MATH4994 - Capstone Projects in Mathematics and Economics

Solution to Homework Two

Course instructor: Prof. Y.K. Kwok

1. In this problem, woman w_{1} is the first choice of every man, and man m_{1} is the first choice of every woman. No two men would agree on what is the best matching, since each man's favorite matching is one at which he is married to woman w_{1}. Similarly, no two women agree on what is the best matching. But let us now turn our attention to the set of stable matching. Any matching that does not pair m_{1} with w_{1} is unstable, since m_{1} and w_{1} are each other's first choice, and so form a blocking pair for any matching at which they are not mates. Consequently there are only two stable matchings. These are

$$
\mu_{M}=\begin{array}{ccc}
w_{1} & w_{2} & w_{3} \\
m_{1} & m_{2} & m_{3}
\end{array} \quad \text { and } \quad \mu_{W}=\begin{array}{ccc}
w_{1} & w_{3} & w_{2} \\
m_{1} & m_{2} & m_{3}
\end{array} .
$$

2. We consider the following 3 cases:
(i) All matchings that give m_{1} (respectively m_{2} and w_{2}) a better family than $\left(m_{1}, w_{1}, c_{1}\right)$ [respectively, $\left(m_{2}, w_{2}, c_{2}\right)$] are unstable.
To see this, note that any matching containing either $\left(m_{1}, w_{1}, c_{3}\right)$ or (m_{2}, w_{2}, c_{3}) is blocked by $\left(m_{3}, w_{3}, c_{3}\right)$, and any matching containing $\left(m_{1}, w_{2}, c_{3}\right)$ is blocked by $\left(m_{2}, w_{3}, c_{3}\right)$.
(ii) Any matching that does not contain $\left(m_{1}, w_{1}, c_{1}\right)$ [respectively, $\left.\left(m_{2}, w_{2}, c_{2}\right)\right]$ is either blocked by $\left(m_{1}, w_{1}, c_{1}\right)$ [respectively, $\left(m_{2}, w_{2}, c_{2}\right)$] or is unstable as already shown in part 1 above.
(iii) Finally, $\left(m_{1}, w_{2}, c_{3}\right)$ blocks any matching that contains $\left(m_{1}, w_{1}, c_{1}\right)$ and $\left(m_{2}, w_{2}, c_{2}\right)$. So all matchings are unstable.
3. We observe that

$$
\begin{aligned}
& \mu_{1}= \begin{array}{cc}
F_{1} & F_{2}, \\
\left\{w_{1}, w_{3}\right\} & \left\{w_{2}\right\}
\end{array} \\
& \mu_{2}= \text { which is blocked by }\left(F_{2}, w_{1}\right) \\
& F_{1} \quad F_{2}, \\
&\left\{w_{1}, w_{2}\right\}\left\{w_{3}\right\}
\end{aligned} \text { which is blocked by }\left(F_{2},\left\{w_{1}, w_{3}\right\}\right)
$$

4. (a) Consider μ_{1}, we check whether a blocking pair can be found for m_{1}, m_{2} and m_{3}.
(i) m_{1} is matched to one of his best choice w_{2} under μ_{1};
(ii) m_{2} may want to match with w_{2}, but w_{2} has been matched with her best choice under μ_{1};
(iii) m_{3} is matched to his best choice w_{3} under μ_{1}.
(b) The sets of achievable men for w_{1}, w_{2} and w_{3} are

$$
A\left(w_{1}\right)=\left\{m_{2}, m_{3}\right\}, \quad A\left(w_{2}\right)=\left\{m_{1}, m_{2}\right\}, \quad A\left(w_{3}\right)=\left\{m_{1}, m 3\right\} .
$$

Consider μ_{2}, w_{1} is matched to m_{3}, who is the worst choice within $A\left(w_{1}\right) ; w_{2}$ is matched to m_{2}, who is the worst choice within $A\left(w_{2}\right) ; w_{3}$ is matched to m_{1}, who happens to be the best choice within $A\left(w_{3}\right)$. Note that not all women achieve their best achievable partner. Therefore, woman-optimality is not achieved under μ_{2}.
5. (a) S_{1} comes to c_{2} first; S_{2} and S_{3} compete for c_{1}, but S_{3} wins; lastly, S_{2} settles with c_{3}. The outcome is

$$
\begin{array}{lll}
S_{1} & S_{2} & S_{3} \\
c_{2} & c_{3} & c_{1} .
\end{array}
$$

