
MATH4994 — Capstone Projects in Mathematics and Eco-

nomics

Topic 4 – Proportional representation and Apportionment

Schemes

4.1 General issues of apportionment of legislature seats

– Gerrymandering

4.2 Quota Method of the Greatest Remainder (Hamilton’s method)

and paradoxes

– Alabama paradox

– New State paradox

– Population monotonicity
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4.3 Divisor methods

– Choices of divisors

– Huntington approach: Pairwise comparison of inequity

– Rank index

– US history of apportionment

4.4 Analysis of bias

– Probabilistic approach

– Majorization ordering

– “Near the quota” property

4.5 Proportionality in matrix apportionment

– Proportionality in districts and parties

– Greatest remainder biproportional rounding method
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4.1 General issues of apportionment of legislature seats

To apportion is to distribute by right measure, to set off in just

parts, to assign in due and proper proportion.

• Distributing available personnel or other resources in “integral

parts” (integer programming):

– distributing seats in a legislature based on populations or

votes

– distributing minister posts among political parties in a coali-

tion government

• Some obvious process for rounding fractions or some optimal

schemes for minimizing certain natural measure of inequality

would fail. Each scheme may possess certain “flaws” or em-

barrassing “paradoxes” ( , opposite to common sense or the

truth).
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Apportionment of US house seats based on states’ populations

• ai = number of Representatives apportioned to the ith state,

pi = population in the ith state, i = 1,2, · · · , S.

The Constitution requires ai ≥ 1 and pi/ai > 30,000, where the

current House size = 435∗ (fixed after New Mexico and Arizona

became states in 1912).

Current number of constituents per Representative

≈ 300 million/435� 30,000

* In 1959, Alaska and Hawaii were admitted to the Union, each

receiving one seat, thus temporarily raising the House to 437.

The apportionment based on the census of 1960 reverted to a

House size of 435.
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Statement of the Problem of Apportionment of House Seats

h = number of congressional seats; P = total US population =
S∑
i=1

pi;

the ith state is entitled to qi = h

(
pi
P

)
representatives.

Difficulty: the eligible quota qi =
hpi
P

is in general not an integer.

In simple terms, ai is some form of integer rounding to qi. Define

λ = P/h = average number of constituents per Representative,

then qi = pi/λ. The (almost) continuous population weight pi/P is

approximated by the rational proportion ai/h.

An apportionment solution is a function f , which assigns an appor-

tionment vector a to any population vector p and fixed house size

h. One usually talks about an apportionment method M = M(p, h),

which is a non-empty set of apportionment solutions. Ties may

occur, though unlikely, so the solution to a may not be unique.
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Number of seats for the geographical constituency areas

District Number Estimated population % of deviation

of seats (as on 30 June 2012)
ai − qi
qi

Hong Kong Island 7 1,295,800 +9.77%

Kowloon West 5 1,081,700 −5.45%

Kowloon East 5 1,062,800 −3.61%

New Territories West 9 2,045,500 −10.78%

New Territories East 9 1,694,900 +8.21%

Changes made in 2016 election: one seat was moved from Hong

Kong Island to Kowloon West.

Any justification to explain why not to do a similar swap of one seat

from New Territories East to New Territories West?

6



Related problem

Apportionment of legislature seats to political parties is based on

the votes received by the parties.

Inconsistencies in apportionment based on either the district or

state-wide criterion.

2004 Connecticut congressional elections – District criterion

District 1st 2nd 3rd 4th 5th Total Seats

Republican 73,273 165, 558 68,810 149, 891 165, 440 622,972 3

Democratic 197, 964 139,987 199, 652 136,481 105,505 779,589 2

We pick the winner in each district. The Democratic Party receives

only 2 seats though the Party receives more votes (779,589 versus

622,972) state-wide. This is a real life contemporary example where

is put into practice.

7



State-wide criterion versus district criterion

If the state-wide criterion is used, then the Republican Party with

only
622,972

779,589 + 622,972
× 100% = 44.42% of votes should receive

only 2 seats.

Each Republican seat requires 622,973/3 ≈ 207,657 votes while

each Democratic seat requires 779,589/2 ≈ 389,795 votes, which

is 1.877 times that of the Republican party.

This appears to be contradicting the principle: parties should share

the seats according to their total votes in each state. How can we

resolve the inconsistencies?
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Gerrymandering

The practice of dividing a geographic area into electoral districts,

often of highly irregular shape, to give one political party an unfair

advantage by diluting the opposition’s strength.

For example, Texas had redistributed following the census of 2000,

but in the state elections of 2002, the Republicans took control of

the state government and decided to redistribute once again. Both

parties determine districts to maximize their advantage whenever

they have the power to do so.

In 2012, the 234-201 House seats majority goes to the Republicans

though the Democrats have a slight edge in the popular vote for

House seats, 48.8%-47.6%.

Measure to resolve gerrymandering Allocation to district winners

is assigned such that it also depends on the state wide popularity

vote.
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Illinois Congressional District 4: Worst Example of Gerryman-

dering
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Republicans Democrats

• In Florida, Democrats won nearly half the popular votes but

filled about a third of the state’s congressional seats.
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Issues addressed in apportionment schemes

1. Find an operational method for interpreting the mandate of pro-

portional representation (with reference to population counts or

votes).

2. Identify the desirable properties that any fair method ought to

observe. Not to produce paradoxes.

• The “best” method is unresolvable since there is no one method

that satisfies all reasonable criteria and produce no paradoxes –

Balinski-Young Impossibility Theorem.

• Intense debate is surrounding the basis of population counts:

How to count Federal employees living outside the US? Should

we count illegal immigrants and permanent residents?
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4.2 Quota Method of the Greatest Remainder (Hamilton’s

method) and paradoxes

After assigning at least one seat to each state, every state is then

assigned its lower quota. This is possible provided that

h ≥
S∑
i=1

max(1, bqic), (i)

a condition which holds in general. Next, we order the remainders

qi−bqic, and allocate seats to the states having the largest fractional

remainders in sequential order.

• By its construction, the Hamilton method satisfies the quota

property: bqic ≤ ai ≤ bqic+ 1.

• Recall that h =
∑S
i=1 qi, thus h ≥

∑S
i=1bqic; so condition (i)

is not satisfied only when there are too many states with very

small population that are rounded up to one seat based on the

minimum requirement.
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Constrained integer programming problem

We minimize
S∑
i=1

(ai − qi)2

subject to
S∑
i=1

ai = h and ai ≥ 1, i = 1, · · · , S.

It seeks for integer allocations ai that are never less than unity and

staying as close as possible (in some measure) to the fair shares

qi. The “inequity” is measured by the totality of (ai− qi)2 summed

among all states.

• Actually, in a more generalized setting, Hamilton’s method min-

imizes
S∑
i=1

|ai − qi|p, p ≥ 1.

This amounts to a norm-minimizing approach.
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• Provided h ≥
S∑
i=1

max(1, bqic), each state would receive at least

max(1, bqic) seats. Due to the minimum requirement that ai ≥ 1,

it may be possible that not all states are assigned seats with

number that is guaranteed to be at least the lower quota.

• Any state which has been assigned the lower quota bqic already

will not be assigned a new seat until all other states have been

assigned the lower quota. This is because the states that have

been assigned the lower quota would have value of qi−ai smaller

than those states that have not.

• The Hamilton apportionment procedure minimizes the sum of

inequity as measured by
∑S
i=1 |ai − qi|

p. The assignment of the

remaining seats coinciding with the ranking of the largest re-

mainders minimizes the contribution to the chosen criterion of

sum of inequity. The worst discrepancy between ai and qi among

all states is measured by max
i
|ai− qi|. Among all apportionment

methods, Hamilton’s method minimizes max
i
|ai − qi|.
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Loss of House Monotone Property

State Population

25 seats

exact quota

26 seats

exact quota

27 seats

exact quota
A 9061 8.713 [9] 9.061 [9] 9.410 [9]
B 7179 6.903 [7] 7.179 [7] 7.455*[8]
C 5259 5.057 [5] 5.259 [5] 5.461*[6]
D 3319 3.191 [3] 3.319*[4] 3.447 [3]
E 1182 1.137 [1] 1.182 [1] 1.227 [1]

26000 25 26 27

• The integers inside [ ] show the apportionments.

• When h = 26, State D is assigned an additional seat beyond

the lower quota of 3. However, when h = 27, the extra seat is

taken away since States B and C take the two additional seats

beyond their lower quotas. State D suffers a drop from 4 seats

to 3 seats when the total number of seats increases from 26 to

27.
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Alabama Paradox (1882)

In 1882, the US Census Bureau supplied Congress with a table

showing the apportionment produced by Hamilton’s method for all

sizes of the House between 275 and 350 seats. Using Hamilton’s

method, the state of Alabama would be entitled to 8 representatives

in a House having 299 members, but in a House having 300 members

it would only receive 7 representatives – loss of house monotone

property .

• Alabama had an exact quota of 7.646 at 299 seats and 7.671 at

300 seats, while Texas and Illinois increased their quotas from

9.640 and 18.640 to 9.682 and 18.702, respectively.

