result of x joining Z is a winning coalition if and only if the

result of z joining Z is a winning coalition, as desired.

winning winning winning

x

Z

y

Z

z

Z

x y» y z»
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(ii) z ∈ Z

– Let A denote the coalition resulting from y leaving Z, so Z =

A ∪ {y}. Assume that Z ∪ {x} is a winning coalition. We want to

show that Z ∪ {z} is also a winning coalition. Now,

Z ∪ {x} = A ∪ {x} ∪ {y}.

– Let Z′ = A ∪ {x}. Thus Z′ ∪ {y} is a winning coalition. Since y ≈ z

and neither y nor z belongs to Z′, we know that Z′ ∪ {z} is also a

winning coalition. But Z′ ∪ {z} = A ∪ {z} ∪ {x}.
– Let Z′′ = A∪{z}. Thus Z′′∪{x} is a winning coalition. Since x ≈ y

and neither x nor y belongs to Z′′, we know that Z′′ ∪ {y} is also a

winning coalition. But Z′′ ∪ {y} = A ∪ {z} ∪ {y} = Z ∪ {z}. Thus,

Z ∪ {z} is a winning coalition as desired.

– A completely analogous argument would show that if Z ∪ {z} is a

winning coalition, then so is Z ∪ {x}. This completes the proof.
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A does not contain x, y and z

Z = A ∪ {y}, Z′ = A ∪ {x}, Z′′ = A ∪ {z}.

Assume that Z ∪ {x} = A ∪ {x, y} is winning, we want to show that

Z ∪ {z} = A ∪ {y, z} is also winning.

winning winning
x, y y, z

A

losing

A

losing

A

losing

x, zy
z x

y
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Proposition

For any two voters x and y in a weighted voting system, the following are

equivalent:

1. x and y are equally desirable.

2. There exists an assignment of weights to the voters and a quota that

realize the system and that give x and y the same weight.

3. There are two different ways to assign weights to the voters and two

(perhaps equal) quotas such that both realize the system, but in one

of the two weightings, x has more weight than y and, in the other

weighting, y has more weight than x.
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Proof

1. 1 ⇒ 2

Assume that x and y are equally desirable and there is a weighting

and quota that realize the system. Let w(x), w(y) and q denote the

weight of x, weight of y and quota, respectively. [w(Z) = total weight

of the coalition Z].

We try to construct a new weighting wn such that with the same

quota

wn(x) = wn(y).

• The new weighting is obtained by keeping the weight of every voter

except x and y the same and setting both wn(x) and wn(y) equal

to the average of w(x) and w(y).
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Assuming Z is a coalition, to show that this new weighting still realizes

the same system, it is necessary to show that Z is winning in the new

weighting if and only if Z is winning in the old weighting.

Case 1 Neither x nor y belong to Z

w(Z) = wn(Z) and so wn(Z) ≥ q if and only if Z is winning.

Case 2 Both x and y belong to Z

wn(Z) = wn(Z − {x} − {y}) + wn(x) + wn(y)

= w(Z − {x} − {y}) +
w(x) + w(y)

2
× 2

= w(Z).
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Case 3 x belongs to Z but y does not belong to Z

Let Z′ = Z − {x} so that wn(Z′) = w(Z′). Consider

wn(Z) = wn(Z
′) + wn(x) = wn(Z

′) +
w(x) + w(y)

2

=
w(Z′) + w(x) + w(Z′) + w(y)

2
=

w(Z) + w(Z − {x} ∪ {y})
2

.

Since x and y are equally desirable, either both Z = Z′∪{x} and Z−{x}∪
{y} = Z′ ∪ {y} are winning or both are losing.

If both are winning, then wn(Z) ≥
q + q

2
= q.

If both are losing, then wn(Z) <
q + q

2
= q.
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2. 2 ⇒ 3

We start with a weighting and quota where x and y have the same

weight.

LH = weight of the heaviest losing coalition

WL = weight of the lightest winning coalition

LH < q ≤ WL.

Let q′ be the average of LH and q. It is seen that q′ still works as a

quota since

LH < q′ < WL.

Let ϵ be any positive number such that

LH + ϵ < q′ < WL − ϵ.

The system is unchanged if we either increase the weight of x by ϵ or

decrease the weight of x by ϵ. There are 2 weightings that realize the

system, one of which makes x heavier than y and the other of which

makes y heavier than x.
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3. 3 ⇒ 1

Assume two weightings w and w′, two quotas q and q′, such that

(i) A coalition Z is winning if and only if w(Z) ≥ q.

(ii) A coalition Z is winning if and only if w′(Z) ≥ q′.

(iii) w(x) > w(y). (iv) w′(y) > w′(x).

We start with an arbitrary coalition Z containing neither x nor y.

Suppose Z ∪{y} is winning so that w(Z ∪{y}) ≥ q. Since w(x) > w(y),

so w(Z∪{x}) ≥ q, thus Z∪{x} is winning. Similarly, Z∪{x} is winning

⇒ Z ∪ {y} is winning.