(b) Both S_{1} and S_{3} receive their top choice already, so they do not game around. Can S_{2} gain by gaming? His top choice is c_{1} but c_{1} places S_{2} the lowest priority. Therefore, S_{2} cannot gain by gaming to improve his assignment of c_{3}, which is his second choice already.
6. (a) The expected utility of i_{1} under the lottery is given by

$$
\frac{1}{6} u\left(h_{1}\right)+\frac{3}{6} u\left(h_{2}\right)+\frac{2}{6} u\left(h_{3}\right)=\frac{3}{6}+\frac{12}{6}+\frac{2}{6}=\frac{17}{6} .
$$

The utility of i_{1} if he chooses keeping his house h_{1} is 3 , which is higher than $\frac{17}{6}$. Therefore, i_{1} should choose keeping h_{1}.
(b) The two possible outcomes are

$$
\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \\
h_{1} & h_{2} & h_{3}
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \\
h_{1} & h_{3} & h_{2}
\end{array}\right),
$$

both with $1 / 2$ probability. Among these two matchings the first is Pareto dominated by

$$
\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \\
h_{2} & h_{1} & h_{3}
\end{array}\right) .
$$

Therefore, this mechanism may lead to Pareto inefficient outcomes.
(c) The lottery can result in six orderings. If the ordering is one of $i_{1}-i_{2}-i_{3}, i_{1}-i_{3}-i_{2}$, or $i_{3}-i_{1}-i_{2}$, then agent i_{1} leaves before anyone demands house h_{1} and therefore the resulting allocation is not affected:

initial ordering	modified ordering	assignment of i_{1}	assignment of i_{2}	assignment of i_{3}
$i_{1}-i_{2}-i_{3}$	$i_{1}-i_{2}-i_{3}$	h_{2}	h_{1}	h_{3}
$i_{1}-i_{3}-i_{2}$	$i_{1}-i_{3}-i_{2}$	h_{2}	h_{3}	h_{1}
$i_{3}-i_{1}-i_{2}$	$i_{3}-i_{1}-i_{2}$	h_{1}	h_{3}	h_{2}

If the ordering is $i_{2}-i_{1}-i_{3}$ or $i_{2}-i_{3}-i_{1}$, then in the first step agent i_{2} demands house h_{1}. In both cases the ordering is changed to $i_{1}-i_{2}-i_{3}$ and the resulting outcome is as follows:

initial ordering	modified ordering	assignment of i_{1}	assignment of i_{2}	assignment of i_{3}
$i_{2}-i_{1}-i_{3}$	$i_{1}-i_{2}-i_{3}$	h_{2}	h_{1}	h_{3}
$i_{2}-i_{3}-i_{1}$	$i_{1}-i_{2}-i_{3}$	h_{2}	h_{1}	h_{3}

Finally if the ordering is $i_{3}-i_{2}-i_{1}$, then in the first step agent i_{3} is assigned house h_{2} and in the next step agent i_{2} demands house h_{1}. The remainder of the ordering is changed to $i_{1}-i_{2}$ and this results in the following outcome:

initial ordering	modified ordering	assignment of i_{1}	assignment of i_{2}	assignment of i_{3}
$i_{3}-i_{2}-i_{1}$	$i_{3}-i_{1}-i_{2}$	h_{1}	h_{3}	h_{2}

Therefore, the modified mechanism selects one of

$$
\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \\
h_{2} & h_{1} & h_{3}
\end{array}\right),\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \\
h_{2} & h_{3} & h_{1}
\end{array}\right), \quad \text { or }\left(\begin{array}{ccc}
i_{1} & i_{2} & i_{3} \\
h_{1} & h_{3} & h_{2}
\end{array}\right),
$$

with probabilities of $1 / 2,1 / 6$, and $1 / 3$ respectively. Note that all these matchings are Pareto efficient.