• At h = 300, Hamilton’s method gave Texas and Illinois each an

additional representative. Since only one new seat was added,

Alabama was forced to lose one seat. Apparently, the more

populous state has the larger increase in the remainder part. The

less populous states may fall victim in this Alabama paradox.
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House monotone property (Property H)

An apportionment method M is said to be house monotone if for

every apportionment solution f ∈M

f(p, h) ≤ f(p, h+ 1).

That is, if the House increases its size, then no state will lose a

former seat using the same method M .

A method observes house monotone property if the method awards

extra seats to states when h increases, rather than computing a

general redistribution of the seats.
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Why does Hamilton’s method not observe the House monotone

property?

The rule of assignment of the additional seat may alter the existing

allocations. With an increase of one extra seat, the quota qi = h
pi
P

becomes q̂i = (h + 1)
pi
P

. The increase in the quota is pi/P , which

differs across the different states (a larger increase for the more

populous states). It is possible that a less populous state that is

originally over-rounded becomes under-rounded.

• When the number of states is 2, Alabama paradox will not occur.

When a state is favorable (rounded up) at h, it will not be

rounded down to the floor value of the original quota at the

new house size h + 1. Though the new seat may be given to

the other state, there is no third state that takes the seat by

winning in the ranking of fractional remainders.
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New States Paradox

If a new state enters, bringing in its complement of new seats, a

given state may lose representation to another even though there is

no change in either of their population.

Example

In 1907, Oklahoma was added as a new state with 5 new seats to

house (386 to 391). Maine’s apportionment went up (3 to 4) while

New York’s went down (38 to 37). This is due to the change in

priority order of assigning the surplus seats based on the fractional

remainders.

20



Consider an apportionment of h seats among 3 states, we ask

“If the population p = (p1 p2 p3) apportions h seats to a =

(a1 a2 a3), is it possible that the population p′ = (p1 p2) ap-

portions h− a3 seats to a′ = (a1 + 1 a2 − 1)?

Example

Consider the Hamilton apportionment of 4 seats to 2 states whose

populations are 623 and 377. Now suppose a new state with pop-

ulation 200 joins the union and the house size is increased to 5.

• Earlier case, q = (2.49 1.51) so states 1 and 2 each receives

2 seats.

• After the addition of a new state, q = (2.60 1.57 0.83). S-

tate 2 loses a seat to state 1 since the new apportionment is

(3 1 1).
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Consistency (uniformity)

Let a = (aS1,aS2) = M(p, h), where S1 and S2 are two subsets of S

that partition S. An apportionment method is said to be uniform if

(aS1,aS2) = M(p, h) would imply aS1 = M(pS1,ΣS1
ai).

This would mean if a method apportions aS1 to the states in S1 in

the entire problem, then the same method applied to apportioning

hS1
= ΣS1

ai seats among the states in S1 with the same data in the

subproblem would give the same result.
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Example

Consider the Hamilton apportionment of 100 seats based on the

following population data among 5 states.

State Population Quota Number of seats

1 7368 29.578 30

2 1123 4.508 4

3 7532 30.236 30

4 3456 13.873 14

5 5431 21.802 22

total 24910 100 100
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Consider the subproblem of assigning 64 seats among the first 3

states.

State Population Quota Number of seats

1 7368 29.429 29

2 1123 4.485 5

3 7532 30.085 30

total 16023 64 64

Surprisingly, restricting the apportionment problem to a subset of

all states does not yield the same seat assignment for the states

involved in the subproblem: state 1 loses one seat to state 2.

• The New State Paradox occurs since the apportionment solution

changes with the addition of 2 new states: state 4 and state 5.

• A consistent apportionment scheme would not admit the “New

States” Paradox.
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Population monotonicity

Suppose the population (quota) of a state changes due to redraw-

ing of state boundaries or actual migration of population. Given

the fixed values of h and S, if a state’s quota increases, then its

apportionment does not decrease.

Failure of the population monotone property in Hamilton’s method

Suppose a state R` decreases in population and the excess popula-

tion is distributed to one state called “lucky” in class D (rounding

down) with a larger share of the excess population and another s-

tate called “misfortune” in class U (rounding up) with a smaller

share. After the redistribution, it is possible that R` remains in class

U, while state “lucky” moves up to class U but state “misfortune”

goes down to class D.
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Example h = 32, q = (2.34 4.88 8.12 7.30 9.36)

with a = (2 5 8 7 10).

Population migration from State B to State A and State E lead to

qnew = (2.42 4.78 8.12 7.30 9.38)

anew = (3 5 8 7 9).

State A has a larger share of the migrated population compared to

State E, where

qA : 2.34→ 2.42

qE : 9.36→ 9.38

qB : 4.88→ 4.78.

What has happened to State E? The quota of State E increases

but its apportionment decreases.
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Quota property (Property Q)

An apportionment method M is said to satisfy the quota property

if for every apportionment solution f in M , and any p and h, the

resulting apportionment a = f(p, h) satisfies

bqic ≤ ai ≤ dqie for all i.

Hamilton’s method satisfies the Quota Property by its construction.

By virtue of the Quota Property, it is impossible for any state to

lose more than one seat when the house size is increased by one.

Balinski-Young Impossibility Theorem

Any apportionment method that does not violate the quota rule

must produce paradoxes, and any apportionment method that does

not produce paradoxes must violate the quota rule.
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Lower quota property

M satisfies lower quota if for every p, h and f ∈M ,

a ≥ bqc.

Upper quota property

M satisfies upper quota if for every p, h and f ∈M ,

a ≤ dqe.

Relatively well-rounded

If ai > qi+
1

2
(rounded up even when the fractional remainder is less

than 0.5), State i is over-rounded. If aj < qj −
1

2
(rounded down

even when the fractional remainder is larger than 0.5), State j is

under-rounded. If there exists no pair of States i and j with ai over-

rounded and aj under-rounded, then a is relatively well-rounded.
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Remarks

1. Hamilton’s apportionment satisfies both the quota property and

relatively well-rounded property.

2. For q = (13.3 14.4 17.6 18.7), the apportionment a = (14 14 18 18)

satisfies the quota property but not the relatively well-rounded

property. Note that State 1 is over-rounded while State 4 is

under-rounded.

3. The example demonstrated on p.64 under the Webster appor-

tionment reveals the case where the apportionment solution sat-

isfies relatively well-rounded property but not the quota property.
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Binary fairness (pairwise switching)

One cannot switch a seat from any state i to any other state j and

reduce the sum: |ai − qi|+ |aj − qj|.

Hamilton’s method, which minimizes
S∑
i=1

|ai−qi|p, p ≥ 1, does satisfy

“binary fairness”.

Proof

Among N states, we rank the fractional remainders R1, R2, . . . , RN ,

K of them are rounded down (set D) and N−K of them are rounded

up (Set U). We than have

max
i
|ai − qi| = max(RK,1−RK+1).
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State K is worst off: |aK − qK| = RK while state K + 1 is best off:

|aK+1 − qK+1| = 1−RK+1.

Consider another apportionment for the pair of states i and j such

that

bi > ai and bj < aj.

The most complicated case corresponds to: state i ∈ D so bi ≥ ai
and state j ∈ U so aj > bj.
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State i

U D

State j U

|bi−qi|>1>maxi |ai−qi|

|bi−qi|=1−Ri>1−RK |bi−qi|=Rj>RK+1

>1−RK+1 >RK

so that

max(|bi−qi|,|bj−qj|)>max(RK ,1−RK+1)

=maxi |ai−qi|

D |bi−qi|>1 and |bj−qj|>1
|bj−qj|>1>maxi |ai−qi|
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Summary of Hamilton’s method

Assuming no minimum requirement:

• Every state is assigned at least its lower quota. Order the frac-

tional remainders. Assign the extra seats to those states with

larger values of fractional remainder.

• Minimize
∑S
i=1 |ai − qi|

p subject to
∑S
i=1 ai = h.

• Satisfying the quota property: the quota qi of each state is either

rounded up or rounded down to give ai.

• Binary fairness

• min
a

max
i
|ai − qi|

Paradoxes House Monotone; New State Paradox; Population Mono-

tone
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4.3 Divisor methods

Based on the idea of an ideal district size or common divisor, a

divisor λ is specified, where λ is an approximation to the theoretical

population size per seat λ = P/h. Some rounding of the numbers

pi/λ are used to determine ai, whose sum equals h. This class of

methods are called the divisor methods.

Jefferson’s method (used by the US Congress from 1794 through

1832)

Let bbxcc be the greatest integer less than x if x is non-integer, and

otherwise be equal to x or x − 1. For example, bb4cc can be equal

to 4 or 3.

For a given h, λ = average size =
S∑
i=1

pi/h and qi =
pi
λ

. We choose

λ (≤ λ) such that
S∑
i=1

⌊⌊
pi
λ

⌋⌋
= h has a solution.
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To meet the requirement of giving at least one representative to

each state, we take ai = max

(
1,

⌊⌊
pi
λ

⌋⌋)
, where λ is a positive

number chosen so that
S∑
i=1

ai = h. Here, λ is a quantity that is close

to λ = average population represented by a single representative.

The generalized floor bb cc provides flexibility to avoid potential

“nonsolvability”. This occurs when the sum may jump from h − 1

to h+ 1 without hitting h as λ decreases continuously.