Example

Consider the yes–no voting system with 3 players whose winning coalitions

are {A,C}, {B,C} and {A,B,C}. The weighted voting system:

[51; 1,49,50] and [51; 49,1,50]

both realize the system. By the above result, we deduce that A ≈ B.
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How about two voters x and y whose desirability is neither equal nor

incomparable? For any two voters x and y in a yes–no voting system, we

say that x is more desirable than y, denoted by

x > y,

if and only if the following hold:

1. for every coalition Z containing neither x nor y, if Z ∪ {y} is winning

then so is Z ∪ {x}, and

2. there exists a coalition Z′ containing neither x nor y such that Z′∪{x}
is winning, but Z′ ∪ {y} is losing.
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Example

Consider the yes-no voting system with minority veto where the 9 voters

are classified into the majority group of 6 voters {M1,M2, . . . ,M6} and the

minority group of 3 voters {m1,m2,m3}. The passage of a bill requires at

least 5 votes from all voters and at least 1 vote from the minority voters.

(a) Any two members in the majority group are equally desirable (same

result is applicable to the minority group).
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Let M1 and M2 be two members in the majority group. Consider any

coalition Z without M1 and M2, we have

Z ∪ {M1} is winning

⇒ Z must contain at least 4 votes from {M3, . . . ,M6,m1,m2,m3}
and at least one minority vote

⇒ Z ∪ {M2} contains at least 5 votes and at least one minority vote

⇒ Z ∪ {M2} is winning

Following similar steps, we have Z ∪ {M2} is winning ⇒ Z ∪ {M1} is

winning. Combining the results, we obtain

Z ∪ {M1} is winning ⇐⇒ Z ∪ {M2} is winning
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(b) For every Z that does not contain x and y, it is easy to establish:

Z ∪ {M1} is winning ⇒ Z ∪ {m1} is winning.

This is because the head count requirement and minority veto require-

ment are satisfied.

However, it is straightforward to choose a coalition Z′ that does not

contain M1 and m1, where Z′ ∪ {m1} is winnning and Z′ ∪ {M1} is

losing. One such example is

Z′ = {M2,M3,M4,M5}.
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Example

In the US federal system, x is a senator and y is the Vice President, then

x > y. Hint: Consider coalition Z where the number of senators is 50 or

above (with the President and one-half majority of Representatives) and

coalition Z′ where the number of senators is 66 (without the President

and two-thirds majority of Representatives).

We write x ≥ y to mean either x > y or x ≈ y. The relation ≥ is called

the desirability relation on individuals.

• The binary relation ≥ is called a preordering because it is transitive

and reflexive.

• A preordering is said to be linear if for every pair x and y, one has

either x ≥ y or y ≥ x.
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Definition A yes–no voting system is said to be linear if and only if there

are no incomparable voters (equivalently, if the desirability relation on

individuals is a linear preordering).

Propositions

1. A yes–no voting system is linear if and only if it is swap robust.

This is a direct consequence of the property that non swap robust

is equivalent to the existence of a pair of voters whose desirability is

incomparable.

Corollary Every weighted voting system is linear.

2. In a weighted voting system we have x > y if and only if x has strictly

more weight than y in every weighting that realizes the system.

• When x > y, it is not possible that x has strictly more weight than y in

one weighting and reverse in the other weighting. Also, the possibility

that x and y have equal weight in any weighting is ruled out.
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Example

Consider the yes-no voting system of 4 players with the following winning

coalitions:

{A,C}, {B,C}, {A,B,C}, {C,D}, {A,C,D}, {B,C,D}, {A,B,D}, {A,B,C,D}.

(a) A and B are “equally desirable”.

Test for all coalitions that do not contain A and B:

Z1 = ϕ,Z2 = {C}, Z3 = {D}, Z4 = {C,D}.

The result of A joining any of these Zi, i = 1,2,3,4, is the same as

that of B joining Zi.
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(b) C is more desirable than D, denoted by C > D, since the following

coalitions that do not contain C and D:

Z′
1 = ϕ,Z′

2 = {A}, Z′
3 = {B}, Z′

4 = {A,B},

we have

Z′
1

∪
{C} is losing and Z′

1

∪
{D} is losing

Z′
4

∪
{C} is winning and Z′

4

∪
{D} is winning

while

Z′
i

∪
{C} is winning but Z′

i

∪
{D} is losing, i = 2,3.

(c) The given yes-no voting system is a weighted voting system. Possible

assignments of voters’ weights and quota that realize the system are:

{4; 1,1,3,2}, {9; 1,3,8,5}, {9; 3,1,8,5}, {9; 2,2,8,5} etc.
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Remarks

1. The first and the fourth weighted voted assignments give the same

weight to A and B.

2. In the second system, B has more weight than A; while in the third

system, A has more weight than B. The fourth system is obtained

by taking the weight of A and B to be equal to the average of the

weights of A and B in the second or the third system.

3. Since C is more desirable than D, the weight of C in any assignment

is always greater than that of D.

4. The given yes-no voting system is swap robust (since it is a weighted

voting system), so there are no incomparable voters. Indeed

A ≈ B < D < C.
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