• The more populous state is favored over the less populous state

in Jefferson’s apportionment. For example, in 1794 apportion-

ment in which h = 105, Virginia with q = 18.310 was rewarded

with 19 seats while Delaware with q = 1.613 was given only

one seat. This demonstrates the failure of the relatively well-

rounded property. The method was challenged due to its viola-

tion of the quota property, which was then replaced by another

divisor method (Webster’s method) in 1842.
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Adams Method

Alternatively, one might consider finding apportionment by rounding

up. Let ddxee be the smallest integer greater than x if x is not an

integer, and otherwise equal to x or x+1. Choose λ (≥ λ) such that

S∑
i=1

ddpi/λee = h

can be obtained, then apportionment for h can be found by taking

ai = ddpi/λee

satisfying
S∑
i=1

ai = h. This is called the Adams method.

Since all quota values are rounded up, the Adams method guaran-

tees at least one seat for every state. The Adams method favors

the smaller state (just opposite to that of the Jefferson method).
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Lemma on the Jefferson apportionment

Given p and h,a(a1 · · · aS) is a Jefferson apportionment for h if and

only if

max
i

pi
ai + 1

≤ min
i

pi
ai
. (A)

Proof

By definition, ai = bbpi/λcc. When
pi
λ

is not an integer, then ai+1 >
pi
λ
> ai. When

pi
λ

is an integer, then ai equals either
pi
λ

or
pi
λ
− 1.

Combining the results, we have

ai + 1 ≥
pi
λ
≥ ai ⇔

pi
ai + 1

≤ λ ≤
pi
ai

for all i,

(if ai = 0, pi/ai = ∞). The inequality remains valid when we take

minimum among pi/ai and maximum among pi/(ai+1) for all states.

We then deduce that

max
i

pi
ai + 1

≤ min
i

pi
ai
.
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Interpretation of the Lemma

Recall that the smaller value of pi/ai (district size = population size

represented by each seat) the better for that state. Alternatively,

state i is better off than another state j if
pi
ai
<
pj

aj
.

• To any state k, assignment of an additional seat would make it

to become the best off state among all states since

pk
anewk

=
pk

ak + 1
≤ max

i

pi
ai + 1

≤ min
i

pi
ai
≤ min

i 6=k

pi
ai
.

• Though there may be inequity among states as measured by

their shares of pi/ai, the “unfairness” is limited to less than

one seat (the assignment of one extra seat makes that state to

become the best off).
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Jefferson’s lower quota property and Adams’ upper quota property

Jefferson apportionment satisfies the lower quota property. Suppose

not, there exists a for h such that ai < bqic or ai ≤ qi− 1. For some

state j 6= i, we have aj > qj. Recall qi = pi/λ and qj = pj/λ so that

pj

aj
< λ ≤

pi
ai + 1

,

a contradiction to the Lemma. However, it does not satisfy the

upper quota property (historical apportionment in 1832, where New

York State was awarded 40 seats with quota of 38.59 only).

In a similar manner, the Adams method satisfies

max
i

pi
ai
≤ min

i

pi
ai − 1

for ai ≥ 1.

Based on this inequality, it can be shown that it satisfies the upper

quota property. Similarly, the Adams method does not satisfy the

lower quota property.
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Recursive scheme of Jefferson’s apportionment

The set of Jefferson solutions is obtained recursively as follows:

(i) f(p,0) = 0;

(ii) if ai = fi(p, h) is an apportionment to state i for house size h,

let k be some state for which
pk

ak + 1
= max

i

pi
ai + 1

, then

fk(p, h+ 1) = ak + 1 and fi(p, h+ 1) = ai for i 6= k.

Remark

The above algorithm dictates how the additional seat is distributed

while other allocations remain the same. Hence, house monotone

property of the Jefferson apportionment is automatically observed.
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Consider the case S = 4, we rank
pi

ai + 1
, i = 1,2,3,4.

1
1

1

a

p

1
3

3

a

p

1
2

2

a

p

1
4

4

a

p

3

3

a

p

4

4

a

p

1

1

a

p

2

2

a

p

Since
pi

ai + 1
is maximized at i = 4, we assign the extra seat to State

4. Now, anew4 = aold4 + 1.

1
1

1

a

p

1
3

3

a

p

1
2

2

a

p

3

3

a

p

1

1

a

p

2

2

a

p

1
4

4

new
a

p

new
a

p

4

4

After one seat has been assigned to State 4, pi
ai+1 is maximized at

i = 2. Next, we assign the extra seat to State 2.

41



Note that State 4 is the most eligible state since
p4

a4 + 1
is the largest

among
pi

ai + 1
, i = 1,2,3,4. Once an additional seat is allocated to

State 4,
p4

anew
4

becomes the best off state since it is the smallest

among
pi
ai

, i = 1,2,3,4.

Imagine that if the additional seat is signed to State 2 even
p2

a2 + 1
<

p4

a4 + 1
so that anew

2 = a2 + 1. Now, we have

p2

anew
2

<
p4

a4 + 1
.

This is a violation of the requirement that
p2

anew
2

cannot be smaller

than
p4

a4 + 1
(inequality A).
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Webster’s method (first adopted in 1842, replacing Jefferson’s

method but later replaced by Hill’s method in 1942)

For any real number z, whose fractional part is not
1

2
, let [z] be the

integer closest to z. If the fractional part of z is
1

2
, then [z] has two

possible values.

The Webster Method is

f(p, h) = {a : ai = [pi/λ],
S∑
i=1

ai = h for some positive λ}.
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It can be shown that λ satisfies

max
ai≥0

pi

ai + 1
2

≤ λ ≤ min
ai>0

pi

ai − 1
2

.

This is obvious from the property that

ai +
1

2
≥
pi
λ
≥ ai −

1

2
for all i.

The special case ai = 0 has to be ruled out in the right side inequality

since ai −
1

2
becomes negative when ai = 0.
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Violation of upper quota

1. Violation of the upper quota by both Jefferson’s and Webster’s
Methods

State i pi = 100qi bqic dqie Ham Jeff Web

1 8785 87 88 88 90 90

2 126 1 2 2 1 1

3 125 1 2 2 1 1

4 124 1 2 1 1 1

5 123 1 2 1 1 1

6 122 1 2 1 1 1

7 121 1 2 1 1 1

8 120 1 2 1 1 1

9 119 1 2 1 1 1

10 118 1 2 1 1 1

11 117 1 2 1 1 1∑
10,000 97 108 100 100 100

Here, h = 100 and P = 10,000, so the average district size is

100.
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Violation of lower quota

2. Violation of the lower quota by Webster’s Method

State i pi = 100qi bqic dqie Ham Jeff Web

1 9215 92 93 92 95 90

2 159 1 2 2 1 2

3 158 1 2 2 1 2

4 157 1 2 2 1 2

5 156 1 2 1 1 2

6 155 1 2 1 1 2∑
10,000 97 103 100 100 100

The 100th seat is allocated to state 6 under Webster’s apportion-

ment since 101.82 =
9215

90 + 0.5
=

9215

90.5
<

155

1.5
=

155

1 + 0.5
= 103.3.
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Relatively well-rounded property (see Qn 9 in HW 4)

Webster’s method can never produce an apportionment that rounds

up for qi for one state i with qi − bqic < 0.5 while rounding down qj
for another state j with qj − bqjc > 0.5.

Integer programming formulation of Webster’s Method

Recall that
ai
pi

gives the per capital representation of state i, i =

1, · · · , S; and the ideal per capital representation is h/P . Consider

the sum of squared difference of
ai
pi

to
h

P
weighted by pi

s =
S∑
i=1

pi

(
ai
pi
−
h

P

)2

=
S∑
i=1

a2
i

pi
−
h2

P
.

Webster’s method: minimizes s subject to
S∑
i=1

ai = h.
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Proof

Suppose a is a Webster apportionment solution, then it satisfies the

min-max property:

max
ai≥0

pi

ai + 1
2

≤ λ ≤ min
ai>0

pi

ai − 1
2

.

It suffices to show that if an apportionment has been made under

the Webster scheme, then an interchange of a single seat between

any 2 states r and s cannot reduce s.

We prove by contradiction. Suppose such an interchange is possible

in reducing s, where ar > 0 and as ≥ 0, then this implies that (all

other allocations are kept the same)

(ar − 1)2

pr
+

(as + 1)2

ps
<
a2
r

pr
+
a2
s

ps

⇔
pr

ar − 1
2

<
ps

as + 1
2

.

This is a violation to the min-max property. Therefore, the Webster

apportionment minimizes s subject to
S∑
i=1

ai = h.
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Generalized formulation of the divisor method

Any rounding procedure can be described by specifying a dividing

point d(a) in each interval [a, a+ 1] for each non-negative integer a.

Any monotone increasing d(a) defined for all integers a ≥ 0 and

satisfying

a ≤ d(a) ≤ a+ 1

is called a divisor criterion.

For any positive real number z, a d-rounding of z (denoted by [z]d)

is an integer a such that d(a− 1) ≤ z ≤ d(a). This is unique unless

z = d(a), in which case it takes on either a or a+ 1.
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a 1 a                                 a+1

d(a 1) d(a)

• For example, Webster’s d(a) = a+
1

2
. Suppose z lies in (2.5,3.5),

it is rounded to 3. When z = 3.5, it can be either rounded to 3

or 4.

• Also, Jefferson’s d(a) = a + 1 (Greatest Divisor Method) while

Adams’ d(a) = a (Smallest Divisor Method). For Jefferson’s

method, if a < z < a + 1, then [z]d = a. When z = a + 1, then

[z]d can be either a or a + 1. For example, when z = 3.8, then

d(2) ≤ z ≤ d(3) = 4, so [3.8]d = 3; when z = 4 = 3 + 1, then

a = 3 and [4]d = 3 or 4.

The divisor method based on d is

M(p, h) =

a : ai = [pi/λ]d and
S∑
i=1

ai = h for some positive λ

 .
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In terms of the min-max inequality:

M(p, h) =

a : min
ai>0

pi
d(ai − 1)

≥ max
aj≥0

pj

d(aj)
,

S∑
i=1

ai = h

 .
This is a consequence of d(ai − 1) ≤

pi
λ
≤ d(ai) when ai =

[
pi
λ

]
d
.

We exclude ai = 0 in the left inequality since d(ai − 1) is in general

negative when ai = 0.

The divisor method M based on d may be defined recursively as:

(i) M(p,0) = 0,

(ii) if a ∈M(p, h) and k satisfies

pk
d(ak)

= max
i

pi
d(ai)

,

then b ∈M(p, h+ 1), with bk = ak + 1 and bi = ai for i 6= k.
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Dean’s method (Harmonic Mean Method)

The ith state receives ai seats where pi/ai is closer to the common

divisor λ when compared to
pi

ai + 1
and

pi
ai − 1

. For all i, we have

pi
ai
− λ ≤ λ−

pi
ai + 1

and λ−
pi
ai
≤

pi
ai − 1

− λ

which simplifies to

ai + 1
2

ai(ai + 1)
pi ≤ λ ≤

ai − 1
2

ai(ai − 1)
pi for all i.

Define d(a) =
a(a+ 1)

a+ 1
2

=
1

1
2

(
1
a + 1

a+1

) (harmonic mean of consecu-

tive integers a and a+ 1), then

max
i

pi
d(ai)

≤ λ ≤ min
j

pj

d(aj − 1)
.
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Hill’s method (Equal Proportions Method)

• Besides the Harmonic Mean, where
1

d(a)
=

1

2

(
1

a
+

1

a+ 1

)
(Dean’s

method) and the Arithmetic Mean d(a) =
1

2
(a+a+1) (Webster’s

method), the choice of the Geometric Mean d(a) =
√
a(a+ 1)

leads to the Equal Proportions method (also called Hill’s method).

• For a population pi and common divisor λ, suppose pi/λ fall-

s within [a, a + 1], then pi/λ is rounded up to a + 1 seats if

pi/λ > d(a) =
√
a(a+ 1) and rounded down to a seats if pi/λ <

d(a) =
√
a(a+ 1). If pi/λ =

√
a(a+ 1), the rounding is not

unambiguously defined.
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MF: Major Fractions (Webster’s method)

EP: Equal Proportion (Hill’s method)

HM: Harmonic Mean (Dean’s method)

State p i q i GR SD HM EP MF GD

1 91,490 91.490 92 88 89 90 93 94

2 1,660 1.660 2 2 2 2 2 1

3 1,460 1.460 2 2 2 2 1 1

4 1,450 1.450 1 2 2 2 1 1

5 1,440 1.440 1 2 2 2 1 1

6 1,400 1.400 1 2 2 1 1 1

7 1,100 1.100 1 2 1 1 1 1

Totals 100,000 100 100 100 100 100 100 100

Min 1,040 1,023 1,011 979 964

Max 1,051 1,033 1,018 989 973

a i  for Method

Allocations for the six divisor methods with S = 100. Note that

λ = 100,000
100 = 1,000. The minimum and maximum integer values

of λ which yield these allocations are also shown.
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Huntington approach: Pairwise comparison of inequity

• Consider the ratio pi/ai = average number of constituents per

seat (district size) in state i, the ideal case would be the same

value of pi/ai for all states. Between any 2 states, there will

always be certain inequity which gives one of the states a slight

advantage over the other. For a population p = (p1, p2, · · · , pS)

and an apportionment (a1, a2, · · · , aS) for House size h, if pi/ai >

pj/aj, then state j is “better off” than state i in terms of district

size.

• How is the “amount of inequity” between 2 states measured?

Some possible choices of measure of inequity are:

(i)

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣, (ii)

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
/

min

(
pi
ai
,
pj

aj

)
, (iii)

∣∣∣∣∣aipi −
aj

pj

∣∣∣∣∣,
(iv)

∣∣∣∣∣ai − aj pipj
∣∣∣∣∣, (v)

∣∣∣∣∣aipjpi − aj
∣∣∣∣∣.

55



Huntington’s rule

A transfer is made from the more favored state to the less favored

state if this reduces this measure of inequity.

• An apportionment is stable in the sense that no inequity, com-

puted according to the chosen measure, can be reduced by trans-

ferring one seat from a better off state to a less well off state.

Huntington considered 64 cases involving the relative and absolute

differences and ratios involving the 4 parameters pi, ai, pj, aj for a pair

of states i and j. He arrived at 5 different apportionment methods.

• Some schemes are “unworkable” in the sense that the pairwise

comparison approach would not in general converge to an over-

all minimum – successive pairwise improvements could lead to

cycling.
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Hill’s method (Method of Equal Proportions) revisited

Hill’s method has been used to apportion the House since 1942.

Let Tij

(
pi
ai
,
pj

aj

)
be the relative difference between

pi
ai

and
pj

aj
, defined

by

Tij

(
pi
ai
,
pj

aj

)
=

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
/

min

(
pi
ai
,
pj

aj

)
.

The ideal situation is Tij = 0 for all pairs of i and j.

Suppose
ai
pi
>
aj

pj
, state i is better off, then

Tij =

(
pj

aj
−
pi
ai

)/
pi
ai

=
ai/pi
aj/pj

− 1.
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Lemma on Hill’s method

Between two states i and j, we consider (i) ai + 1 and aj to be a

better assignment than (ii) ai and aj + 1

if and only if
pi√

ai(ai + 1)
>

pj√
aj(aj + 1)

.

Remark

With an additional seat, should it be assigned to State i with ai
seats or State j with aj seats? The decision factor is to compare

pi√
ai(ai + 1)

and
pj√

aj(aj + 1)
.

The one with a higher rank index value r(p, a) =
p√

a(a+ 1)
should

receive the additional seat.
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Proof

Suppose that when State i has ai+1 seats and State j has aj seats,

State i is the more favored state i.e.

pj

aj
−

pi
ai + 1

> 0;

while when State i has ai seats and State j has aj + 1 seats, State

j is the more favored state i.e.

pi
ai
−

pj

aj + 1
> 0.

Should we transfer one seat in assignment (ii) from State j to State

i so that assignment (i) is resulted?
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Based on the Huntington rule and the given choice of inequity mea-

sure for the Hill methods, Assignment (i) is a better assignment

than (ii) if and only if

Tij

(
pi

ai + 1
,
pj

aj

)
< Tij

(
pi
ai
,

pj

aj + 1

)

⇔
pj/aj − pi/(ai + 1)

pi/(ai + 1)
<
pi/ai − pj/(aj + 1)

pj/(aj + 1)

⇔
pj(ai + 1)− piaj

piaj
<
pi(aj + 1)− pjai

pjai

⇔
p2
j

aj(aj + 1)
<

p2
i

ai(ai + 1)
.

That is, the measure of inequity as quantified by Tij of the Hill

method is reduced.
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Algorithm for Hill’s method based on rank indexes

Compute the rank indexes
pi√

n(n+ 1)
for all i starting with n = 1

and then assign the seats in turn to the largest such numbers.

Floodland Galeland Hailland Snowland Rainland

9061√
1·2

7179√
1·2

5259√
1·2

3319√
1·2

1182√
1·2

9061√
2·3

7179√
2·3

5259√
2·3

3319√
2·3

1182√
2·3

9061√
3·4

7179√
3·4

· · · · · · · · ·

· · · · · · · · · · · · · · ·

Five seats have already been allocated (one to each state)
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Comparing (i) Floodland with 4 seats and Snowland with 1 seat,

against (ii) Floodland with 3 seats and Snowland with 2 seats, since

9061/
√

3 · 4 = 2616 > 3319/
√

1 · 2 = 2347, so assignment (i) is

better than assignment (ii).

Floodland Galeland Hailland Snowland Rainland

6407 - 6 5076 - 7 3719 - 8 2347− 12 836

3699 - 9 2931 - 10 2147 - 13 1355 - 20 483

2616− 11 2072 - 14 1518 - 18 958 - 27 · · ·

2026 - 15 1605 - 17 1176 - 23 742 · · ·

1658 - 16 1311 - 21 960 - 26 · · · · · ·

1401 - 19 1108 - 24 811 · · · · · ·

1211 - 22 959 · · · · · · · · ·

1070 - 25 846 · · · · · · · · ·
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Remarks on the rank index

• Since the ranking function
p√

n(n+ 1)
equal ∞ for n = 0, this

method automatically gives each state at least one seat if h ≥ S,

so the minimum requirement of at least one seat for each state

is always satisfied.

• If a tie occurs between states with unequal populations (ex-

tremely unlikely), Huntington suggests that it be broken in favor

of the larger state.

• It does not satisfy the quota property. Actually, it can violate

both lower and upper quota.

• The Hungtinton approach to the apportionment makes use of

“local” measures of inequity.
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Pairwise comparison using

∣∣∣∣∣aipi −
aj

pj

∣∣∣∣∣, Webster’s method revisited

Give to each state a number of seats so that no transfer of any

seat can reduce the difference in per capita representation between

those states.

That is, supposing that State i is favored over State j,
ai
pi
>
aj

pj
, no

transfer of one seat from the more favored state to the less favored

state will be made if

ai
pi
−
aj

pj
≤
aj + 1

pj
−
ai − 1

pi

for all i and j.
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This simplifies to

aipj − piaj ≤ pi(aj + 1)− pj(ai − 1)
pj

aj + 1
2

≤
pi

ai − 1
2

.

The above inequality is satisfied by any pair of states when the

apportionment has been settled under the assumed pairwise inequity

comparison scheme.

We can deduce the following min-max inequality:

max
all aj

pj

aj + 1
2

≤ min
ai>0

pi

ai − 1
2

,

which takes the same form as that of the Webster method.
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Five traditional divisor methods

Method

Alternative

name

Divisor

d(a)

Pairwise

comparison(
ai
pi
>
aj

pj

) Adoption by

US Congress

Adams

Smallest

divisors a ai − aj pipj –

Dean

Harmonic

means a(a+1)
a+1

2

pj
aj
− pi
ai

–

Hill

Equal

propor-

tions
√
a(a+ 1) ai/pi

aj/pj
− 1 1942 to now

Webster

Major

Fractions a+ 1
2

ai
pi
− aj
pj

1842; 1912;

1932*

Jefferson

Largest

divisors a+ 1 ai
pj
pi
− aj 1794 to 1832
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Resolution on the five divisor methods

A National Academy of Sciences Committee issued a report in

1929. The report considered the 5 divisor methods and focused

on the pairwise comparison tests. The Committee adopted Hunt-

ington’s reasoning that the Equal Proportions Method is preferred

(the Method occupies mathematically a neutral position with re-

spect to emphasis on larger and smaller states.)

Key result

The divisor method based on d(a) is equivalent to the Hungtington

method based on the rank index r(p, a) = p/d(a).

67



pi/ai = average district size of state i;

ai/pi = per capita share of a representative of state i

• Dean’s

Method

– absolute difference in average district sizes:∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
• Webster’s

Method

– absolute difference in per capita shares of a repre-

sentative:

∣∣∣∣∣aipi −
aj

pj

∣∣∣∣∣
• Hill’s

Method

– relative differences in both district sizes and shares

of a representative:

∣∣∣∣∣piai −
pj

aj

∣∣∣∣∣
/

min

(
pi
ai
,
pj

aj

)
• Adams’

Method

– absolute representative surplus: ai −
pi
pj
aj is the

amount by which the allocation for state i exceeds

the number of seats it would have if its allocation

was directly proportional to the actual allocation

for state j

• Jefferson’s

Method

– absolute representation deficiency:
pj

pi
ai − aj
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Minimum and maximum apportionment requirements

In order that every state receives at least one representative, it

is necessary to have d(0) = 0 (assuming pi/0 > pj/0 for pi > pj
so that a state with a larger population will be assigned the first

seat earlier). While the Adams, Hill and Dean methods all satisfy

this property, we need to modify the Webster
[
d(a) = a+

1

2

]
and

Jefferson Method [d(a) = a + 1] by setting d(0) = 0 in the special

case a = 0.

A divisor method M based on d for problems with both minimum

requirement rmin and maximum requirement rmax, rmin ≤ rmax, can

be formulated as

M(p, h) =
{
a : ai = mid

(
rmin
i , rmaxi , [pi/λ]d

)
and

S∑
i=1

ai = h for some positive λ

 .
Here, mid(u, v, w) is the middle in value of the three numbers u, v

and w.
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Balinski-Young Impossibility Theorem

• Divisor methods automatically satisfy the House Monotone Prop-

erty.

• An apportionment method is uniform and population monotone

if and only if it is a divisor method.

The proof is highly technical.

• Divisor methods are known to produce violation of the quota

property.

Conclusion It is impossible for an apportionment method that al-

ways satisfies quota and be incapable of producing

paradoxes.
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Let r(p, a) be any real valued function of two real variables called

a rank-index , satisfying r(p, a) > r(p, a + 1) ≥ 0, and r(p, a) can

be plus infinity. Given a rank-index, a Huntington Method M of

apportionment is the set of solutions obtained recursively as follows:

(i) fi(p,0) = 0, 1 ≤ i ≤ S;

(ii) If ai = fi(p, h) is an apportionment for h of M , and k is some

state for which

r(pk, ak) ≥ r(pi, ai) for 1 ≤ i ≤ S,

then

fk(p, h+ 1) = ak + 1 and fi(p, h+ 1) = ai for i 6= k.

The Huntington method based on r(p, a) is

M(p, h) =

a ≥ 0 :
S∑
i=1

ai = h,max
i
r(pi, ai) ≤ min

aj>0
r(pj, aj − 1)

 .
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Theorem – Quota properties of Huntington family of methods

There exists no Huntington method satisfying quota. Of these

five “known workable” method, only the Smallest Divisors Method

satisfies upper quota and only the Jefferson Method satisfies lower

quota.

Apportionment for 36

Party Votes received Exact quota SD HM EP W J

A 27,744 9.988 10 10 10 10 11

B 25,178 9.064 9 9 9 9 9

C 19,947 7.181 7 7 7 8 7

D 14,614 5.261 5 5 6 5 5

E 9,225 3.321 3 4 3 3 3

F 3,292 1.185 2 1 1 1 1

100,000 36,000 36 36 36 36 36
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Quota Method

Uses the same rule as in the Jefferson method to determine which

state receives the next seat, but rules this state ineligible if it will

violate the upper quota. Recall that the Jefferson method satisfies

the lower quota property.

Definition of eligibility

If f is an apportionment solution and fi(p, h) = ai and qi(p, h) de-

notes the quota of the ith state, then state i is eligible at h+ 1 for

its (ai + 1)st seat if ai < qi(p, h+ 1) = (h+ 1)pi/P . Write

E(a, h+ 1) = {i ∈ Ns : i is eligible for ai + 1 at h+ 1}.
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Algorithm

The quota method consists of all apportionment solutions f(p, h)

such that

f(p,0) = 0 for all i

and if k ∈ E(a, h+ 1) and

pk
ak + 1

≥
pj

aj + 1
for all j ∈ E(a, h+ 1),

then

fk(p, h+ 1) = ak + 1 for one such k and

fi(p, h+ 1) = ai for all i 6= k.

As a result, no state will be assigned seats that are above the upper

quota.

74



History of the US House apportionment

• The first apportionment occurred in 1794, based on the popu-

lation figures∗ from the first national census in 1790. Congress

needed to allocate exactly 105 seats in the House of Represen-

tatives to the 15 states.

• Hamilton’s method was approved by Congress in 1791, but the

bill was vetoed by President George Washington (first use of

presidential veto).

• Washington’s home state, Virginia, was one of the losers in the

method, receiving 18 seats despite a standard quota of 18.310.

• The Jefferson apportionment method was eventually adopted

and gave Virginia 19 seats.

∗The population figures did not fully include the number of slaves and native
Americans who lived in the U.S. in 1790.
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• Jefferson’s method is a divisor method, which may not satisfy

the quota property. The year 1832 was the last use of Jefferson’s

method. If Jefferson’s method has continued to be used, every

apportionment of the House since 1852 would have violated

quota. In 1832, Jefferson’s method gave New York 40 seats in

the House even though its standard quota was only 38.59.

• Websters’ method, another but improved divisor method (re-

garded as the best apportionment method by modern day ex-

perts), was used for the apportionment of 1842. The method

may violate quota, but the chance is very slim. If Webster’s

method has been used consistently from the first apportion-

ment of the House in 1794 to the most recent reapportionment

in 2012, it would still have yet to produce a quota violation.
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• The very possibility of violating quota lead Congress leery of

Webster’s method. In 1850, Congressman Samuel Vinton pro-

posed what be thought was a brand new method (actually iden-

tical to Hamilton’s method). In 1852, Congress passed a law

adopting Vinton’s method.

• Compromise adopted in 1852

In 1852, and future years, Congress would increase the total

number of seats in the House to a number for which Hamilton’s

and Webster’s method would yield identical apportionment.

• A major deficiency in Hamilton’s method is the loss of House

Monotone property. Such paradox occurred in 1882 and 1902.

In 1882, US Congress opted to go with a House size of 325 seats

to avoid the Alabama paradox. Another similar case occurred in

1902 (final death blow to Hamilton’s method) lead Congress to

adopt Webster’s method with a total House size of 386 seats.
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Debate between Webster’s and Hill’s methods

• In 1922 apportionment, the two methods produced significantly

different outcomes. By this time, the number of seats in the

House had been fixed by law. Consequently, the 1912 seat totals

were held over without any reapportionment whatsover.

• In 1932 apportionment, Webster’s and Hill’s methods produced

identical apportionment.

• For the 1942 apportionment, Webster’s and Hill’s method came

very close except that Hill’s method gave an extra seat to

Arkansas at the expense of Michigan. Democrats favored Hill’s

since Arkansas tended to vote for Democrats. As the Democrat-

s had the majority, it was Hill’s method that passed through

Congress. President Franklin Roosevelt (Democrat) signed the

method into “permanent” law and it has been used ever since.
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Court challenges

• In 1991, for the first time in US history, the constitutionality of

an apportionment method was challenged in court, by Montana

and Massachusetts in separate cases.

– Montana proposed two methods as alternatives to EP (current

method). Both HM and SD give Montana 2 seats instead of the

single seat allocated by EP, but would not have increased Mas-

sachusetts’ EP allocation of 10 seats. [Favoring small states.]

– Massachusetts proposed MF, which would have allocated 11

seats to Massachusetts, and 1 to Montana. [Favoring medium

states.]

“Apportionment Methods for the House of Representatives and the

Court Challenges”, by Lawrence R. Ernst, Management Science,

vol. 40(10), p.1207-1227 (1994). Ernst is the author of the dec-

larations on the mathematical and statistical issues used by the

defense in these cases.
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Supreme court case No. 91–860

US Department of Commerce versus Montana

1990 census Montana Washington

population 803,655 4,887,941

quota 1.40 seats 8.53 seats

Based on Hill’s method one seat nine seats

district size 803,655 4,887,941/9=543,104.55

absolute difference = 260,550.44 = 803,655− 543,104.55

relative difference = 0.480 =
260,550.44

543,104.55
.

How about the transfer of one seat from Washington to Montana?

New district size 401,827.5 610,992.625
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new absolute difference = 209,165.125 = 610,992.625− 401,827.5

new relative difference = 0.521 =
209,165.125

401,827.5
.

A transfer of one seat from Washington to Montana results in a

decrease of the absolute difference of the district sizes. According

to Dean’s method, this transfer should then happen.

The same transfer leads to an increase in the relative difference of

the district sizes, and hence violates the stipulation of Hill’s method.

The Supreme Court rejected the argument that Hill’s method vi-

olates the Constitution and Montana did not gain a second seat.

However, it ruled that apportionment methods are justiciable

(可供裁判)

,

opening the door to future cases.
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US Presidential elections and Electoral College

• 538–member Electoral College (EC)

435 (same apportionment as the House Representatives)

+ 3 from the District of Columbia (same number as the smallest

state)

+ 2× 50 states

• Presidential elections

– The winner of the plurality vote in a state is entitled to all

the electors from that state (except Maine and Nebraska).
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– Maine and Nebraska give an elector to the winner of the plu-

rality of votes in each congressional district and give additional

two electors corresponding to Senate seats to the winner of the

plurality of the statewide vote.

• Most states are small and benefit from having their proportional

share in representation augmented by those two electoral votes

corresponding to Senate seats (favoring small states over large

states).

• In the 2000 election, the 22 smallest states had a total of 98

votes in the Electoral College (EC) while their combined popu-

lation was roughly equal to that of the state of California, which

had only 54 votes in the EC. Of those 98 EC votes, 37 went for

Gore while 61 went for Bush.
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• Gore would win for large House sizes and Bush would win for

small House sizes as he did with the House size at 435. This

is because Bush won many of the smaller states, where these

small states have higher proportional share due to the additional

two electoral votes. For House size > 655, Gore is sure to

win. Unfortunately, the House size has been fixed in 1941, at

that time there was approximately one representative for every

301,000 citizens. Based on the same ratio of representatives to

people today as existed in 1941 then the House based on the

1990 census should have about 830 members.

• A direct election of the president does offer the advantage that

it is independent of the House size. One drawback is that a third

party candidate that draws votes disproportionately away from

one candidate over the other thereby influencing the election.
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Electoral College representation is sensitive to the apportion-

ment method

Hamilton Jefferson Adams Webster Dean Hill*
2000 E.C. tie Gore Bush Bush Bush Bush
Winner 269− 269 271− 267 274− 264 270− 268 272− 266 271− 267

• Since the Electoral College has built-in biases favoring small

states, an apportionment method that partially offsets this bias

might be justifiable.

• The infrequency of apportionment (once every 10 years)

States that grow most quickly in population end up under-

represented later in the life of a given apportionment.
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4.4 Analysis of bias

An apportionment that gives a1 and a2 seats to states having pop-

ulations p1 > p2 > 0 favors the larger state over the smaller state if

a1/p1 > a2/p2 and favors the smaller state over the larger state if

a1/p1 < a2/p2.

Over many pairs (p1, p2), p1 > p2, we ask whether a method tends

more often to favor the larger state over the smaller or vice versa.

There are many ways to measure “bias” and there are different

probabilistic models by which a tendency toward bias can be revealed

theoretically.

A casual inspection shows the order: Adams, Dean, Hill, Webster,

Jefferson that the apportionment methods tend increasingly to favor

the larger states.
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Apportionment of 6 states and 36 seats

The apportionment in any column leads to the apportionment in

the next column by the transfer of one seat from a smaller state to

a larger state.
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Probabilistic approach

Consider a pair of integer apportionments a1 > a2 > 0 and ask

“If the populations (p1, p2) has the M-apportionment

(a1, a2), how likely is it that the small state (State 2)

is favored?”

By population monotonicity, implicitly p1 ≥ p2 since a1 > a2.

Take as a probabilistic model that the populations (p1, p2) = p > 0

are uniformly distributed in the positive quadrant.

RX(a) =
{
p > 0 : d(ai) ≥

pi
λ
≥ d(ai − 1)

}
, with d(−1) = 0.

Each region RX(a) is a rectangle containing the point a = (a1, a2)

and having sides of length d(a1)− d(a1 − 1) and d(a2)− d(a2 − 1).
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Dean’s method

The dotted line through (a1, a2) = (2,1) is originated from the

origin (0,0). Points that are inside the shaded area satisfies p1/a1 >

p2/a2 ⇔
p2/λ

p1/λ
<
a2

a1
, that is, the smaller state (state 2) has smaller

value in district size. The shaded area shows those populations that

favor the smaller state since
p2

p1
<
a2

a1
⇔

p2

a2
<
p1

a1
.
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Webster’s method

Any quota point (q1, q2) = (p1/λ, p2/λ) that falls inside the left

bottom box would have the apportionment solution (2,1). The

shaded area shows those populations that favor the smaller state.
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Definition

A method M ′ favors small states relative to M if for every M-

apportionment a and M ′-apportionment a′ for p and h,

pi < pj ⇒ a′i ≥ ai or a′j ≤ aj.

That is, it cannot happen that simultaneously a smaller state loses

seats and a larger state gains seats.

Theorem

If M and M ′ are divisor methods with divisor criteria d(a) and d′(a)

satisfying

d′(a)

d′(b)
>
d(a)

d(b)
for all integers a > b ≥ 0,

then M ′ favors small states relative to M . For example, comparing

Adams’ method with d′(a) = a and Jefferson’s method with d(a) =

a+ 1, we observe

d′(a)

d′(b)
=
a

b
>
a+ 1

b+ 1
=
d(a)

d(b)
for a > b.
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Proof

By way of contradiction, for some a ∈M(p, h) and a′ ∈M ′(p, h), pi <

pj, a
′
i < ai and a′j > aj. By population monotonicity of divisor meth-

ods,

a′i < ai ≤ aj < a′j

so a′j − 1 > a′i ≥ 0 and d′(a′j − 1) ≥ 1 since a ≤ d′(a) ≤ a+ 1 for all a.

Using the min-max property for a′, we deduce that

pj

d′(a′j − 1)
≥

pi
d′(a′i)

and so d′(a′i) > 0. Lastly

pj

pi
≥
d′(a′j − 1)

d′(a′i)
>
d(a′j − 1)

d(a′i)
≥

d(aj)

d(ai − 1)
.

We then have
pj

d(aj)
>

pi
d(ai − 1)

, a contradiction to the min-max

property.
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Majorization ordering

Reference “A majorization comparison of apportionment methods

in proportional representation,” A Marshall, I. Olkin, and

F. Fukelsheim, Social Choice Welfare (2002) vol. 19,

p.885-900.

Majorization provides an ordering between two vectors

m = (m1 · · ·m`) and m′ = (m′1 · · ·m
′
`)

with ordered elements

m1 ≥ · · · ≥ m` and m′1 ≥ · · · ≥ m
′
`,

and with an identical component sum

m1 +m2 + · · ·+m` = m′1 +m′2 + · · ·+m′` = M.

The ordering states that all partial sums of the k largest components

in m are dominated by the sum of the k largest components in m′.
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m1 ≤ m′1
m1 +m2 ≤ m′1 +m′2

...

m1 + · · ·+mk ≤ m′1 + · · ·+m′k
...

m1 + · · ·+m` = m′1 + · · ·+m′`

m ≺m′,m is majorized by m′ or m′ majorizes m.

Suppose it never occurs that mi > m′i and mj < m′j, for all i < j, (a

larger state has more seats while a smaller state has less seats for

apportionment m), then apportionment m is majorized by m′.
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Divisor methods and signpost sequences

A divisor method of apportionment is defined through the “sign-

post” or “dividing point” s(k) in the interval [k, k + 1] that splits

the interval [k, k+ 1]. A number that falls within [k, s(k)] is rounded

down to k and it is rounded up to k+1 if it falls within (s(k), k+1).

If the number happens to hit s(k), then there is an option to round

down to k or to round up to k + 1.

Power-mean signposts

s(k, p) =

[
kp

2
+

(k + 1)p

2

]1/p

, −∞ ≤ p ≤ ∞.

p = −∞, s(k,−∞) = k (Adams); p =∞, s(k,∞) = k + 1 (Jefferson);

p = 0 (Hills); p = −1 (Dean); p = 1 (Webster).
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• For Hill’s method, we consider

ln

 lim
p→0+

[
kp

2
+

(k + 1)p

2

]1/p


= lim
p→0+

1

p
ln

(
kp

2
+

(k + 1)p

2

)

= lim
p→0+

kp

2 ln k + (k+1)p

2 ln(k + 1)
kp
2 + (k+1)p

2

(by Hospital’s rule)

=
1

2
ln k(k + 1)

so that

lim
p→0+

[
kp

2
+

(k + 1)p

2

]1/p

=
√
k(k + 1), k = 0,1,2, . . . .

• For Jefferson’s method, we consider

lim
p→∞

[
kp

2
+

(k + 1)p

2

]1/p

= lim
p→∞ [(k + 1)p]1/p lim

p→∞

[
1

2

(
k

k + 1

)p
+

1

2

]1/p

= k + 1.
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Proposition 1

Let A be a divisor method with signpost sequence: s(0), s(1), · · · ,
and a similar definition for another divisor method A′. Method A is

majorized by Method A′ if and only if the signpost ratio s(k)/s′(k)

is strictly increasing in k.

For example, suppose we take A to be Adams and A′ to be Jefferson,

then
s(k)

s′(k)
=

k

k + 1
= 1−

1

k + 1
which is strictly increasing in k.
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Proposition 2

The divisor method with power-mean rounding of order p is ma-

jorized by the divisor method with power-mean rounding of order p′,
if and only if p ≤ p′.

This puts the 5 traditional divisor methods into the following ma-

jorization ordering

Adams ≺ Dean ≺ Hill ≺ Webster ≺ Jefferson.
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1. One can see that “is majorized by” is less demanding than “fa-

voring small districts relative to”.

2. Since Hamilton’s apportionment is not a divisor method, how

about the positioning of the Hamilton method in those ranking?

Proposition

Adams’ method favors small districts relative to Hamilton’s method

while Hamilton’s method favors small districts relative to Jefferson’s

method. However, Hamilton’s method is incomparable to other

divisor methods such as Dean, Hill, and Webster.

Reference

“The Hamilton apportionment method is between the Adams method

and the Jefferson method,” Mathematics of Operations Research,

vol. 31(2) (2006) p.390-397.
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A > Hamilton > J, but not Hamilton > D,H,W .

Population Proportions A, D, H, W Hamilton J

603 6.70 6 7 8

149 1.66 2 2 1

148 1.64 2 1 1

total = 900 10.00 10 10 10

A > Hamilton > J, but not D,H,W > Hamilton.

Population Proportions A Hamilton D, H, W, J

1,600 5.36 5 5 6

1,005 3.37 3 4 3

380 1.27 2 1 1

total = 2,985 10.00 10 10 10

Hamilton happens to be the same as Webster
Population Proportions Adams Webster Hamilton Jefferson

603 6.03 5 6 6 7

249 2.49 3 3 3 2

148 1.48 2 1 1 1

total = 1,000 10.00 10 10 10 10
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“Near the quota” property

Instead of requiring “stay within the quota”, a weaker version can

be stated as: It should not be possible to take a seat from one state

and give it to another and simultaneously bring both of them nearer

to their quotas. That is, there should be no states i and j such that

qi − (ai − 1) < ai − qi and aj + 1− qj < qj − aj. (1)

Alternatively, no state can be brought closer to its quota without

moving another state further from its quota. The above definition

is in absolute terms.
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Theorem Webster’s method is the unique population monotone

method that is near quota.

(i) Violation of “near quota” property ⇒ non-Webster method

If a is not near quota, that is if Eq. (1) holds for some i and j

then rearranging, we have

1 < 2(ai − qi) and 1 < 2(qj − aj) (2)

or

aj +
1

2
< qj and ai −

1

2
> qi

which gives

qj/(aj +
1

2
) > 1 > qi/(ai −

1

2
).

Hence the min-max inequality for Webster’s method is violat-

ed, so a could not be a Webster apportionment. Therefore,

Webster’s method is near quota.
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(ii) non-Webster method ⇒ “non-near quota” property

Conversely, let M be a population monotone method (prop-

erty satisfied by a divisor method) different from Webster’s.

Then there exists a 2-state problem (p1, p2) in which the M-

apportionment is uniquely (a1+1, a2), whereas the W -apportionment

is uniquely (a1, a2 + 1). By the latter, we deduce the property:

p2/(a2 + 1/2) > p1/(a1 + 1/2).

At h = a1 + a2 + 1, the quota of state 1 is

q1 =
p1h

p1 + p2

=
p1(a1 + 1/2 + a2 + 1/2)

p1 + p2
<
p1(a1 + 1/2) + p2(a1 + 1/2)

p1 + p2
= a1 + 1/2.

State 2’s quota is q2 = (a1 + a2 + 1)− q1 > a2 + 1/2. These pair

of inequalities are equivalent to (2) with ai = a1+1 and aj = a2.

Therefore the M-apportionment (a1 + 1, a2) is not near quota.
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4.5 Matrix apportionment: proportionality in both districts

and parties

The Zurich Canton Parliament is composed of seats that represent

the electoral districts as well as political parties.

• Each district, j = 1,2, . . . , n, is represented by a number of

seats rj that is proportional to its population (preset before the

election).

• Each political party, i = 1,2, . . . ,m, gets ci seats proportional to

its total number of votes (constitutional requirement).

• The vote count in district j of party i is denoted by vij. The

vote counts are assembled into a vote matrix V ∈ Nm×n.
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Vote Numbers for the Zurich City Council Election on February 12, 2006

District
1 + 2 3 4 + 5 6 7 + 8 9 10 11 12

Party 125 12 16 13 10 17 16 12 19 10 Total
SP 44 28,518 45,541 26,673 24,092 61,738 42,044 35,259 56,547 13,215 333,627
SVP 24 15,305 22,060 8,174 9,676 27,906 31,559 19,557 40,144 10,248 184,629
FDP 19 21,833 10,450 4,536 10,919 51,252 12,060 15,267 19,744 3,066 149,127
Greens 14 12,401 17,319 10,221 8,420 25,486 9,154 9,689 12,559 2,187 107,436
CVP 10 7,318 8,661 4,099 4,399 14,223 11,333 8,347 14,762 4,941 78,083
EVP 6 2,829 2,816 1,029 3,422 10,508 9,841 4,690 11,998 0 47,133
AL 5 2,413 7,418 9,086 2,304 5,483 2,465 2,539 3,623 429 35,760
SD 3 1,651 3,173 1,406 1,106 2,454 5,333 1,490 6,226 2,078 24,917
Total 92,268 117,438 65,224 64,338 199,050 123,789 96,838 165,603 36,164 960,712
Total
no. of
voters

7,891 7,587 5,269 6,706 12,180 7,962 8,344 9,106 3,793 68,838

• The number of seats allocated to each district is based on pop-

ulation figures of the districts.

• The number of seats allocated to each party is based on total

votes casted on the parties for the whole Zurich.
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• The district magnitudes are based on the population counts,

which are known prior to the election. For example, district 9

has 16 seats.

• Each voter has as many votes as there are seats in the corre-

sponding district. Voters in district 9 can cast up to 16 votes.

• The table does not include parties that do not pass the threshold

of 5% of the votes in at least one district. So, the total number

of votes in Table is less than the total number of actual votes.
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District marginals

District 12 has 5.5% of the voters (3,793 out of 68,838), but is

set to receive 8.0% of the seats (10 out of 125). This is because

the population counts form the basis for the allocation of seats to

districts.

District quota

This is the proportion of seats that a party should receive within

each district. For example, the Greens received 9,154 votes out of

123,789 votes in district 9; so

district quota for the Greens in district 9

= 16×
9,154

123,789
= 1.18.

• Summing all district quota for the Greens across all 12 districts

gives the sum 13.92.
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District Quotas for the Zurich City Council Election on February 12, 2006

District
1 + 2 3 4 + 5 6 7 + 8 9 10 11 12

Party 125 12 16 13 10 17 16 12 19 10 Total
SP 44 3.71 6.20 5.32 3.74 5.27 5.43 4.37 6.49 3.65 44.19
SVP 24 1.99 3.01 1.63 1.50 2.38 4.08 2.42 4.61 2.83 24.45
FDP 19 2.84 1.42 0.90 1.70 4.38 1.56 1.89 2.27 0.85 17.81
Greens 14 1.61 2.36 2.04 1.31 2.18 1.18 1.20 1.44 0.60 13.92
CVP 10 0.95 1.18 0.82 0.68 1.21 1.46 1.03 1.69 1.37 10.41
EVP 6 0.37 0.38 0.21 0.53 0.90 1.27 0.58 1.38 0.00 5.62
AL 5 0.31 1.01 1.81 0.36 0.47 0.32 0.31 0.42 0.12 5.13
SD 3 0.21 0.43 0.28 0.17 0.21 0.69 0.18 0.71 0.57 3.47
Total 12.00 16.00 13.00 10.00 17.00 16.00 12.00 19.00 10.00 125.00

At simple level, one may solve a sequence of vector apportionments

in all districts based on the district quota data.

However, a Greens candidate in District 12 (less voters turnout) has

comparative advantage over his partymates in other districts with

more voter turnout. It may occur that a candidate in District 12

wins but receives less number of votes than a losing candidate in

another District with larger voter turnout. The biapportionment

scheme should try to avoid such occurrence.
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• The percentage of population count of each district is not the

same as the district’s percentage of voters count, reflecting the

varying levels of engagement in politics in the districts. Dis-

trict 12 has the least percentage of population coming to vote

(politically less engaged).

• Suppose we use the total aggregate votes across all districts

(whole city) as the basis for computing the quota for the Greens,

we obtain

eligible quota for the Greens (out of 125 seats)

=
107,436

960,712
× 125 = 13.97 (slightly different from 13.92).

eligible quota for the Greens in district 9

=
9,154

960,712
× 125 = 1.19.
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First step: Determine the eligible quota for each party

• Party seats are allocated on the basis of the total party ballots

in the whole electoral region.

• Respond to the constitutional demand that all voters contribute

to the electoral outcome equally, no matters whether voters cast

their ballots in districts that are large or small.

• For a given party, we divide the vote counts in each district by

its corresponding district magnitude (rounding to the nearest

integer), and sum over all districts. This gives the support size

for each party – number of voters supporting a party. The

data on the support sizes of the parties for the whole city are

used to determine the eligible quota for each party. This would

satisfy the mandate that the vote contributions to the parties

are independent of the districts which the voters cast their votes.
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Biapportionment of the Zurich City Parliament election of 12 Febru-

ary 2006:

SP SVP FDP Greens CVP EVP AL SD City

divisor

Support size 23180 12633 10300 7501 5418 3088 2517 1692 530

Seats 125 44 24 19 14 10 6 5 3

For example, consider Party SP:

28,518

12
+

45,541

16
+ · · ·+

56,547

19
+

13,215

10
≈ 23,180

↑
each voter
in district 3
has 16 votes

Apply the divisor 530 so that[
23,180

530

]
+
[
12,633

530

]
+ · · ·+

[
2,517

530

]
+
[
1,692

530

]
= [43.7] + [23.8] + · · ·+ [4.7] + [3.19]

= 44 + 24 + · · ·+ 5 + 3 = 125.
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How to deal with the allocation of the seats to the parties within

the districts? Each vote count of a party in a district is divided by

its corresponding district divisor and party divisor. The quotient is

rounded using the standard apportionment schemes to obtain the

seat number.

Mathematical formulation

r = (r1 . . . rm) > 0 and c = (c1 . . . cn) > 0 are integer-valued vectors

whose sums are equal. That is,

m∑
i=1

ri =
n∑

j=1

cj = h = total number of seats.

We need to find the row multipliers λi and column multipliers µj
such that

xij = [λivijµj], for all i and j,

such that the row-sum and column-sum requirements are fulfilled.

Here, [ ] denotes some form of rounding.
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An apportionment solution is a matrix X = (xij), where xij > 0 and

integer-valued, such that

n∑
j=1

xij = ri for all i and
m∑
i=1

xij = cj for all j.

• Assign integer values to the elements of a matrix that are pro-

portional to a given input matrix, such that a set of row-sum

and column-sum requirements are fulfilled.

• In a divisor-based method for biproportional apportionment, the

problem is solved by computing the appropriate row-divisors and

column-divisors, and by rounding the quotients.
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Result of Zurich City Council Election on February 12, 2006

District
1 + 2 3 4 + 5 6 7 + 8 9 10 11 12

Party 125 12 16 13 10 17 16 12 19 10 Divisor
1/λi

SP 44 4 7 5 4 5 6 4 6 3 1.006
SVP 24 2 3 2 1 2 4 3 4 3 1.002
FDP 19 3 1 1 2 5 2 2 2 1 1.010
Greens 14 2 3 2 1 2 1 1 1 1 0.970
CVP 10 1 1 1 1 1 1 1 2 1 1.000
EVP 6 0 0 0 1 1 1 1 2 0 0.880
AL 5 0 1 2 0 1 0 0 1 0 0.800
SD 3 0 0 0 0 0 1 0 1 1 1.000
Divisor
1/µj

7,000 6,900 5,000 6,600 11,200 7,580 7,800 9,000 4,000
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The divisors are those that were published by the Zurich City admin-

istration. In district 1 + 2, the Greens had 12,401 ballots and were

awarded by two seats. This is because 12,401/(7,000×0.97) ≈ 1.83,

which is rounded up to 2.

• For the politically less active districts, like district 12, the divisor

(number of voters represented by each seat) is smaller (1/µj =

4,000).

• The matrix apportionment problem can be formulated as an

integer programming problem with constraints, which are given

by the row sums and column sums. We solve for the multipliers

λi and µj through an iterative algorithm.
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Greatest remainder biproportional rounding method

There are n = 56 electoral regions in the Greek parliamentary elec-

tions in 2007 and 288 seats are allotted to m parties (these are

parties that receive more than 3% of the national votes) based on

the votes received in the 56 electoral regions.

List of notations

vij number of votes received by party i in region j, i = 1,2, . . . ,m

and j = 1,2, . . . ,56

tj total votes of eligible parties in region j, j = 1,2, . . . ,56; equals∑m
i=1 vij

sj number of seats in region j, j = 1,2, . . . ,56

µj number of voters represented by each seat in region j, j =

1,2, . . . ,56; equals tj/sj

kij number of seats allotted to party i in region j, i = 1,2, . . . ,m and

j = 1,2, . . . ,56

ei number of seats allotted to party i (whole nation), i = 1,2, . . . ,m
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• sj (seats in region j) is determined based on population census.

• ei (total seats received by party i in all regions) is determined

based on vector apportionment of support sizes of the parties.

Each seat in region j represents µj votes. Note that µj = tj/sj may

not be an integer. Seats are allotted in two rounds. In the first

distribution for each region j, we set

kAij =

⌊
vij

µj

⌋
, i = 1,2, . . . ,m, j = 1,2, . . . , n,

as the lower bound for kij. This is like allocating the lower quota in

the vector apportionment among all parties in region j. The seat

allotment in the second distribution is defined as

kBij = kij − kAij
based on the vij − kAijµj left-over eligible votes. Here, kBij is either 0

or 1.
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We define

rij =
vij

µj
−
⌊
vij

µj

⌋
as a measure of inequity. The integer programming problem is

formulated as the minimization of the aggregate inequity among all

parties and regions:

min
kBij

n∑
j=1

m∑
i=1

(rij − kBij)
2

=
n∑

j=1

m∑
i=1

[r2
ij + (kBij)

2] + 2 min
kBij

n∑
j=1

m∑
i=1

(−rijkBij).
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Note that
n∑

j=1

m∑
i=1

r2
ij = constant

and since kBij ∈ {0,1}, we have

n∑
j=1

m∑
i=1

(kBij)
2 =

n∑
j=1

m∑
i=1

kBij ,

which is the total number of seats in the second distribution. It

is the difference between the total number of seats and the seats

allocated in the first distribution, a known quantity.

The problem becomes maximization of the sum of remainders,

where

ε∗ = max
kBij

n∑
j=1

m∑
i=1

rijk
B
ij .
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Recall that ei, i = 1,2, . . . ,m and sj, j = 1,2, . . . , n, are determined

using some vector apportionment method based on party votes and

population census, respectively. There are m + n additional con-

straints for the integer-valued maximization problem:

n∑
i=1

kBij = ei −
n∑

j=1

kAij = eBi , i = 1,2, . . . ,m;

m∑
j=1

kBij = sj −
m∑
i=1

kAij = sBj , j = 1,2, . . . , n.

eBi gives the allocation of remaining seats available to party i across

different districts and sBj gives the allocation of remaining seats

available to district j across different parties. Based on the input

data of kAij, we determine eBi and sBj .

The solution procedure is to allocate the remaining seats to party i in

region j with the largest value in rij sequentially until the respective

constraints stated above are met. Eligibility of assignment of a new

seat requires constraints on row sum or column sum have not been

met.
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Example 4-region and 3-party

Regions

Party︸ ︷︷ ︸ A B C D eBi︸︷︷︸
a 0.42 0.60 0.71 0.27 2

b 0.85 0.38 0.18 0.62 2

c 0.73 0.02 0.11 0.11 1

2 1 1 1 ← sBj

Naturally, the seats are allotted to those party-region slots that have

the large values of rij, respecting the 4 + 3 constraints on eBi and

sBj . In the second round distribution, eB1 = 2 means 2 seats can be

allocated to party 1 and sB2 = 1 means 1 seat can be allocated in

region 2.
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